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Lineage dynamics in growing
biofilms: Spatial patterns of
standing vs. de novo diversity
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Microbial biofilms show high phenotypic and genetic diversity, yet the

mechanisms underlying diversity generation and maintenance remain unclear.

Here, we investigate how spatial patterns of growth activity within a biofilm

lead to spatial patterns of genetic diversity. Using individual-based computer

simulations, we show that the active layer of growing cells at the biofilm

interface controls the distribution of lineages within the biofilm, and therefore

the patterns of standing and de novo diversity. Comparing biofilms of equal

size, those with a thick active layer retain more standing diversity, while de

novo diversity is more evenly distributed within the biofilm. In contrast, equal-

sized biofilms with a thin active layer retain less standing diversity, and their de

novo diversity is concentrated at the top of the biofilm, and in fewer lineages.

In the context of antimicrobial resistance, biofilms with a thin active layer may

be more prone to generate lineages with multiple resistance mutations, and

to seed new resistant biofilms via sloughing of resistant cells from the upper

layers. Our study reveals fundamental “baseline” mechanisms underlying the

patterning of diversity within biofilms.

KEYWORDS

biofilm, genetic diversity, lineage dynamics, evolution, spatial structure, agent-based

simulation

1. Introduction

Understanding how diversity is maintained within populations is one of the most

important challenges in ecology and evolution (Barton and Keightley, 2002; Gibbons

and Gilbert, 2015; Shade, 2017). Populations can adapt to changing environments via

selection on pre-existing diversity (standing variation), and/or via selection on new (de

novo) mutations, with different implications for the speed and nature of adaptation

(Barrett and Schluter, 2008). The factors controlling the balance between standing and

de novo diversity remain a topic of debate even for well-mixed populations (Barrett

and Schluter, 2008). For spatially structured populations such as microbial biofilms the

picture is more complex, since spatial structure can have drastic effects on evolutionary

dynamics (Korona et al., 1994; Stewart and Franklin, 2008; Stacy et al., 2015).
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Expanding populations are often characterized by genetic

drift at the expanding front, leading to lineage loss and spatial

segregation of surviving lineages (Habets et al., 2006; Hallatschek

and Nelson, 2008, 2010; Perfeito et al., 2008; Excoffier et al.,

2009; Nadell et al., 2010; Korolev et al., 2011; Freese et al., 2014;

Mitri et al., 2016; Giometto et al., 2018). This has implications

for the evolutionary maintenance of cooperative phenotypes

(Ben-Jacob et al., 1994; Kreft, 2004; Habets et al., 2006; Bollback

and Huelsenbeck, 2007; Park and Krug, 2007; Hallatschek

and Nelson, 2008, 2010; Perfeito et al., 2008; Excoffier et al.,

2009; Nadell et al., 2010, 2016; Korolev et al., 2011; Martens

and Hallatschek, 2011; Mitri et al., 2011, 2016; Good et al.,

2012; Mitri and Foster, 2013; Frost et al., 2018). In addition,

some lineages that are located right at the growing front can

expand dramatically, in a phenomenon known as gene surfing

(Hallatschek et al., 2007; Hallatschek and Nelson, 2008, 2010;

Gralka et al., 2016). Such spatial effects strongly influence the

distribution of clone sizes for de novo mutations: bacterial

colonies exhibit more jackpot events (large clones) compared to

well-mixed populations (Fusco et al., 2016). Spatial effects can

also lead to fragmentation of the population into independently

evolving subpopulations (Fux et al., 2005; Steenackers et al.,

2016). Moreover, evolutionary dynamics feeds back on the

spatial structure of the population, for example through changes

in growth speed or adhesive capacity (Kim et al., 2014;

Steenackers et al., 2016; Kayser et al., 2018).

Microbial biofilms are widely observed to be phenotypically

and genetically diverse (Hall-Stoodley et al., 2004; Stewart and

Franklin, 2008; Stacy et al., 2015). This diversity is ecologically

important, and probably contributes to the tolerance of clinical

biofilms to antibiotic treatment (Mah and O’Toole, 2001;

Stewart, 2002; Fux et al., 2005; Excoffier et al., 2009; Hallatschek

and Nelson, 2010; Kim et al., 2014; Nadell et al., 2016; Frost

et al., 2018). In environmental or clinical contexts, biofilms are

likely to be seeded from genetically diverse inocula, such as skin,

gut, soil, ocean, or river microbiota, so that standing variation

may play a significant role. However, biofilms can also act as

sources of de novo variation (Korona et al., 1994; Stewart and

Franklin, 2008; Stacy et al., 2015). As we discuss below, spatial

structure can drastically affect mutant fixation probabilities

(Kim et al., 2014; Fusco et al., 2016). Spatial gradients of

selection pressure, such as antibiotic, within the biofilmmay also

accelerate the emergence of resistant mutants, while the biofilm

environment may favor the emergence of mutator strains and/or

the horizontal transfer of genetic material (Stewart, 2002). In

addition, spatial structure may promote the evolution of specific

phenotypes that are well-adapted to the biofilm environment

(Ben-Jacob et al., 1994; Nadell et al., 2010, 2016;Mitri et al., 2011;

Mitri and Foster, 2013; Frost et al., 2018).

