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Plant growth-promoting rhizobacteria (PGPR) can produce hormone-like 

substances, promote plant nutrient uptake, enhance plant resistance, inhibit 

the growth of pathogenic bacteria, and induce plant resistance to biotic and 

abiotic stresses. Bacillus is one of the most studied genera that promote 

plant root development. Since its discovery in 2009, B. aryabhattai has shown 

promising properties such as promoting plant growth and improving crop yield. 

However, the mechanisms of B. aryabhattai promoting plant growth remain to 

be investigated. In this study, the chromosome of B. aryabhattai strain LAD and 

five plasmids within the cell were sequenced and annotated. The genome, with a 

length of 5,194,589 bp and 38.12% GC content, contains 5,288 putative protein-

coding genes, 39 rRNA, and 112 tRNA. The length of the five plasmids ranged 

from 116,519 to 212,484 bp, and a total of 810 putative protein-coding genes, 4 

rRNA, and 32 tRNA were predicted in the plasmids. Functional annotation of the 

predicted genes revealed numerous genes associated with indole-3 acetic acid 

(IAA) and exopolysaccharides (EPSs) biosynthesis, membrane transport, nitrogen 

cycle metabolism, signal transduction, cell mobility, stress response, and antibiotic 

resistance on the genome which benefits the plants. Genes of carbohydrate-

active enzymes were detected in both the genome and plasmids suggesting that 

LAD has the capacity of synthesizing saccharides and utilizing organic materials 

like root exudates. LAD can utilize different carbon sources of varied carbon chain 

length, i.e., methanol, acetate, glycerol, glucose, sucrose, and starch for growth 

and temperature adaptation suggesting a high versatility of LAD for thriving in 

fluctuating environments. LAD produced the most EPSs with sucrose as sole 

carbon source, and high concentration of IAA was produced when the maize 

plant was cultivated with LAD, which may enhance plant growth. LAD significantly 

stimulated the development of the maize root. The genome-based information 

and experimental evidence demonstrated that LAD with diverse metabolic 

capabilities and positive interactions with plants has tremendous potential for 

adaptation to the dynamic soil environments and promoting plant growth.
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Introduction

Plant growth and development is highly dependent on the 
interactions with other living organisms that habitat the soil 
ecosystem. These interactions are very complex and critical for 
maintaining the biodiversity in the below-ground system (Lau and 
Lennon, 2011; Bever et al., 2013; Shao et al., 2018). Microbes are 
the most abundant and diverse entities in soil and can directly 
participate in ecological processes and nutrient cycling. The role 
of soil microbial community in soil ecosystem functioning and 
plant production has been widely investigated via isolation of 
culturable microbes and culture-independent techniques (Liu 
et al., 2019; Roy et al., 2020). However, the soil environment is 
extremely heterogeneous imposing great challenges on studies of 
soil microbial ecology.

Roots harbor a rich abundance of biomass and are the crucial 
organ of the plant to absorb water and nutrients for the plant. 
Rhizosphere the narrow region immediately adjacent to the root 
is the plant root-soil interface and is the hot spot for microbial 
interactions and cross-kingdom interactions between plants and 
microbes (Chaparro et  al., 2014; Korenblum et  al., 2020). 
Rhizosphere microbes and the plant may form symbiotic 
relationships in which the root microbiome utilizes root exudates 
and secretes compounds benefiting plant growth (Berendsen et al., 
2012). Rhizosphere microbes may synthesize antibiotics as 
required by the plant for suppression of soil-borne pathogens and 
ultimately enhance the plant health (Mendes et al., 2013; Lazcano 
et  al., 2021). Other rhizosphere microbiome-plant mutualistic 
interactions include microbiome fixing and providing essential 
elements (e.g., nitrogen) for plant growth (Moreau et al., 2019). 
Rhizosphere microbiome may also induce systemic root exudation 
of metabolites and mediate root-root signaling promoting soil 
conditioning (Korenblum et  al., 2020). Meanwhile, many 
environmental and biotic factors can influence rhizosphere 
microbiome-plant interactions making it more complicated to 
study the mechanism of different rhizosphere microbes promoting 
plant growth.

Rhizospheric microorganisms could produce hormone-like 
substances, then promote plant growth and nutrient uptake, 
inhibit the growth of pathogenic bacteria and induce plant 
resistance to biotic and abiotic stresses (Ahmed and Hasnain, 
2014). For example, inoculation with typical beneficial 
microbial mycorrhizal fungi not only promotes the secretion 
of organic acids and phosphatases from the roots of symbiotic 
plants, but also enhances the ability of plant to activate 
insoluble phosphates in the soil and promotes the uptake of 
water and minerals, especially phosphate (Berta, 2000; Erik 
et al., 2000; Philippe, 2001; Maria, 2005). Bacillus amylolyticus 
strain B3 harbors functional genes capable of directly 
promoting crop growth, like yhcX and ysnE, key genes for plant 
growth hormone (IAA) synthesis; and AlsS, AlsD, and AlsR, 
synthase genes related to the volatile disease-promoting 
substance 2,3-butanediol. The phytase synthesis gene phy is 
present intact in the B3 genome, and phytase can catalyze the 

degradation of phytic acid into inositol, facilitating plant 
uptake and utilization of nutrients from soil (Idriss et al., 2002; 
Zhang et al., 2010). The exocrine secretion of Bacillus subtilis 
BS-2 promotes rice growth, increases chlorophyll content in 
the crop, slows membrane lipid peroxidation in rice, and 
promotes indoleacetic acid production in the plant (Ma et al., 
2018). Bacterial colonization can trigger plant immune 
reaction, and the interaction between beneficial bacteria and 
plant immune system is essential for efficient bacterial 
colonization, survival, and plant growth promoting hormone 
production (Tzipilevich et al., 2021).

