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Oil tea (Camellia oleifera), mainly used to produce high-quality edible oil, is

an important cash crop in China. Anthracnose of oil tea is a considerable

factor that limits the yield of tea oil. In order to e�ectively control the

anthracnose of oil tea, researchers have worked hard for many years, and great

progress has been made in the research of oil tea anthracnose. For instance,

researchers isolated a variety of Colletotrichum spp. from oil tea and found

that Colletotrichum fructicolawas the most popular pathogen in oil tea. At the

same time, a variety of controlmethods have been explored, such as cultivating

resistant varieties, pesticides, and biological control, etc. Furthermore, the

research on the molecular pathogenesis of Colletotrichum spp. has also made

good progress, such as the elaboration of the transcription factors and e�ector

functions of Colletotrichum spp. The authors summarized the research status

of the harm, pathogen types, control, and pathogenicmolecularmechanismof

oil tea anthracnose in order to provide theoretical support and new technical

means for the green prevention and control of oil tea anthracnose.

KEYWORDS

anthracnose, oil tea, Colletotrichum spp., Camellia oleifera, pathogenic molecular
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Introduction

Cultivation and application of oil tea

Oil tea generally refers to the Camellia genus, which has rich seed oil content that

is produced and highly valuable (Chen, 2008). The history of extracting oil from oil

teaseed in China can be traced back to 2,300 years ago (Zhuang, 2008). Themain varieties

of oil tea cultivated in China include Camellia yuhsienensis Hu, Camellia oleifera var

monosperma, Camellia vietnamensis, and Camellia oleifera, among which the planting

range of Ca. oleifera is the widest (Qin et al., 2018; Chen et al., 2021b). Tea oil extracted
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from the seed of oil tea is rich in unsaturated fatty acids and

vitamin E and has unique nutritional value (Shi et al., 2020).

Thus, oil tea is as famous as coconut, palm, and olive, and is also

known as one of the four major woody oil plants in the world

(Yang et al., 2016, 2020a). Moreover, the United Nations Food

and Agriculture Organization (FAO) recommended tea oil as a

high-quality and healthy vegetable oil, owing to its nutritional

value and excellent storage quality (Chen et al., 2020b). In 2020,

the area in China planted oil tea reached 45,333.3 km2; the

output of tea oil reached 627,000 tons, and the output value of

the tea oil industry reached 18 billionU.S. dollars, indicating that

tea oil is highly valuable (Chen et al., 2021a).

Anthracnose of oil tea

Anthracnose of oil tea is a considerable factor that limits

the yield of tea oil (Chen et al., 2020a; Li et al., 2021b).

Anthracnose of oil tea is a considerable factor that limits the

yield of tea oil (Chen et al., 2020a; Li et al., 2021b). The conidia

of Colletotrichum spp. mainly infect the oil tea from the wound

but also through the natural pore, such as stoma. Attached

conidia germinate and differentiate dome-shaped appressoria

on plant surfaces, underneath which penetration pegs form

and penetrate epidermal cells. The pathogen then differentiates

bulbous biotrophic hyphae, which are enveloped by an intact

host plasma membrane; biotrophic hyphae spread across living

host cells before differentiating thin necrotrophichyphae that kill

and destroy host tissues (Münch et al., 2008; O’Connell et al.,

2012).

Colletotrichum spp. primarily infect the leaves and fruits

of the oil tea, leading to a 20–40% fruit drop and up to 40%

seed loss (Jin et al., 2009; Zhu et al., 2015). In addition, the

oil content of oil tea seeds infected by Colletotrichum spp. can

be reduced by 50%. Moreover, the anthracnose of oil tea can

also cause the germination of infected seeds, which facilitates

the long-distance transmission of oil tea anthracnose (Yang,

2009). Therefore, under the conditions of appropriate humidity

and ambient temperature, anthracnose of oil tea spreads rapidly

and is difficult to control, causing substantial economic losses

and seriously damaging the safety of edible oil in China (Liu

et al., 2009; Deng, 2011). Colletotrichum spp. are also regarded as

among the top 10 plant pathogenic fungi in the field ofmolecular

plant pathology because of their strong pathogenicity and wide

spread (Dean et al., 2012).

Colletotrichum spp. was first discovered by Tode in 1790 and

named Vermicularia Tode (Tode, 1790). Then, it was further

subdivided according to other morphological characteristics

and named Colletotrichum Corda (Sturm, 1832; Sutton, 1992).