Biofilms are characterized by an uneven distribution of

growth activity. Nutrients are rapidly consumed at the growing

edge of the biofilm, so that the interior becomes nutrient-

depleted. Therefore, growth is limited to a well-defined layer

close to the biofilm front, where nutrient has not yet been

consumed (Stewart and Franklin, 2008; Stacy et al., 2015; Stewart

et al., 2016). This is known as the active layer; it has been

observed in in vitro experiments (Pamp et al., 2008; Stewart

et al., 2016) and in ex vivo clinical lab samples (Stewart et al.,

2016), as well as in simulations (Xavier et al., 2004; Nadell

et al., 2010, 2013; Young et al., 2022) and theory (Korolev et al.,

2010). The width of the active layer is controlled by the balance

between nutrient supply and consumption (Nadell et al., 2010).

Hence, nutrient availability, nutrient consumption rate, nutrient

diffusivity, biomass density and growth yield all affect the active

layer width (Nadell et al., 2010). The active layer width is closely

coupled to biofilm morphology: biofilms with thin active layers

tend to have rough interfaces, while those with thick active layers

tend to be smooth (Nadell et al., 2010; Farrell et al., 2013; Young

et al., 2022)—although dynamical fluctuations of the active layer

are also important (Young et al., 2022).

In this study, we investigate in detail how the spatial pattern

of growth activity within biofilms leads to spatial patterns of

standing and de novo diversity. Using individual-based biofilm

simulations, we track the fate of hundreds of neutral cell lineages

in growing biofilms. Our simulations allow direct observation

of the loss of standing diversity, and we infer the gain of de

novo diversity from patterns of lineage length. In this work,

we choose to compare biofilms grown to equal size, under

conditions where the active layer thickness is different. Our

study complements previous work by Mitri et al. (2016), who

studied diversity in bacterial colonies, grown for equal time with

differing nutrient availability. Increasing nutrient availability

increases the active layer width (Nadell et al., 2010). Mitri et al.

(2016) observed that well-fed colonies retain standing diversity

over more generations than poorly fed colonies; however over

a similar timescale, well-fed colonies undergo more generations

of growth than poorly-fed ones. Therefore, comparing colonies

over the same timescale, well-fed and poorly-fed colonies retain

similar amounts of standing diversity since the differences

in colony size compensate for the differences in active layer

thickness. Here, our aim is to understand the fundamental role

of the active layer, for which the picture is clearer when we

compare biofilms of equal size.

We find that active layer thickness controls both the balance

between standing and de novo variation, and the spatial patterns

of de novo mutations within the biofilm. For biofilms of equal

size, those with a thick active layer retain more standing

diversity and their de novo diversity is more evenly distributed

across the biofilm. In contrast, biofilms with a thin active

layer retain less standing diversity, and their de novo diversity

is concentrated close to the growing interface. Since de novo

diversity is concentrated in fewer lineages, the occurrence of

multiple mutations along the pathway to high-level antibiotic

resistance is more likely in biofilms with thinner active layers.

In this study, we do not aim to represent biofilm growth and

evolution in realistic detail, but rather to provide a baseline
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model that reveals fundamental mechanisms connecting spatial

patterning of growth and diversity, onto which more complex

effects can be superposed.

2. Methods

2.1. Agent-based simulation algorithm

In this work, we use the individual-based biofilm modeling

software iDynoMiCS (Lardon et al., 2011). iDynoMiCS models

the microbes in a biofilm as individual agents whose behavior is

coupled to a nutrient reaction-diffusion equation (Lardon et al.,

2011). The agents, which in this work are assumed to be discs in

continuum 2D space, growwith specific growth rateµ according

to the Monod equation µ = µmaxS/(kS + S), where µmax is

the maximum specific growth rate, kS is the concentration of

nutrient at which the growth is half maximal, and S is the local

nutrient concentration at the position of the microbial agent

(Monod, 1949). Once a microbial agent reaches a maximum

radius (which has a stochastic element), it divides into two

daughters. Microbes interact with one another mechanically

via a shoving algorithm. Briefly, this algorithm detects pairs

of agents whose “zones of influence” (defined to be the radius

multipled by a “shove parameter”) overlap, and shuffles the agent

positions to avoid such overlaps (Lardon et al., 2011). Although

iDynoMiCS has the facility to model extra-cellular matrix (EPS)

as non-replicating particles, we did not model EPS in this study.