Bacillus is the one of the most studied genera among the plant 
growth promoting rhizobacteria and shows tremendous potential 
in promoting plant growth (Chen et al., 2007; Tahir et al., 2017; 
Backer et al., 2018). Bacillus aryabhattai are widely distributed in 
nature but were only discovered in 2009 (Shivaji et al., 2009). More 
strains of B. aryabhattai were isolated from various environments 
including plant roots, and evaluations of this rhizosphere bacteria 
have revealed promising properties of this Bacillus species for 
promoting plant growth and improving crop yields thus having 
attracted plenty of attention from researchers (Bhattacharyya 
et al., 2017; Park et al., 2017; Ghosh et al., 2018). Mehmood et al. 
(2021) found that B. aryabhattai promoted wheat growth and 
reduced the effects of salt stress on wheat. However, the 
mechanism of this rhizobacteria species promoting plant growth 
remains to be investigated. With the development of sequencing 
technology, whole genome sequencing of the isolated microbial 
strains has been widely used to reveal the potential functions of 
the microbes in enhancing the plant performance (Chu et al., 
2020; Chen et al., 2022).

In a recent study, an excellent plant inter-rhizosphere strain, 
B. aryabhattai LAD, was isolated from maize rhizosphere, and the 
impact of LAD on rhizosphere microbial structure was also 
explored in the previous study (Deng et al., 2022). LAD showed 
promising plant growth promoting properties, including nitrogen 
fixation and phosphorus solubilization and IAA production. Here, 
we aimed to reveal the genes related to plant growth-promoting 
functions of this strain through whole genome sequencing and 
investigate the genetic differences between this strain and similar 
plant growth promoting rhizobacterial strains via comparative 
genomics. The metabolic and phenotypic traits and habitat-
specific adaptations of this strain to maize root promotion were 
also investigated.

Materials and methods

Total DNA extraction and whole genome 
sequencing

The strain LAD was isolated from maize rhizosphere in our 
lab, and initial characterization of the newly isolated bacterial 
strain was performed and the effects of LAD on corn seedlings 
were also evaluated. In this study, LAD was grown in its optimum 
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growth medium containing 20 g L−1 sucrose, 2 g L−1 beef extract, 
0.4 g L−1 KH2PO4, 0.4 g L−1 MgSO4·7H2O, 0.4 g L−1 NaCl, 0.4 g L−1 
CaSO4·2H2O, and 2 g L−1 CaCO3 at 180 rpm and 37°C. The 
bacterial cells were harvested at the late exponential phase (around 
22 h) for total DNA extraction with the extraction kit. The 
extracted DNA was quantified with Nanodrop  2000 
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
United States) and sent out to Shanghai Personal Biotechnology 
Co., Ltd. for next-generation sequencing of the total DNA. Whole 
genome sequencing of LAD was performed using on PacBio 
Sequel (Pacific Biosciences of California, Inc., Menlo Park, CA, 
United States) and Illumina NovaSeq (Illumina, Inc., San Diego, 
CA, United States) sequencing platforms, respectively.

Whole genome annotation

The obtained sequence reads from PacBio platform were 
assembled into contigs using HGAP4 WGS-Assembler 8.2 and 
CANU (Chin et al., 2016; Koren et al., 2017). The Illunima reads 
were employed for correction of the assembled contigs with Pilon 
1.22 to get the final complete genome (Walker et  al., 2014). 
GeneMarkS was used for finding protein-coding genes via 
GeneMark.hmm program (Besemer et al., 2001). Transfer RNAs 
(tRNAs) were predicted using tRNAscan-SE, and the prediction 
of other non-coding RNAs was performed in Rfam (Lowe and 
Eddy, 1997; Kalvari et al., 2018). Clustered regularly interspaced 
short palindromic repeats (CRISPRs) were predicted using 
CRISPRFinder program (Grissa et al., 2007). PHASTER (Phage 
Search Tool Enhanced Release) was used for detection of 
prophages on the genome (Arndt et al., 2016).

Genomic comparisons

Reference genome sequences of other Bacillus strains were 
retrieved from NCBI GenBank database for comparative genomic 
analysis of B. aryabhattai LAD (Table  1). B. aryabhattai is a 
homotypic synonym of Priestia aryabhattai. Pairwise genome 
comparisons were performed on JSpeciesWS which evaluates 
whole genome homologies via BLAST alignments for 
determination of the average nucleotide identity (ANI) between 
genome sequences (Richter et al., 2016). The bacterial pan genome 
analysis (BPGA) pipeline was used to identify the orthologous pan 
genome profile among the genomes of the B. aryabhattai strains 
(Chaudhari et al., 2016). Core genome (the set of shared genes by 
all strains), accessory genome (genes shared by different strains 
but not by all strains), and unique genes (exclusively belonging to 
one strain), and pan genome (non-homologous genes) were 
identified with BPGA. Carbohydrate-active enzymes (CAZy) were 
characterized based on the CAZy database (Lombard et al., 2014). 
The whole genomic sequence data of B. aryabhattai LAD was 
deposited to NCBI GenBank, with the accession number of 
GCA_017743055.1.