With the development of molecular biology, more and more

scholars used multi-gene lineage to identify Colletotrichum spp.,

which not only improved the accuracy of Colletotrichum spp.

identification but also identified more species of Colletotrichum

spp. Talkin has identified Colletotrichum spp. according to

internal transcribed spacer (ITS), histone 4 (HIS4), and β-

tubulin 2 (TUB2) gene polygenic sequences for the first time

(Talhinhas et al., 2002).

Nowadays, more and more Colletotrichum spp. has been

identified, and the Colletotrichum spp. that can infect oil

tea mainly include Colletotrichum fructicola, Colletotrichum

gloeosporioides, Colletotrichum horii, Colletotrichum siamense,

Colletotrichum camelliae, andColletotrichum boninense (Li et al.,

2014, 2017). Approximately, 406 strains of Colletotrichum spp.

were isolated from oil tea in 10 provinces of China by Li.

The results showed that Co. fructicola was the most widely

distributed in oil tea, so the prevention and the control of Co.

fructicola were one of the key points of oil tea anthracnose

control (Li, 2018). Co. fructicola is widely distributed and has

many hosts, such as oil tea, apple, strawberry, mango, banana,

coffee, and other plants of more than 50 species, among which

oil tea is one of its main hosts (Prihastuti et al., 2009; Weir

et al., 2012; Huang et al., 2013; Li et al., 2013; Diao et al., 2017).

Although anthracnose of oil tea has attracted more and more

attention, there are few effective control methods. The reason is

that the pathogenic mechanism of Colletotrichum spp. and the

immune mechanism of the host are not well understood.

Control of anthracnose of oil tea

The control of oil tea anthracnose can be divided into

prevention and treatment. Breeding and planting resistant

plants are important measures to prevent plant disease

(Savchenko, 2017). Ca.yuhsienensis Hu, a species of oil tea, was

once widely cultivated in central China because of its high

quality, yield, and high resistance to anthracnose (Denton-

Giles et al., 2013; Denton-Giles, 2014; Cao et al., 2017; Nie

et al., 2020). In contrast to Ca. oleifera, which has the largest

planting area, Ca. yuhsienensis is not generally infected by

Colletotrichum spp. Yang et al. (2004) and Duan et al. (2005)

found that Ca. yuhsienensis, Camellia octopetalaHu, Ca. oleifera

Abel var. Huizhou-xiaohong and Ca. oleiferaAbel var. Huizhou-

dahong have resistance to Colletotrichum spp. (Yang et al., 2004;

Duan et al., 2005). Moreover, Ca. yuhsienensis also showed

strong resistance to other pathogens, such as Ciborinia camelliae

(Denton-Giles et al., 2013; Denton-Giles, 2014; Saracchi et al.,

2019; Li et al., 2020). Consequently, Ca. yuhsienensis, as a wild

relative of Ca. oleifera, is widely used to breed varieties of oil tea

(Nie et al., 2020).

After selecting suitable oil tea varieties, the seedling

quarantine should be strictly controlled. When selecting

seedlings and other reproductive materials, quality inspection

must be carried out in accordance with national and regional

standards to ensure the safety of various reproductive materials

(Shan et al., 2019). After planting oil tea, the cultivation

management should be strengthened to create environmental
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conditions that are not conducive to the survival, reproduction,

and transmission of pathogen and are suitable for the growth of

oil tea (Shu and Zhang, 2009).

When oil tea was infected with Colletotrichum spp., the

treatment of anthracnose is primarily based on the use of

chemical pesticides. For oil tea forest in the early stage of the

anthracnose, Bordeaux mixture can be used for treatment. For

oil tea forest in the late stage of the anthracnose, chlorothalonil,

carbendazim, and thiophanate methyl can be used for treatment

(Yu, 2019).

However, the abuse of pesticides not only easily causes

environmental pollution but also leads to the emergence of

pathogens resistant to pesticides (Holtappels et al., 2021).

Therefore, biological control has been a hot spot in the research

of oil tea anthracnose in recent years. Bacillus subtilis Y13

was isolated from healthy leaves of Ca. oleifera by Zhou. The

results showed that its inhibitory rate on Colletotrichum spp. was

88.5% (Zhou et al., 2008). Bacillus velezensis HBMC–B05 was

isolated from healthy leaves of Ca. oleifera by Shang. The results

showed that its inhibitory rate on Colletotrichum spp. was 88.5%

(Shang et al., 2021). Yu. (2019) further found that lipopeptides,

various metabolites of antagonistic bacteria, had antagonistic

effect on Colletotrichum spp. (Yu, 2019). Moreover, many strains

were isolated, such as Bacillus subtilis R6, Paenibcillus kribbens

Z17, Brevibacillus brevis Z26, Streptomvces globisporus subsp

Globisporus F10, and Streptomyces albulus cf17. It was found

that these strains could inhibit the growth of Colletotrichum spp.