In iDynoMiCS, the computational domain is set up to

resemble a flow cell, in which the biofilm grows on a hard surface

and nutrients diffuse from above. The nutrient is represented

by a concentration field which varies in space and time due to

diffusion and consumption by the microbes. A separation of

timescales is assumed, such that the reaction-diffusion equation

for the nutrient is assumed to reach steady state faster than

the timescale for microbial growth; hence the reaction-diffusion

equation for the nutrient concentration is solved to steady state

at each iteration of the microbial growth algorithm. Convective

flow is not modeled, but rather it is assumed that there is a

stationary layer of fluid close to the biofilm: the “boundary

layer” (Kreft et al., 2001; Lardon et al., 2011). It is also assumed

that the diffusion constant for nutrient is reduced inside the

biofilm by a fixed factor compared to outside the biofilm. The

input values used in our simulations are based on experimental

values for oxygen-limited Pseudomonas aeruginosa biofilms

(see Table 1). We vary the bulk nutrient concentration (Sbulk)

and the maximum specific growth rate (µmax) in order to

simulate biofilms with different spatial structures. They could in

principle be controlled experimentally by changing the nutrient

concentration of the fluid medium in a flow cell setup, and the

bacterial strain.

To be able to simulate biofilm growth over long times, we

use a “clipping” algorithm in combination with iDynoMiCS

(Young et al., 2022). This algorithm periodically removes

inactive agents far below the growing front, such that a

computationally feasible number of agents remain in the

simulation space. This is achieved by pausing the iDynoMiCS

simulation and removing the relevant agents, or clipping, and

then restarting the simulation. This clipping procedure is done

at regular time intervals. In the clipping procedure, microbial

agents which are located both below the lowest actively growing

agent and below the minimum point of the interface (which can

be different points depending on the biofilm configuration), are

removed. The complete algorithm has been described by Young

et al. (2022).

2.2. Tracking microbial lineages

To study the microbial lineages in our simulations, we use

built-in iDynoMiCS variables that relate to the genetic tree,

namely the family number and the generation number (Lardon

et al., 2011). The family number (1 . . .N0) labels the descendants

of each of the N0 agents that were present at the start of the

simulation. Upon a division event, both daughter agents inherit

the family number of the parent. The generation number allows

us to measure the lineage lengths of the agents, i.e., the number

of divisions that have happened in the lineage of that agent since

the start of the simulation. The generation number is set to zero

for all agents at the start of the simulation. Upon a division

event, both daughters are assigned a generation number which

is greater by 1 than the generation number of the parent.

2.3. Defining and measuring the active
layer

We define the active layer as the layer of growing microbial

agents at the top of the biofilm. More specifically, we define a

threshold growth rate; agents which grow faster than this rate

are defined to be part of the active layer. We consider an agent to

be in the active layer if its growth rate is >0.1% of the maximal

growth rate µmaxSbulk/(kS + Sbulk) that is possible under the

conditions of the simulation (i.e., for the chosen values of µmax

and Sbulk). Therefore, the condition for an agent to be part of the

active layer is µ > (1/1000)× µmaxSbulk/(ks + Sbulk).

To calculate the average active layer thickness we define

a grid spanning the simulation domain with D columns

(horizontal bins) and H rows (vertical bins) of width 8µm.

Within each of the D columns, we find the total number of

“active” grid squares whose biomass has an average specific

growth rate above the active layer threshold. The local active

layer thickness is then the number of active grid squares within

the column, multiplied by the 8µm height of a grid square.

We note that for some biofilm configurations, for example if

the biofilm is rough, the active grid squares within one column
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TABLE 1 Input values used in our iDynoMiCS biofilm simulations.

Parameter Values Description References

Sbulk 10−3 − 10−2 g/L Bulk concentration of limiting nutrient (here

assumed to be oxygen). This value is varied to

alter biofilm morphology.

Saturation concentration of water

at 37oC is 6.6× 10−3 g/L (Battino

et al., 1983)

Y 0.64 g/g Yield—grams of biomass produced per gram

of oxygen consumed

(Beyenal et al., 2003)

µmax 0.1-0.4 /h Maximum specific growth rate. This value is

varied to alter biofilm morphology.