Bacillus aryabhattai LAD growth under 
different temperatures and carbon 
sources

The growth of LAD on different carbon sources and at 
different temperatures was evaluated with Epoch 2 microplate 
spectrophotometer (BioTek Instruments Inc., Winooski, VT, 
United States). LAD cells were inoculated in LB medium and 
grown at 37°C overnight. The LAD culture was used as inoculum 
(1%) for growth in the optimum growth medium, but the carbon 
source in the medium was the same concentration (2%, m v−1) of 
sodium acetate, glycerol, glucose, sucrose, or starch. The growth 
of LAD on methanol was also examined in the optimum medium 
but with the carbon source replaced with 0.5% (v v−1) methanol. 
The growth curves of LAD populations on different carbon 
sources and at different temperatures (20°C and 37°C) were 
obtained by culturing the cells in 24-well plates and analyzed at a 
1-h interval in the Epoch 2 microplate spectrophotometer. Each 
treatment included three replicates, and the mean cell density was 
used to plot the growth curves.

Indole-3-acetic acid production by 
Bacillus aryabhattai LAD

The maize seeds (Dongdan 1,331) were immersed in 
105 CFU ml−1 LAD cell suspensions and cultivated in the artificial 
climate room for 8 days. As the control treatment, the maize seeds 
were immersed in sterilized water and cultured for 8 days under 

TABLE 1 Genome information of 19 strains used in this study.

Organism GenBank 
accession

Level Size 
(Mb)

Gene

B. aryabhattai B8W22 GCF_000956595.1 Contig 1.72 5,135

B. cereus group sp. N11 GCF_016483605.1 Contig 1.99 4,923

B. cereus group sp. N6 GCF_016483705.1 Contig 1.95 5,104

B. megaterium DSM319 GCF_000025805.1 Complete 1.7 4,987

B. megaterium NCT-2 GCF_000334875.3 Complete 1.91 4,640

B. megaterium ATCC 14581 GCF_006094495.1 Complete 1.9 4,908

Bacillus sp. AM1(2019) GCF_009906915.1 Complete 1.5 5,179

B. aryabhattai K13 GCF_002688605.1 Complete 1.8 4,844

B. aryabhattai LAD GCA_017743055.1 Complete 1.64 5,198

B. aryabhattai AB211 GCF_001858395.1 Scaffold 1.85 4,682

B. aryabhattai AFS075785 GCF_002569785.1 Scaffold 1.78 4,386

B. aryabhattai FJ-6 GCF_013372535.1 Contig 1.78 4,153

B. aryabhattai B14 GCF_002167185.1 Contig 1.6 5,006

B. megaterium BIM B-1314D GCF_013389435.1 Complete 2 4,822

B. aryabhattai S00060 GCF_014138775.1 Scaffold 2.02 5,346

B. aryabhattai G25-109 GCF_015845475.1 Contig 1.8 5,378

B. megaterium CDC 

2008724142

GCF_017086565.1 Complete 1.99 5,274

B. aryabhattai ME39 GCF_903971025.1 Contig 1.9 5,611

B. megaterium H2 GCF_017352315.1 Complete 2.12 5,322
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the same conditions. Each treatment included three replicates, and 
t-test was used to reveal the statistical differences between LAD 
treatment and control. The plant was removed after cultivation, 
and the liquid culture was concentrated by rotary evaporation and 
was archived for later use. Liquid chromatography system of 
Waters ACQUITY UPLC (Milford, MA, USA) with a liquid 
chromatography column (182.1 mm × 50 mm i.d., 1.7 μm) was 
used to determine the amount of the produced IAA (Fu et al., 
2012). IAA was isolated in a mobile phase consisting of methanol 
solution (mobile phase A) and 0.1% formic acid aqueous solution 
(mobile phase B). The gradient elusion was run at a flow rate of 
0.2 ml min−1 with initial 20% mobile phase A which was increased 
to 80% in the next 12 min. The volume fraction of mobile phase A 
was reduced from 80 to 20% in the time range of 12 to 16 min. The 
injection volume for all samples was 3 μl and the column 
temperature was 40°C. The mass spectrometer that affiliated with 
the UPLC system used an electrospray ion source, with a capillary 
voltage of 0.8 KV in positive ion mode (ESI+), a taper voltage of 
25 V, a dissolvent temperature of 650°C, a dissolvent gas flow rate 
of 1,000 l h −1, and a conical hole back blow 5 l h −1. The collision 
voltage was set 30 V at 176 > 103 and 15 V at 176 > 130.

Production of exopolysaccharides

LAD cells were grown in LB medium at 37°C for 24 h before 
the cells were transferred into the optimum growth medium with 
different carbon sources, i.e., methanol (0.5, v v−1), sodium acetate 
(2%, m v−1), glycerol (2%, m v−1), glucose (2%, m v−1), sucrose 
(2%, m v−1), and starch (2%, m v−1), respectively. The bacterial 
cells were cultivated at 37°C with the EPSs production being 
evaluated at 24 and 72 h of the cultivation. For EPSs extraction, 
10 ml bacterial culture was centrifuged at 5,000 rpm for 20 min, 
and the supernatant was transferred to a clean 50 ml centrifuge 
tube with 2-fold volume of 95% ethanol. The mixture was stirred 
using a glass rod until clear flocculent precipitation appeared. The 
mixture was stored at 4°C for 24 h before centrifugation at 
10,000 rpm for 15 min. The extracted products, crude EPSs, were 
air dried at room temperature and weighed for determination of 
the EPSs production on different carbon sources.