(Song et al., 2012).

In addition to antagonizing microorganisms, some elicitors

can also improve the resistance of oil tea to Colletotrichum spp.,

such as salicylic acid (SA), methyl jasmonate (MeJA), and so

on (Wang et al., 2022). Although the research on the control

of oil tea anthracnose has made good progress, the anthracnose

still puzzles the oil tea industry. The main reason is that the

pathogenic mechanism of oil tea anthracnose has not been fully

proved, which is difficult to provide theoretical guidance for

the prevention and control of oil tea anthracnose. Therefore, to

understand the pathogenic mechanism of oil tea anthracnose,

the molecular mechanism of the interaction between plants and

pathogens needs to be understood.

Pathogenic mechanism of anthracnose

The plant immune system includes pathogen-associated

molecular pattern-triggered immunity (PTI) and effector-

triggered immunity (ETI) (Jones and Dangl, 2006). PTI is

triggered by plasma membrane-localized pattern recognition

receptors (PRRs) specific recognition of pathogen-associated

molecular pattern (PAMP) or damage-associated molecular

patterns (DAMPs) (Dangl et al., 2013; Lo Presti et al., 2015; Ranf,

2017). Pathogens secrete effectors to inhibit PTI to promote

infection. The resistance gene (R gene) of the host that can

be activated by effectors induces hypersensitive reaction (HR)

or programmed cell death (PCD) to inhibit the growth of

pathogens (Jones and Dangl, 2006). PTI and ETI jointly limit

the invasion of pathogens, and pathogens secrete new effectors

again to promote infection (Ngou et al., 2021; Yuan et al.,

2021). This is the “zigzag” plant immune model proposed

by Jones, which expounds the molecular mechanism of the

interaction between pathogens and plants (Jones and Dangl,

2006).

These inducible defenses are also associated with wide-

ranging transcriptional and hormonal reprogramming

in plants (Pieterse et al., 2012; Chen and Ding, 2020).

For instance, hormones also play an important role in

plant immune regulation. Among them, SA and jasmonic

acid (JA) are considered as the main defense hormones,

while others such as gibberellin (GAs), ethylene (ET),

abscisic acid (ABA), brassinosteroids (BRS), auxin [indole-

3-acetic acid (IAA)], cytokinin (CK), and nitric oxide

(NO) are also the regulators of plant immune signal

network (Browse, 2009; Pieterse et al., 2012; Wang

et al., 2020b; Yang et al., 2020b; Zheng et al., 2020).

These pathways and signals together construct the plant

immune system.

Colletotrichum spp. is widely distributed and extremely

destructive, and can infect almost all plants. Therefore, the

pathogenic mechanism of anthracnose has always been a

research hotspot (Hyde et al., 2009; Cannon et al., 2012).

Great progress has been made in the characterization of a

single pathogenic gene (Table 1). As early as 1999, Geffroy

et al. (1999) found that the R gene of Phaseolus vulgaris has

different resistance to Colletotrichum lindemuthianum from

different sources. This result further expounded the relationship

between Colletotrichum spp. and plant immunity (Geffroy

et al., 1999). Subsequently, new R genes were found one

after another. These results deepened the understanding of

“gene to gene” theory (Melotto and Kelly, 2001; López et al.,

2003; Zou et al., 2018). With the deepening of research, great

progress has been made in the exploration of Colletotrichum

spp., such as the elucidation of protein phosphorylation and

dephosphorylation, mitogen-activated protein kinase (MAPK),

and calmodulin signal, which is helpful to understand the

growth and pathogenesis of Colletotrichum spp. (Dickman and

Yarden, 1999; Kim et al., 2000; Takano et al., 2000; Chen and

Dickman, 2002, 2004; Ha et al., 2003; Liang et al., 2019; Zhang

et al., 2019).

Transcription factors also play a very important role in

the growth and pathogenesis of Colletotrichum spp. Wang

et al. (2020a) found that calcineurin-resonsive transcription

factor CgCrzA was not only involved in regulating cell wall

integrity but also in morphogenesis and virulence in Co.

gloeosporioides, which proved the importance of the calmodulin

signal to Colletotrichum spp. (Wang et al., 2020a). Liu found

that the transcription factor CsBzip10 controls vegetative
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TABLE 1 The partial genes currently characterized in Colletotrichum spp.