(Bakke et al., 1984; Robinson et al.,

1984; Beyenal et al., 2003; Kragh

et al., 2016)

kS 8.12× 10−4 g/L Concentration of oxygen at which the growth

is half maximal

(Kragh et al., 2016)

DS 2.3× 10−4m2/day Diffusion coefficient of nutrient (oxygen) (Stewart, 2003)

Biofilm diffusivity 0.8 Factor multiplying DS to give nutrient

diffusion coefficient inside the biofilm

(Rittmann and Manem, 1992;

Stewart, 2003)

h 80 µm Diffusion boundary layer height (Picioreanu et al., 1998; Xavier

et al., 2005; Alpkvist et al., 2006)

ρB 200 g/L Biomass density of microbes in biofilm (Xavier et al., 2005; Bjarnsholt

et al., 2009)

rdiv 2 µm Average radius of microbial agent at division (Beyenal et al., 2003)

kShov 1.15 Factor multiplying the agent’s radius to give

the shove radius

Default iDynoMiCS value (Lardon

et al., 2011)

Ly 1,032 µm Width of the simulation domain

N0 300 Number of initialized microbial agents

These values are loosely based on Pseudomonas aeruginosa in a flow cell type set up (Melaugh et al., 2016).

may not necessarily be adjacent to one another. Once the local

active layer thickness for each vertical column has been found,

the mean active layer thickness across the biofilm is found by

averaging these values over all the D columns.

3. Results

3.1. Agent-based simulations show
diverse biofilm morphology and active
layer structure

We used agent-based simulations with iDynoMiCS (Lardon

et al., 2011) to model the growth of microbial biofilms over

long times, starting from an initial population of 300 “founder”

microbes. Our simulations model individual microbes as disc-

shaped agents which consume nutrients, grow, divide, and push

each other out of the way (see section Methods). Our model is

neutral, in the sense that all microbes are, a priori, equally fit.

To focus on spatial patterns of growth and diversity, without

confounding effects of biofilm size, we compare biofilms grown

to equal size, for different parameter values.

We observe different biofilm morphologies for different

parameter values, consistent with previous work (Xavier et al.,

2004; Korolev et al., 2010; Nadell et al., 2010; Stacy et al.,

2015; Young et al., 2022) (Supplementary figure 1; see also the

Supplementary movies). For high nutrient concentration or low

values of themicrobial maximal growth rate parameterµmax the

biofilm interface is smooth, while for low nutrient concentration

or high µmax it becomes fingered (Supplementary figure 1).

We designate individual microbes as “active” if their growth

rate exceeds a threshold of 0.1% of the maximum growth rate

achieveable in the simulation (see section Methods).

As expected, active microbes are located in a layer close to

the biofilm interface (colored region in Supplementary figure 1;

shaded region in Figures 1, 4). Tracking the average thickness

of this active layer across the biofilm interface (see section

Methods), we find that it stabilizes early in biofilm growth

(Supplementary figure 2). High nutrient concentration, or low

values of the maximal growth rate µmax, lead to a thick,

continuous, active layer while low nutrient concentration

or high µmax lead to a thin active layer that has gaps,

corresponding to the troughs between the biofilm fingers

(Supplementary figures 1, 2 and Supplementary table 1; Young

et al., 2022). For intermediate nutrient concentration or µmax

the active layer is of intermediate thickness and is dynamic, with

transient gaps appearing and disappearing (see the kymograph

in Figure 3; Young et al., 2022).
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FIGURE 1

Biofilm morphology and loss of standing diversity. Snapshots from our simulations at di�erent stages of biofilm growth (left to right: 25,000,

50,000, and 75,000 microbial agents). The active layer is shown by the shaded region (see section Methods for definition). Three simulations are

shown (top, middle, and bottom rows), with di�erent parameters and hence di�erent values of the active layer thickness. (Top) Sbulk = 0.01 g/L;

µmax = 0.1/h; producing an average active layer thickness of 102.8± 0.8 µm. (Middle) Sbulk = 0.005 g/L; µmax = 0.2/h; average active layer thickness

71.3± 1.4 µm. (Bottom) Sbulk = 0.001 g/L; µmax = 0.3/h; average active layer thickness 40.8± 1.4 µm. The rest of the simulation parameters are as in

Table 1. The descendants of each of the 300 founder cells are shown in a di�erent color, allowing visualization of the patterns of loss of standing

diversity.

3.2. Active layer thickness controls loss of
standing diversity via genetic drift

We first investigate the loss of standing diversity during

biofilm growth. We label each of the 300 founder cells with

a different “color” that is inherited upon division, allowing us

to track the founder cell’s descendants (see section Methods).

The colors in Figure 1 illustrate the fates of the 300 founder

cell lineages, for three simulations with different active layer

thickness. In all simulations, genetic drift leads to loss of

standing diversity, such that the active layer becomes dominated

by just a few founder lineages (Figure 1).