Impacts of LAD on maize root 
development

LAD was cultivated in selective nutrient broth at 37°C for 72 h 
(until OD600nm reached 1.4). The LAD cells were harvested by 
centrifugation and resuspended in sterile water, and the cell 
suspension was diluted to a final concentration of 105 CFU ml−1 
using sterile water. The maize seeds were immersed in the diluted 
bacterial suspension for 24 h, after which the maize seeds were 
cultivated in laboratory hydroponics and in the field, respectively. 
In the control treatment, the maize seeds were soaked in the sterile 
water for 24 h before being cultivated in laboratory hydroponics 

and field. The root development of the maize seedlings in 
hydroponics was measured by a root system analyzer after 14 days, 
while measurement of the root development of each maize plant 
grown in field was performed after 60 days (Bucksch et al., 2014). 
The hydroponic and field cultivation for each treatment included 
10 maize plants, respectively. Each treatment was repeated three 
times. Student’s t-test was used to compare the root development 
under LAD treatment with that of the control to show the 
statistical differences.

Results

Functional annotation of Bacillus 
aryabhattai LAD whole genome

A total of 184,213 sequence reads was obtained in the next-
generation sequencing. The de novo genome assembly using 
HGAP revealed a single circular chromosome genome and five 
circular plasmids in B. aryabhattai LAD. The newly sequenced 
genome was composed of 5,194,589 bp with a GC content of 
38.12% (Figure  1). The five plasmids contained 212,484, 
168,720, 137,532, 126,990, and 116,519 bp, respectively, with GC 
content ranging from 33.71 to 35.18%. The properties of the 
chromosome genome and plasmids are shown in Table 2. The 
genome contained 5,390 predicted genes, and the total length 
of the predicted genes was 4,303,422 genes accounting for 
82.8% of the genome length. The five plasmids contained 246, 
181, 165, 129, and 141 genes, respectively, with the coding 
percentage ranging from 66.7 to 73%. There were 112 tRNA 
genes and 39 rRNA genes on the chromosome genome. Fifteen 
genome islands (GIs), 4 CRISPRs, and 2 incomplete prophages 
were predicted on the genome of B. aryabhattai LAD. There 
were 13 5S rRNA genes (with an average length of 110 bp), 13 
16S rRNA genes (average length of 1,549 bp), and 13 23S rRNA 
genes (average length of 2,932 bp) on the genome. The genomic 
annotation also revealed rRNA genes on plasmid1 and 
plasmid4. Specifically, one 5S rRNA gene of 108 bp was present 
on plasmid1, and there were one 5S rRNA gene (111 bp), one 
16S rRNA gene (1,549 bp), and one 23S rRNA gene (2,932 bp) 
on plasmid4.

There were 148 CAZymes, including 35 
glycosyltransferases (GTs), 1 polysaccharide lyases (PLs), 34 
carbohydrate esterases (CEs), 12 auxiliary activities (AAs), 17 
carbohydrate binding modules (CBMs), and 49 glycoside 
hydrolases (GHs) identified in the B. aryabhattai LAD 
chromosome genome via the CAZy annotation pipeline 
(Figure 2A). CAZymes were also present in two plasmids, with 
1 GTs, 2 CEs, 2AAs, and 2GHs identified on plasmid 1, and 1 
GTs and 1 GHs identified on plasmid 2. The eggNOG 
(evolutionary genealogy of genes: Non-supervised 
Orthologous Groups) annotation revealed an abundance of 
genes for basic cellular functions including amino acid 
transport and metabolism (381 genes, accounting for 7.07% of 
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the total gene abundance), carbohydrate transport and 
metabolism (305, 5.7%), inorganic ion transport and 
metabolism (268, 5%), energy production and conversion 
(249, 4.6%), cell wall/membrane/envelope biogenesis (202, 
3.7%), signal transduction mechanisms (188, 3.5%), and 
replication, recombination and repair (166, 3.1%; Figure 2B). 
The Gene Ontology (GO) classification revealed that ion 
binding, oxidoreductase activity, and DNA binding were very 
active molecular functions, and cellular nitrogen compound 
metabolic process, biosynthetic process, small molecule 
metabolic process, and transport were major biological 
processes (Figure 2B). The analysis against the Comprehensive 
Antibiotic Resistance Database (CARD) identified 28 
antibiotic resistance genes and 4 antibiotic biosynthesis genes 
on the genome and 3 more antibiotic resistance genes on 
the plasmids.