Pathogen Host Gene name Describes References

Co.fructicola Oil tea (Ca. oleifera) STE50 A scaffold protein that mediates vegetative growth,

asexual reproduction, appressorium formation,

pathogenicity and the response to external stress

Chen et al., 2020a

Co.fructicola Oil tea (Ca. oleifera) CfVam7 A SNARE protein that mediates growth, endoplasmic

reticulum stress response, and pathogenicity

Li et al., 2021a

Co.fructicola Oil tea (Ca. oleifera) CfVps39 A HOPS protein that mediates appressorium

formation, environmental stress response and vacuolar

fusion

Li et al., 2021b

Co.fructicola Oil tea (Ca. oleifera) CfHac1 A transcription factor that mediates growth and

pathogenesis

Yao et al., 2019

Co.fructicola Oil tea (Ca. oleifera) CfGcn5 An enzyme that mediates growth, development, and

pathogenicity

Zhang et al., 2021

Co.fructicola Oil tea (Ca. oleifera) CfGcn5 A key component of the AMPK (AMP-activated

protein kinase) pathway

Zhang et al., 2019

Co.fructicola Apple (Gala variety) CfPMK1 AMAP kinase that mediates pathogenesis,

development, and stress tolerance

Liang et al., 2019

Co.fructicola Apple CfSte12 A transcription factor that mediates early apple

glomerella leaf spot pathogenesis

Liu et al., 2020

Co.fructicola Strawberry (Fragaria

×ananassa Duch)

CfShy1 An effector interfering with salicylic acid accumulation He et al., 2019

Co. gloeosporioides Cunninghamia lanceolata,

Populus× euramericanacv.

“Nanlin895” and Liriodendron

chinensis× tulipifera

CgCrzA A transcription factor that mediates cell wall integrity

and infection-related morphogenesis

Wang et al., 2020a

Co. gloeosporioides Avocado CgMEK1 AMAP kinase that mediates pathogenesis Kim et al., 2000

Co. gloeosporioides Stylosanthesguianensis CgDN3 A pathogenicity protein associated with the biotrophic

phase of primary infection and required to avert a

hypersensitive-like response by a compatible host

Stephenson et al., 2000

Co. higginsianum Arabidopsis thaliana ChELP1 and

ChELP2

an effector containing LysM motifs which play dual

roles in appressorial function and suppression of

chitin-triggered plant immunity

Takahara et al., 2016

Co.lindemuthianum Bean (Phaseolusvulgaris) CIH1 An effector containing LysM motifs which may

function in chitin sequestration and camouflage

de Jonge and Thomma,

2009

Co. orbiculare Cucumber and Nicotiana

benthamiana

CoNIS1 An effector suppresses PAMP-triggered immunity by

targeting plant immune kinases

Yoshino et al., 2012;

Irieda et al., 2019

Co. siamense Rosa chinensis CsBzip10 A transcription factor that mediates vegetative growth,

asexual development, appressorium formation and

pathogenicity

Liu and Li, 2019

Co. scovillei Piper nigrum CsHOX1- CsHOX10 transcription factors that mediate fungal development

and the suppression of host defense

Fu et al., 2021

growth, asexual development, appressorium formation, and

pathogenicity in Co. siamense (Liu and Li, 2019). Fu also

found 10 transcription factors that affect growth and inhibit

host immunity from Colletotrichum scovillei (Fu et al.,

2021). Moreover, many important transcription factors have

been found in Co. fructicola. Yao found that transcription

factor CfHac1 plays critical roles in growth, conidiation,

appressorium formation, and pathogenicity, and respond to

osmotic stress in Co. fructicola (Yao et al., 2019). Li found that

transcription factorCfVam7 is required for growth, endoplasmic

reticulum stress response, and pathogenicity of Co. fructicola

(Li et al., 2021a). In addition to the transcription factors

introduced above, the functions of transcription factors, such

as CfSte12 and CfSte50 of Co. fructicola, have also been
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explored, which lays a foundation for understanding the

pathogenesis of anthracnose (Chen et al., 2020a; Liu et al.,

2020).