However, the loss of standing diversity proceeds very

differently in our three simulations. Comparing biofilms of equal

size, more standing diversity is lost from the biofilm with the

thinner active layer (bottom row in Figure 1), while less standing

diversity is lost from the biofilm with a thicker active layer (top

row in Figure 1).

To probe the link between active layer thickness and

loss of standing diversity, we performed more simulations to

generate biofilms with a wide range of active layer thicknesses

(Supplementary table 1). We counted the number of founder

lineages that remained in the active layer at a biofilm size of

50,000 microbes: this provides a quantitative measure of the

retention of standing diversity. Retention of standing diversity

is strongly correlated with the active layer thickness (Figure 2

and Supplementary figure 3). Comparing biofilms of equal size,

those with thicker active layers have larger effective population

size and are less subject to genetic drift, so they retain more

standing diversity.

3.3. Active layer dynamics causes local
losses of standing diversity

We hypothesized that loss of standing diversity might

depend not just on the average active layer thickness but
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FIGURE 2

Active layer thickness controls loss of standing diversity.

Correlation between the number of founder lineages remaining

in the active layer, and thickness of the active layer (averaged

across the biofilm interface), for 16 simulated biofilms of size

50,000 microbial agents. The active layer thickness was varied

by changing the bulk nutrient concentration (Sbulk) and the

maximum specific growth rate (µmax). The values of Sbulk and

µmax corresponding to these simulations are shown in

Supplementary table 1 together with the active layer

thicknesses. The rest of the simulation input parameters are as in

Table 1. Supplementary figure 3 shows the same plot for

biofilms that have reached 25,000, 75,000, and 100,000

microbial agents.

also on the local dynamics of the active layer. Across the

biofilm interface, the local active layer thickness can vary quite

dramatically (Young et al., 2022; Supplementary figures 1, 2).

For example, our simulation with intermediate active layer

thickness shows transient gaps in the active layer, corresponding

to troughs between bulges in the interface (Figure 1 and

Supplementary figure 1). In previous work, we have shown that

these gaps cause pinning of the interface, leading to a rough

morphology (Young et al., 2022).

Our simulations show that founder lineages tend to be lost

at local sites where there are active layer gaps. To observe

this, we plot an “active layer kymograph” for the simulation

at intermediate nutrient concentration (Figure 3A). Here, the

colors represent the local active layer thickness along the biofilm

interface (horizontal axis), with biofilm size being shown on

the vertical axis (Young et al., 2022). Local gaps in the active

layer appear as dark lines, whose dynamics can be observed by

reading from bottom to top. The merger of two active layer

gaps corresponds to an event where a bulge in the interface

is subsumed by two adjacent larger bulges (Young et al.,

2022).

To correlate loss of standing diversity with active layer

dynamics, we also make a kymograph for the dynamics of the

300 founder lineages in the same simulation (Figure 3B). To

make this plot, we record in the horizontal direction the founder

ancestor of every microbial agent along the biofilm interface

(using the same colors as in Figure 1), and juxtapose data for

different biofilm sizes along the vertical axis. This allows us to

visualize the dynamics of loss of founder lineages as the biofilm

grows (bottom to top in Figure 3B). Eventually, only 2 founder

lineages remain.

Comparing the active layer dynamics with the founder

lineage dynamics (Figures 3A,B) shows a clear correlation. Local

losses of founder lineages happen when active layer gaps merge,

i.e., when local bulges in the biofilm interface become subsumed

behind the growing front. When this happens, all founder

lineages that are located within the subsumed bulge are lost.

Therefore, local active layer dynamics can produce hot spots for

loss of standing diversity. This suggests that both local active

layer dynamics and the average thickness of the active layer are

relevant factors controlling the loss of standing diversity as the

biofilm grows.

3.4. Active layer thickness controls
distribution of de novo genetic diversity
in space and among lineages

Next, we investigate how de novo diversity is affected by

active layer thickness. Our simulations do not model mutation

events directly. However, in our neutral model, mutations can be

assumed to occur with equal probability at each division event.

The number of mutations that a lineage accumulates is expected

to be proportional to the number of divisions in that lineage,

going back to the founder cell—in other words, the lineage

length (see section Methods). Our simulations allow us to track

the lineage length of every microbial agent within the biofilm,

and therefore to infer the number of (neutral) mutations that

are expected to have accumulated.

In this work, we compare biofilms of equal size. Therefore

each biofilm has undergone the same number of divisions and is

expected to contain the same total de novo diversity (number of

mutations). However, the spatial patterning of de novo diversity

within the biofilm, and its distribution among lineages, may be

different.