Dig of promoting growth genes

In the whole genome of LAD strain, there were many genes 
related to the promotion of plant growth, some of which are 
shown in the Table 3. Ten related genes were found to be involved 
in the Nitrogen metabolism pathway in LAD strains, and the 
NifF gene was found at chr_4496 and NifU gene at chr_5091. In 
the KEGG pathway of Tryptophan metabolism, 25 genes related 
to IAA synthesis were identified, including amidase (amiE), 
which hydrolyzes indole-3-acetamide to indoleacetic acid, and 
aldehyde dehydrogenase (ALDH), which hydrolyzes indole-3-
acetaldehyde to indoleacetic acid. We identified 20 genes related 
to biofilm formation. Four genes encoding related proteins in 
LAD strains mapped to the KEGG pathway of phosphonate and 
phosphinate metabolism, including phosphoenolpyruvate 
phosphomutase (pepM), phosphonopyruvate decarboxylase, 

FIGURE 1

Circular chromosome diagram of B. aryabhattai LAD. From the inner circle to the outer circle, the information on each of the seven circles shows 
genome position, GC skew, GC content, coding sequence on the positive and strands (classified by Cluster of Orthologous Groups of protein), 
and the position of the coding sequence, tRNA and rRNA on the genome.
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phosphoribosyl 1,2-cyclic phosphate phosphodiesterase (phnP) 
and phosphinothricin acetyltransferase (pat, bar), and a total of 
53 phosphatase genes were identified in the LAD genome, 
mapping to 34 KEGG metabolic pathways. The extracellular 
polysaccharide production by LAD strains is closely related to 
carbohydrate metabolism, a total of 315 carbohydrate related 
genes were found for carbohydrate metabolism. The 
two-component regulatory system is a major mechanism for 
biotransduction and response to external environmental 
changes, which can sense environmental changes, regulate 
internal gene expression and play an important role in the 
survival and adaptation of microorganisms to different 
environments, and help microorganisms preserve their 
competitive advantage in the environment. A total of 98 KEGG 
pathways of two-component system were identified in LAD 
strains, including phosphate limitation, oxygen limitation, and 
temperature limitation system. A total of 106 genes related to the 
ABC transporters metabolic pathway were identified in LAD 
strains, including mineral and organic ion transporters, 
phosphate and amino acid transporters, peptide and nickel 
transporters, monoasccharide transporters, oligosaccharide, 
polyol, lipid transporters, metallic cation and iron-siderop hore 
and vitamin B12 transporters.

Comparative genomics analyses

The ANI between the whole genome sequences was measured 
by pairwise genome comparisons using JSpeciesWS Online 
Service to evaluate the homologies of the whole genomes and 
determine if the strains belong to the same species. The matrix of 
nucleotide identities between the whole genomes of the Bacillus 
strains was shown in Table 4. The ANI value of B. aryabhattai 
LAD based on BLAST against other Bacillus strains ranged from 
67.7 to 95.6%, and the aligned percentage of the genome sequence 
ranged from 24.2 to 82.4%. The ANI values of B. aryabhattai LAD 
compared with other B. aryabhattai strains and B. megaterium 
strains were higher than 95%, which was the threshold identity for 
species boundaries.

PGAP pipeline was used to determine the pan-genome for 
B. aryabhattai LAD and 18 other Bacillus strains. The 19 compared 
Bacillus strains had a total pan-genome consisted of 94,898 
putative protein-coding genes, and 1,111 of them (accounting for 
1.17% the pan-genome) were core conserved genes across the 
genomes of the 19 strains (Figure 3). The number of strain-specific 
genes for each train ranged from 0 to 288, and Priestia aryabhattai 
FJ-16 had 288 strain-specific genes which was the highest among 
the 20 strains. The isolate in this study, B. aryabhattai LAD, had 1 
strain-specific gene.

Highly reliable pan-genome analysis can be  obtained by 
mathematical extrapolation with more than five genomes 
(Vernikos et al., 2015). The analysis via BPGA showed that the 
pan-genome of the 19 Bacillus genomes had a parameter γ of 
0.4  in the reduced power-fit curve equation [f(x) = 4175n0.4] 
suggesting that the pan-genome was open (Figure  4). The 
exponential curve equation of core genome [f1(x) = 4228.01e-
0.07] had a steep slope and reached a minimum of 1,111 
gene families.

Bacillusaryabhattai LAD growth and 
production of IAA and EPSs

The growth of B. aryabhattai LAD on different carbon sources 
was evaluated with Epoch 2 microplate spectrophotometer at 
20°C and 37°C. The results showed that LAD can utilize all the six 
carbon sources, including acetate, glycerol, glucose, sucrose, 
starch, and methanol, under appropriate temperatures (Figure 5). 
LAD had the best growth on sucrose at 37°C, and the bacterial 
density reached the highest OD600 value (as high as 1.9). Glucose 
and glycerol supported good LAD growth both at 20°C and 37°C, 
with the OD600 value of glucose reaching 1.4 at 20°C and 1.5 at 
37°C, and the OD600 value of glycerol reaching 1.1 at 20°C and 1.8 
at 37°C. Interestingly, LAD can efficiently utilize methanol as 
carbon source for growth with the ability to reach a high bacterial 
density (an OD600 value of 0.4 at 20°C and 0.2 at 37°C) which 
demonstrates that B. aryabhattai LAD belongs to methylotrophic 
bacteria. Acetate also supported the growth of LAD with the 

TABLE 2 Basic features of B. aryabhattai LAD chromosome genome and plasmids.

Chromosome genome Plasmid1 Plasmid2 Plasmid3 Plasmid4 Plasmid5

Length (bp) 5,194,589 212,484 168,720 137,532 126,990 116,519

GC content (%) 38.13 33.73 34.03 33.97 35.18 33.71

Gene number 5,390 246 181 165 129 141

Gene total length (bp) 4,303,422 141,816 123,078 96,090 88,983 79,167

Gene density (genes per kb) 1.038 1.158 1.073 1.2 1.016 1.21

Longest gene length (bp) 8,088 1,926 1,833 2,502 2,649 2,208

Gene average length (bp) 798.41 576.49 679.99 582.36 689.79 561.47

Gene length/genome (%) 82.84 66.74 72.95 69.87 70.07 67.94

GC content in gene region (%) 39.03 35.83 35.85 35.71 35.75 35.57

tRNA number 112 9 0 0 23 0

rRNA number 39 1 0 0 3 0
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bacterial cell density reaching an OD600 of 0.4 at 37°C. LAD was 
able to utilize starch, but the bacterial growth rate and final cell 
density were both lower than using other carbon sources.