Colletotrichum spp. can also secrete effectors to promote

infection. As early as 1994, the effector CIH1, an effector

containing tandem chitin-binding lysin motifs (LysM), which

may function in chitin sequestration and camouflage, was found

in Colletotrichum lindemuthianum (Pain et al., 1994; Perfect

et al., 1998; de Jonge and Thomma, 2009; Stergiopoulos and

Wit, 2009). Subsequently, de Queiroz systematically predicted

and obtained several effectors of Co. lindemuthianum (de

Queiroz et al., 2019). Takahara et al. (2009, 2016) also found

effectors with LysM from Colletotrichum higginsianum; results

suggested a dual role for these LysM proteins as effectors

for suppressing chitin-triggered immunity and as proteins

required for appressorium function (Takahara et al., 2009,

2016). Subsequently, Kleemann et al. (2008, 2012) also identified

multiple effectors from Co. higginsianum, and the results

showed that most effectors are host induced and expressed

in consecutive waves associated with pathogenic transitions,

indicating distinct effector suites are deployed at each stage

(Kleemann et al., 2008, 2012). Yoshino et al. (2012) and Irieda

et al. (2019) found that the effector NIS1 of Colletotrichum

orbiculare can interact with PRRs of plants to inhibit immunity

(Yoshino et al., 2012; Irieda et al., 2019). Further studies

found that the CgDN3 gene, which can inhibit the function of

NIS1, is an important gene to maintain the pathogenicity of

Co. gloeosporoides (Stephenson et al., 2000). Eisermann et al.

(2019) also found two important effectors from Colletotrichum

graminicola (Eisermann et al., 2019). Schmidt et al. (2020)

Andree found that reactive oxygen species (ROS) can increase

the resistance of Arabidopsis to Co. higginsianum; the results

further proved the important role of ROS in plant immunity

(Schmidt et al., 2020). On the contrary, the CfShy1 and CfGcn5

effectors of Co. fruticola will affect the homeostasis of host SA

and inhibit plant immunity (He et al., 2019; Zhang et al., 2021).

In recent years, in addition to exploring the function of

a single gene of Colletotrichum spp., some scholars have also

used omics methods to explore Colletotrichum spp. RNA-

seq has been used to study Colletotrichum–host interactions.

Previous studies have explored the transcriptional profile of

Colletotrichum spp. after being infected by the host; the

results showed that small secreted proteins (SSPs), cytochrome

P450s, carbohydrate-active enzymes (CAZYs), and secondary

metabolite (SM) synthetases were enriched (Liang et al.,

2018). There are also studies to explore the transcriptional

profile of a host after Colletotrichum spp. infection revealed

that many genes were mainly related to immune response,

plant hormone signal transduction, and secondary metabolites

(Fang et al., 2021; Mehmood et al., 2021). Some studies have

discussed the simultaneous response between Colletotrichum

spp. and hosts, which provides a new perspective for

understanding the pathogenesis of anthracnose and the immune

mechanism of the hosts (Alkan et al., 2015; Zhang et al.,

2018).

Conclusions and future perspective

Colletotrichum spp.is one of the important pathogenic fungi

with many species, hosts, and wide distribution. In recent years,

the research on the control and pathogenic mechanism of

Colletotrichum spp. has made good progress. In the future, the

research on the control and pathogenic molecular mechanism of

Colletotrichum spp. is still the focus. However, there is still a lack

of safe and effective drugs or biological reagents to control oil tea

anthracnose. Although the understanding ofColletotrichum spp.

has made significant progress, the current research onmolecular

mechanism of anthracnose is obviously insufficient. There are

only a few species mentioned above, such as Co. gloeosporoides,

Co. higginsianum, and Co. fruticola. However, there are more

other pathogenic molecular mechanisms of Colletotrichum

spp. that have not been explored. Secondly, the research on

the pathogenic molecular mechanism of anthracnose should

gradually develop from the functional research of a single

gene to the analysis of signal network, regulation mechanism,

and omics. More importantly, there are few reports on the

interaction mechanism between Colletotrichum spp. and hosts,

especially the mechanism of oil tea responding to Colletotrichum

spp. Exploring the pathogenic mechanism of anthracnose in oil

tea is expected to provide reference for the green prevention and

control of anthracnose in oil tea, and also helps people better

understand the molecular mechanism of plant pathogen growth,

development, and pathogenesis. At present, the prevention and

control technology of oil tea anthracnose is still based on

traditional agricultural control and chemical control. With the

continuous innovation of technology and the demand for safe

and efficient control technology, the development of biological

control and seed selection of disease resistant varieties will be

rapidly promoted.
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