Mapping the spatial distribution of lineage length in

our simulated biofilms, we observe clear patterns (Figure 4

and Supplementary movies). In all our simulations, lineage

length increases linearly with vertical height within the biofilm

(Supplementary figure 4). This happens because lineages are

terminated when they fall behind the growing front (Schreck

et al., 2019); the trend is linear because the biofilm grows linearly

in time. Since longer lineages accumulate more mutations, our

results imply that mutations will be concentrated preferentially

in the upper parts of a growing biofilm. This is relevant, because

mutations in the upper parts of the biofilm are more likely to

propagate as the biofilm grows, and also have more chance of
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FIGURE 3

Local active layer dynamics a�ects both loss of standing diversity and patterns of de novo diversity. Kymographs showing (A) dynamical changes

in the active layer, (B) dynamics of the 300 founder lineages, and (C) dynamics of the relative lineage length at di�erent positions along the

biofilm interface. Results are shown for the simulation at intermediate active layer thickness [71.30± 1.42 µm (Sbulk = 0.005g/L; µmax = 0.2; middle

row in Figures 1, 4)], In this simulation, the active layer shows transient gaps (Young et al., 2022). (A) Shows how the local active layer thickness

(colorscale) across the width of the biofilm (horizontal axis) changes during biofilm growth (vertical axis show the total number of agents in the

biofilm, as a proxy for time). The darker lines correspond to the movement of local gaps in the active layer. The merger of two dark lines

happens when a bulge in the biofilm interface is subsumed by two adjacent bulges and is lost behind the growing front (Young et al., 2022). (B)

Shows the founder cell lineages present at the biofilm interface. Lineages of the 300 founder microbes are indicated using the same colors as in

Figure 1. (C) Shows the dynamics of the relative lineage length (color scale) for microbes located at the interface. The relative lineage length is

calculated as the lineage length of an individual microbe located at the interface, divided by the average lineage length of all the microbes

located at the interface at that time point. Plotting the relative lineage length makes it easier to see local trends which would be obscured by the

much larger general increase in lineage length with time as the biofilm grows (Figure 4).

spreading if cells detach from the biofilm and go on to seed new

biofilms.

Comparing our simulations for high, intermediate and low

active layer thickness (Figure 4), we see clear differences in the

spatial pattern of lineage lengths. In the biofilm with the thinner

active layer, lineage length varies more across the biofilm,

whereas it is more homogeneous in the biofilm with the thicker

active layer (Figure 4). This implies that, comparing biofilms of

equal size, mutations will be more strongly concentrated at the

growing edge if the biofilm has a thin active layer, and more

evenly spread across the biofilm if the active layer is thick.

To further investigate the link between active layer thickness

and spatial patterning of mutations, we re-analyzed our more

extensive set of simulations with a broad range of active layer

thicknesses (Supplementary table 1). Since we compare biofilms

of equal size we would expect (on average) the same total

number of mutations for all these biofilms. However, mutations

may be differently distributed within the biofilm. To estimate

the extent to which mutations concentrate at the top of the

biofilm, we computed the sum of lineage lengths for all microbes

in the active layer. This quantity correlates strongly with the

active layer thickness (Figure 5A and Supplementary figure 5).

Therefore, in biofilms with a thinner active layer, we expect

mutations to be concentrated at the top of the biofilm, within

the active layer, while for biofilms with a thicker active layer,

we expect mutations to be more widely distributed, occurring
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FIGURE 4

Patterns of de novo diversity, inferred from lineage length. Snapshots from our simulations at di�erent stages of biofilm growth, as in Figure 1,

but color-coded according to lineage length (left to right: 25,000, 50,000, and 75,000 microbial agents; top to bottom: average active layer

thicknesses 102.8± 0.8, 71.3± 1.4, and 40.8± 1.4 µm; parameters are given in the caption of Figure 1 and Table 1). Agents are colored according to

their lineage length, i.e., the number of divisions that have occurred in the history of that agent since the start of the simulation (see Section

Methods). The region of darker shading indicates the active layer (see section Methods).

within the dormant lower layers of the biofilm as well as within

the active layer.

High-level resistance to antibiotics often requires multiple

sequential mutations (Toprak et al., 2011; Greulich et al., 2012).

Long lineages are more likely to accumulate multiple resistance

mutations. To estimate the propensity for biofilms to gain high-

level antibiotic resistance, we computed the average lineage

length for individual microbes in the active layer, for our

simulation set. This quantity also correlates strongly with the

active layer thickness (Figure 5B and Supplementary figure 5).

This suggests that, a priori, biofilms with a thin active layer

are more prone to de novo evolution of high-level resistance,

compared to biofilms of the same size with a thicker active layer.