To examine the IAA-producing capacity of LAD, maize 
seedlings were cultivated with LAD cell suspensions (105 CFU ml−1) 
and with the same volume of sterile water, respectively, for 8 days. 
The concentrations of IAA in the bacterial suspensions and water 
were measured with UPLC. The concentration of IAA in the LAD 
suspension was 0.191 ± 0.014 μg ml−1, which was significantly higher 
than that in the hydroponic system without LAD 
(0.036 ± 0.0096 μg ml−1; t-test, p < 0.001; Figure  6). The results 
showed that LAD can produce IAA or promote IAA secretion from 

maize roots. The test of EPSs in the LAD cultures showed that stable 
production of EPSs by LAD was only detected in medium with 
sucrose as the sole carbon source. The EPSs production in sucrose 
supplemented medium was 3.18 ± 0.0198 g L−1 at 24 h and 
0.63 ± 0.0041 g L−1 at 72 h.

Impacts on maize root development

To investigate how LAD affects the maize root development, 
the maize seeds were treated with 105 CFU ml−1 LAD cell 
suspensions and grown in laboratory and filed soils, respectively. 

A

B

FIGURE 2

(A) Annotation of carbohydrate active enzymes (CAZymes) genes on B. aryabhattai LAD genome. The hmmscan program was used for estimation 
of the CAZy genes (alignment length > 80 amino acids, E-value <1e-5; alignment length < 80 amino acids, E-value <1e-3). (B) eggNOG annotation. 
The protein-coding gene sequences were compared to COG database using DIAMOND blastp (cutoff at 1e-6).
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TABLE 4 Average nucleotide identities (ANI) analysis for pairwise genome comparison between B. aryabhattai LAD and other Bacillus strains.

B8W22 DSM 
319

NCT-
2

AB 
211

B14 AFS07 
5,785

N11 ATCC 
14581

AM1 
(2019)

FJ-6 BIM 
B-1314D

S00 
060

G25-
109

N11 LAD

B. aryabhattai 

B8W22

* 99.94 99.81 99.96 99.92 99.94 99.92 99.84 79.19 99.95 99.8 99.79 99.93 85.11 99.77

B. megaterium 

DSM319

99.94 * 99.88 99.93 99.87 99.92 99.95 99.9 79.09 99.93 99.86 99.81 99.94 85.39 99.83

B. megaterium 

NCT-2

99.81 99.88 * 99.86 99.64 99.77 99.85 99.96 79.6 99.78 99.95 99.91 99.9 86.24 99.91

B. aryabhattai 

AB211

99.96 99.93 99.86 * 99.89 99.93 99.91 99.87 79.34 99.93 99.84 99.83 99.93 85.21 99.82

B. aryabhattai 

B14

99.92 99.87 99.64 99.89 * 99.93 99.89 99.68 79.18 99.93 99.59 99.55 99.82 84.43 99.56

B. aryabhattai 

AFS075785

99.94 99.92 99.77 99.93 99.93 * 99.93 99.78 79.35 99.98 99.73 99.71 99.89 84.85 99.69

B. cereus group sp. 

N11

99.92 99.95 99.85 99.91 99.89 99.93 * 99.87 79.07 99.94 99.82 99.768 99.92 85.39 99.78

B. megaterium 

ATCC 14581

99.84 99.9 99.96 99.87 99.68 99.78 99.87 * 79.27 99.81 99.95 99.901 99.91 86.43 99.91

Bacillus sp. 

AM1(2019)

79.19 79.09 79.6 79.34 79.18 79.35 79.07 79.27 * 79.17 79.19 79.159 78.95 67.27 78.89

B. aryabhattai 

FJ-6

99.95 99.93 99.78 99.93 99.93 99.98 99.94 99.81 79.17 * 99.74 99.717 99.89 85 99.71

B. megaterium 

BIM B-1314D

99.8 99.86 99.95 99.84 99.59 99.73 99.82 99.95 79.19 99.74 * 99.96 99.91 86.29 99.95

B. aryabhattai 

S00060

99.79 99.81 99.91 99.83 99.55 99.71 99.77 99.9 79.16 99.72 99.96 * 99.91 86.17 99.93

B. aryabhattai 

G25-109

99.93 99.94 99.9 99.93 99.82 99.89 99.92 99.91 78.945 99.89 99.91 99.91 * 85.47 99.87

B. cereus group sp. 

N11

85.11 85.39 86.24 85.21 84.43 84.85 85.39 86.43 67.27 85 86.29 86.17 85.47 * 86.49

B. aryabhattai 

LAD

99.77 99.83 99.91 99.82 99.56 99.69 99.78 99.91 78.89 99.71 99.95 99.93 99.87 86.49 *

Asterisk indicates the same strain.

The roots were collected and analyzed with root analyzer. The 
laboratory cultivation results showed that the total root length, 
total root surface area and total root volume of the LAD treatment 

group is 97.0, 90.1, and 75.6% higher than that of the control, 
respectively (t-test, p < 0.001; Figure  7). Like the laboratory 
cultivation, the results of field experiments revealed an increase of 

TABLE 3 Genes related to the promotion of plant growth(partial).

KEGG pathway_ ID Gene_ ID Annotation information

K03839 chr_4996 fldA,nifF,isiB;flavodoxin І

K04488 chr_5091 iscU,nifU;nitrogen fixation protein NifU and related proteins

K01426 chr_999 E3.5.1.4, amiE; amidase

K00128 chr_2221 ALDH; aldehyde dehydrogenase (NAD+)

K01841 chr_754 pepM; phosphoenolpyruvate phosphomutase

K09459 chr_755 E4.1.1.82; phosphonopyruvate decarboxylase

K06167 chr_2553 phnP; phosphoribosyl 1,2-cyclic phosphate phosphodiesterase

K03823 chr_2685 pat; phosphinothricin acetyltransferase

K07658 chr_3082 phoB1, phoP; two-component system, OmpR family, alkaline phosphatase synthesis response regulator PhoP

K07658 chr_4881 phoB1, phoP; two-component system, OmpR family, alkaline phosphatase synthesis response regulator PhoP

K01113 chr_5,198 phoD; alkaline phosphatase D
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47.6, 43.1, and 42.9% in the total root length, surface area, and 
volume in the LAD treatment compared with the control (t-test, 
p < 0.001). The longest root in the LAD treatment was 197% longer 
than the longest root in the control. The experiments demonstrated 
that LAD treatment significantly increased the maize root length, 
surface area, and volume (p < 0.001).

Discussion

Plant-microbiome interactions are critical for plant health and 
growth. Rhizosphere microbes reside near or on the plant root and 
have direct contact and intense interactions with the plant tissue, 
therefore the root microbiome can utilize root exudates and secrete 
compounds that remarkably influence plant growth (Haney et al., 
2015; Pascale et  al., 2020). The interactions between plant and 
rhizosphere microbes are extremely complex, and the mechanism, 

ecological significance, and potential for application remain to 
be clarified. The data in this study shed light on the mechanism of 
B. aryabhattai LAD promoting plant growth based on both genomic 
analysis and experimental evidence. Whole genome sequencing of 
B. aryabhattai LAD showed that the rhizobacteria had diverse 
pathways for carbohydrate metabolism and mechanisms for 
environmental adaptations. The growth experiments of 
B. aryabhattai LAD demonstrated that LAD cells can utilize different 
types of carbons sources ranging from one-carbon methanol to 
polymeric carbohydrate starch, and the LAD cells can also grow well 
in a wide range of temperatures (20°C to 37°C). These properties are 
important for LAD to adapt to the fluctuating conditions in soil 
environments and further forming possible symbiosis with plant 
hosts, as plant root secretion of different carbon chain length may 
serve as nutrient supply for the root-associated bacteria while the 
bacterial activities may facilitate plant performance (Blom et al., 
2011; Cheng et al., 2019; Lucke et al., 2020).

FIGURE 3

Pan-genome analysis of 19 Bacillus strains. The number in the overlapping center represents the number of orthologous coding sequences (core 
genome) shared by all analyzed strains. The number of coding sequences specific to each strain was shown in the non-overlapping portion of the 
oval.
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FIGURE 4

Pan genome and core genome profile plot of 19 Bacillus strains. The analysis was performed through the Bacterial Pan Genome Analysis (BPGA) 
software package.

IAA, one of the most common and physiologically active plant 
hormones in nature, can induce cell elongation and division and is 
important for plant development and growth. Bacterial production 
of IAA as plant growth promoting strategy has been demonstrated 
in previous studies (Mohite, 2013; Wagi and Ahmed, 2019). For 
example, the IAA production by B. cereus So3II and B. subtilis Mt3b 
was shown by, and the growth conditions of the two Bacillus strains 
could be  optimized to enhance optimum bacterial growth and 
production of IAA which ultimately may be used for plant growth 
stimulation. B. aryabhattai LAD in the present study produced high 
yield of IAA when cultivated with maize plant suggesting the 
symbiosis of the rhizobacteria with maize plant. Besides IAA 
production, B. aryabhattai LAD can also produce EPSs which is 
another plant growth-promoting trait (Wagi and Ahmed, 2019). A 
recent study by showed that EPS-producing bacteria stimulated the 
salt tolerance of plant because the bacterial produced EPSs can bind 
cations significantly decreasing the Na+ content in the environment 
(Upadhyay et  al., 2011). Interestingly, the EPSs production 
decreased from 3.18 g L−1 at 24 h to 0.63 g L−1 at 72 h, suggesting that 
the produced EPSs might be utilized by LAD cells when available 
nutrients are depleted.