How does active layer thickness control the patterning of de

novo genetic diversity within a biofilm? Put simply, replication

events are confined to the active layer (i.e., the active layer

thickness determines the effective population size). If the active

population is of sizeNact and the biofilm containsNtot microbes

in total, then the average lineage length of microbes in the active

population must be Ntot/Nact . Biofilms with a thin active layer

have small Nact and therefore long lineages for microbes at

the biofilm interface. In contrast, biofilms with a thicker active

layer have larger Nact and the lineage length at the interface is

correspondingly shorter.

Our simulations also show that the local active layer

dynamics affects spatial patterns of lineage length. Figure 3C

illustrates with a kymograph the local dynamics of lineage

length at the biofilm interface, during biofilm growth. Here,

the color scale shows the lineage length for microbes along

the biofilm interface, relative to the average lineage length for

microbes at the interface. The horizontal axis indicates position

along the biofilm interface, while the vertical axis indicates

cell number. Lighter colors show local regions of greater than

average lineage length, which are predicted to be local hot spots,
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FIGURE 5

Active layer thickness controls patterns of lineage length, hence de novo diversity. (A) Total de novo diversity in the active layer. The sum of the

lineage lengths of all microbial agents in the active layer is plotted against the active layer thickness (averaged across the biofilm interface) for 16

biofilms that have reached 50,000 agents. (B) Average lineage length of a microbial agent in the active layer, plotted vs. the active layer

thickness. In both panels, as in Figure 2, the active layer thickness was varied by changing the bulk nutrient concentration (Sbulk) and the

maximum specific growth rate (µmax). The values of Sbulk and µmax corresponding to these simulations are shown in Supplementary table 1

together with the active layer thicknesses. The rest of the simulation parameters are as in Table 1.

where mutations are more likely to be found. Comparing the

pattern of lineage length (Figure 3C) to that of active layer

thickness (Figure 3A) shows that lineage length is locally longer

where the active layer is locally thicker, in other words, at the

peaks of bulges along the biofilm interface. However, this local

effect is minor compared to the effect of the average active layer

thickness.

4. Discussion

Biofilms often show high levels of genetic diversity, which

is believed to contribute to antibiotic tolerance and resistance

(Mah and O’Toole, 2001; Stewart, 2002). Understanding

whether this diversity primarily arises from pre-existing

(standing) variation or from newly generated (de novo)

variation has significant implications. For example, adaptation

to environmental challenges is generally faster from a basis of

standing variation (Barrett and Schluter, 2008). Here, we used

an individual-based biofilm model, to show how the spatial

patterns of microbial growth within a biofilm lead to spatial

patterns of standing and de novo diversity. Our work reveals

a central role for the active layer of growing microbes at the

biofilm interface. Comparing biofilms of equal size, a biofilm

with a thick active layer retains more standing diversity, and

its de novo diversity is more evenly distributed, both spatially

and among individuals in the population. In contrast, a biofilm

with a thin active layer retains less standing diversity, and its

de novo diversity is concentrated close to the biofilm interface,

with relatively less de novo diversity being located in the deeper

parts of the biofilm. This implies that microbes with multiple

mutations, leading to high-level antibiotic resistance, are more

likely in biofilms with a thin active layer, compared to biofilms

of equal size with a thick active layer. We also find that the local

dynamics of the active layer plays a role, for example, causing

local hot spots of loss of standing variation when interface bulges

are lost behind the growing front.

Putting our results together, our model predicts contrasting

spatial patterns of standing diversity and de novo diversity.

Standing diversity is greatest in the lower parts of the biofilm,

while de novo diversity is greatest at the top of the biofilm.

This could have consequences when biofilms are subjected to

environmental challenges. For example, antibiotics that target

primarily the active, upper, part of the biofilm would tend to

select on de novo diversity, while those that target primarily

the lower part of the biofilm might select on standing diversity

(Pamp et al., 2008). Likewise, sloughing of the upper layers

of a biofilm might disperse de novo diversity to the wider

environment, while leaving standing diversity in place.

In this work, we compared biofilms grown to equal size,

with different active layer thickness, achieved by varying the

parameters of our individual-based model. In doing this, we

follow the work of Drescher et al. (2016), who also point to

biofilm size, rather than age, as a key control parameter. This

contrasts with the work of Mitri et al. (2016), who compared

bacterial colonies grown for equal time, on media with varying

nutrient availability. Mitri et al. (2016) found that, overall,

nutrient availability had little effect on loss of standing diversity,

because the differences in colony size counteracted the effects of

the active layer thickness. In this work, we aimed to elucidate
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the fundamental mechanisms by which growth patterning leads

to patterning of diversity. These mechanisms are clearer when

we compare biofilms of equal size. One might argue that

comparing biofilms of equal size restricts the practical relevance

of our conclusions, since slow-growing biofilms will generally

be smaller than fast-growing ones. However, in the natural

environment, biofilm maturity does not necessarily correspond

to increasing size: biofilm growth can be limited by space (e.g.,

inside a cavity in a medical implant) or by chemical interactions

(e.g., the secretion of pulcherrimin which causes growth arrest

in Bacillus subtilis colonies; Arnaouteli et al., 2019). Bearing in

mind that our comparison is made for biofilms of equal size, it

would be important to carefully define the conditions for any

experimental test of these predictions.

To control the active layer thickness in our simulations, we

varied two model parameters: the bulk nutrient concentration

Sbulk and the maximal specific growth rate µmax. We could

have chosen to vary a single parameter. For example, increasing

Sbulk alone (as in the study of Mitri et al., 2016) increases the

active layer thickness, but it also increases the average activity

of microbes within the active layer (Supplementary figure 6 and

Supplementary table 1). Increasing µmax alone decreases the

active layer thickness, while increasing the average activity of

microbes within the active layer (Supplementary figure 6 and

Supplementary table 1). By varying multiple parameters, we can

identify the active layer thickness as the controlling factor, rather

than other factors, such as the activity of individual microbes,

that correlate with individual parameters.

Importantly, we have assumed neutrality in this study:

a priori, all microbial agents in our simulations have equal

fitness and identical traits. This allows us to predict patterns

of mutations within the biofilm from lineage lengths, without

explicitly simulating mutation events. Neutral models have a

distinguished history in ecology and evolution (Volkov et al.,

2003; Azaele et al., 2006); they are useful for predicting

baseline phenomena, deviations fromwhich can point to specific

biological mechanisms. In this study, the predicted baseline

phenomenon is the connection between the active layer and

patterns of standing and de novo diversity. Neutral models do

not provide a realistic description of the real biological system,

but they do provide a useful reference to which to compare

biological measurements (Nee, 2005).

Similarly, our study aims to elucidate baseline mechanisms,

rather than to provide a realistic model for an evolving biofilm.

Our model neglects many biological and physical factors,

including fitness effects of mutations, antibiotic effects on

mutation rates, the emergence of hypermutators, persisters,

physical effects of exopolysaccharide production, 3D geometric

effects and fluid flow. All of these could produce different

outcomes for the patterning of standing and de novo diversity

within a biofilm, and should be investigated in future work.

Feedback between evolutionary processes and the spatial

structure of the population (e.g., the formation of biofilm bulges

by fitter mutant clones, or a change in the local active layer

thickness due to a mutant with a different growth yield) could

also have interesting effects.

Previous work on evolution in spatially expanding microbial

populations has focused on the distribution of clone sizes, i.e.,

the number of descendants of a mutant that emerges within the

population (Hallatschek et al., 2007; Hallatschek and Nelson,

2008, 2010; Fusco et al., 2016; Gralka et al., 2016; Farrell et al.,

2017; Schreck et al., 2019). The clone size distribution is different

in a spatially expanding population compared to a well-mixed

population; for example, mutants that emerge right at the front

can be carried along at the front and produce large clone sizes

even in the absence of fitness benefits, in a phenomenon known

as gene surfing (Hallatschek et al., 2007; Hallatschek and Nelson,

2008, 2010; Gralka et al., 2016; Farrell et al., 2017). In this work,

we consider de novo diversity from a different perspective.While

the clone size distribution considers the number of descendants

arising from an individual mutation event, here we predict

the total number of mutations (of any type) that are located

at a particular spatial position within the biofilm. By tracking

the lineages of microbes within the biofilm, we can predict

patterns of de novo diversity, in terms of predicted mutation

density, within the biofilm. However, since we do not connect

the lineages of different microbes within the biofilm (i.e., we do

not measure relatedness between individuals), we cannot track

the fate of particular mutations. Therefore our work provides

a different and complementary approach to understanding

patterns of de novo diversity.

Computer simulations provide a powerful way to investigate

phenomena that might be difficult to study experimentally,

but they are not a substitute for experimental data. Tracking

of lineages within experimental microbial populations is now

possible, for well-mixed populations, using barcoding methods,

although this has not been used for spatially structured

populations (Blundell et al., 2019; Jasinska et al., 2020). For

biofilms, advanced image analysis of growing biofilms allows

the tracking of cell lineages in space and time (Jeckel and

Drescher, 2021). Spatially-resolved detection of point mutations

is challenging at present, but may well become possible in future.

Therefore, experimental tests of the ideas presented in this work,

although difficult, are not out of the question.
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