Microbial metabolisms associated with one-carbon compound 
conversion were prevalent in rhizosphere, and the methanol 

metabolism by B. aryabhattai LAD may contribute to the 
rhizosphere nutrient cycling (Knief et al., 2012; Li et al., 2019). The 
genome annotation revealed that B. aryabhattai LAD genome 
contains genes of alcohol dehydrogenases, and the alcohol 
dehydrogenases enzymes can facilitate the conversion of alcohols 
to aldehydes with production of NADH. Aldehyde dehydrogenase 
genes were also detected on B. aryabhattai LAD genome, and the 
products of the genes catalyze the oxidation of the aldehydes 
generated from methanol. The other possible pathway for 
methanol metabolism in B. aryabhattai LAD was through alcohol 
oxidase (AOX), catalyzing the oxidation of methanol to 
formaldehyde with production of hydrogen peroxide, and catalase, 
breaking down hydrogen peroxide, as genes for AOX and 
peroxidase were detected on B. aryabhattai LAD genome. Plant 
roots secrete a variety of carbon-containing compounds which 
significantly influence rhizobacterial activities and community 
structure (O’Neal et al., 2020; Okutani et al., 2020; Liang et al., 
2021). The root exudates of varied molecular weight and 
complexity may serve as organic carbon sources for microbial 
growth, and the ability for rhizobacteria utilizing root exudates is 
critical for both the bacterial populations and the host plant (Mark 
et  al., 2005; Fethel et  al., 2014; Olanrewaju et  al., 2019). The 
CAZymes annotation of B. aryabhattai LAD genome revealed an 
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abundance of genes associated with the assimilation, modification, 
and decomposition of carbohydrates.

The whole genome of B. aryabhattai LAD was obtained via 
next-generation sequencing, and the comparative analysis showed 
that B. aryabhattai LAD had high similarities to other 
B. aryabhattai strains and strains in B. megaterium. For genomic 
characterization of B. aryabhattai LAD, the pan and core genome 
analysis were performed to cluster the genes in all the examined 
genomes. The eggNOG annotation and GO annotation revealed 
large groups of genes associated with carbohydrate transport and 

metabolism, oxidoreductase activity, cellular nitrogen compound 
metabolic process, and biosynthetic process, all of which are 
important for the symbiotic relationship between bacterial 
populations and plants and were also found in other plant growth 
promoting bacterial strains (Taghavi et al., 2010; Han et al., 2011; 
Bhattacharyya et  al., 2017). The CARD analysis identified 31 
antibiotic resistance genes and 4 antibiotic biosynthesis genes on 
the genome and plasmids of B. aryabhattai LAD, suggesting that 
B. aryabhattai LAD can be resistant to various antibiotics and have 
potential for synthesizing antibiotics. Antibiotics production were 

FIGURE 5

The growth plots for B. aryabhattai LAD. LAD cells were cultivated in the optimum growth medium with different carbon sources, i.e., methanol 
(0.5, v v−1), sodium acetate (2%), glycerol (2%), glucose (2%), sucrose (2%), and starch (2%), respectively. The temperature for LAD growth included 
20°C and 37°C. Each data point represents the mean value of three replicates.

FIGURE 6

Detection of IAA production by UPLC. The left figure shows the sample of the control, and the right shows the sample of B. aryabhattai LAD 
culture cultivated with maize seedlings.
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A B C

FIGURE 7

Maize root development in laboratory and field soils impacted by B. aryabhattai LAD. (A) The impacts of LAD on the maize root length. (B) The 
impacts of LAD on the maize root surface area. (C) The impacts of LAD on the maize root volume. Lab control: the root of the maize seedlings 
treated with water and cultivated in laboratory soil for 14 d; Lab LAD: the root of the maize seedlings treated with LAD and cultivated in laboratory 
soil for 14 d; Field control: the root of the maize seedlings treated with water and cultivated in laboratory soil for 60 d; Field LAD: the root of the 
maize seedlings treated with LAD and cultivated in laboratory soil for 60 d. Each treatment had 10 maize plants and was repeated three times. 
Student’s t-test was used to compare the root development under LAD treatment with that of the control. Statistical differences were shown with 
asterisks (i.e., *** representing p < 0.001).

also reported in other Bacillus strains which has a major role for 
rhizobacteria to suppress plant diseases. For example, the whole 
genome sequencing of B. amyloliquefaciens FZB42 showed a high 
potential for production of polyketides bacillaene and difficidin, 
and over 8.5% of the genome is committed antibiotics and 
siderophores biosynthesis (Chen et al., 2007). Kinsella et al. (2008) 
also showed a high yield of antibiotics (i.e., surfactin and iturin) 
by Bacillus subtilis on cucumber roots (Kinsella et al., 2008).

Conclusion

Plant roots harbor a diverse microbial community, and the 
complicated interactions between plant and rhizosphere 
microbes have major ecological importance and critical 
implications for agricultural practices. The whole genome 
sequencing of methylotrophic B. aryabhattai LAD revealed 
many signature genes that are functionally associated with plant 

growth promotion. Genome analyses revealed the ability of 
B. aryabhattai LAD to adapt to the environments with 
antibiotics, oxidative, cold temperature, and heavy metal stresses. 
Our experiments confirmed that B. aryabhattai LAD has 
versatile metabolism and can utilize a wide range of carbon 
sources. B. aryabhattai LAD is also capable of synthesizing IAA 
and EPSs that are beneficial for plant growth and bacterial 
colonization. The genomics analysis and experimental studies 
collectively demonstrated the plant growth promoting capacities 
of B. aryabhattai LAD making it an exceptional bacterial strain 
for application in agricultural practices. The impacts of 
B. aryabhattai LAD on maize root development was directly 
evaluated, and the results demonstrated the root development 
stimulation and plant growth promoting capacities of the 
Bacillus strain. Future efforts are needed for studying the 
molecular mechanisms of B. aryabhattai LAD in promoting 
plant growth and evaluating the ecological impacts of 
bioaugmentation with LAD on soil microbial community.
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