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Lung cancer is a malignancy with high incidence and mortality worldwide. Previous
studies have shown that the gut microbiome plays an important role in the development
and progression of metabolic cancers. However, data on the characteristics of the
gut microbiome with different histopathology types of lung cancer remain scant. We
collected stool samples from 28 healthy people (HP) and 61 lung cancer patients. The
lung cancer patients were classified into three types according to their histopathology:
Atypical Adenomatous Hyperplasia/Adenocarcinoma in situ (AAH/AIS), Minimally
Invasive Adenocarcinoma (MIA), and Invasive Adenocarcinoma (IA). In addition, we
employed 16S rRNA gene amplicon sequencing to analyze the characteristics of the
gut microbiome in these patients. Our analysis revealed that the categorized cancer
patients had unique intestinal flora characteristics, and had lower density and flora
diversity compared to healthy people. Besides, the structure of the flora families and
genera was more complex, and each group presented specific pathogenic microbiota.
The patients in the AAH/AIS group and HP group had relatively similar flora structure
compared with the IA and MIA groups. In addition, we identified several flora markers
that showed significant changes with the development of lung cancer. Lung cancer
gut microbiota showed a decrease in short-chain fatty acids (SCFAs) producing
and anti-inflammatory bacteria compared to healthy people, while some pathogenic
bacteria such as proinflammatory or tumor-promoting bacteria were more abundant
in lung cancer patients. On the other hand, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Clusters of Orthologous Group (COG) annotation demonstrated
suppression of some dominant metabolism-related pathways in lung cancer. These
findings provide new biomarkers for the diagnosis and prognostic assessment of lung
cancer and lay the basis for novel targeted therapeutic strategies for the prevention and
treatment of lung cancer.

Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03244605].
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INTRODUCTION

Lung cancer is one of the most aggressive and prevalent types of
malignancy that leads to high morbidity and mortality (Allemani
et al., 2018). Over 80% of lung cancer incidences are non-small
cell lung cancer (NSCLC) (Wagner et al., 2020), which include
adenocarcinoma (AC) and squamous cell carcinoma (SCC).
However, with the development of individualized and targeted
therapy for lung cancer, traditional pathological classification
no longer meets the treatment requirements. It is, therefore,
important to characterize the lung cancer subtypes based on
the existing diagnostic criteria, coupled with more sensitive and
specific diagnostic and prognostic markers.

Intestinal bacteria is a systemic metabolic product, which
mediates disease resistance through metabolism, immunity,
inflammation, and other mechanisms. Few studies have evaluated
the interplay between the microbiome and lung cancer. Recent
studies have also shown that intestinal flora has a unique
population, which expresses in different cancers such as lung,
breast, pancreatic, brain, and bone cancers (Nejman et al., 2020).
In the treatment of lung cancer, intestinal flora can improve
the efficacy and sensitivity of chemotherapy, radiotherapy, or
immunotherapy, and reduce treatment-related toxicities (Cheng
et al., 2020). In addition to carcinogenic effects, intestinal flora
can also inhibit the development of cancer (Kadosh et al.,
2020). The intestinal flora modulated cancer development by
regulating its microenvironment, the host’s immune system, as
well as other metabolites (Finlay et al., 2020). Thus, the gut
microbiome could correlate with the development of lung cancer,
but evidence for the interplay between the microbiome and lung
cancer is insufficient and cannot yet be used to predict tumor
progression and prognosis.

An ideal diagnostic or prognostic index should have high
specificity and sensitivity. Novel indexes such as intestinal flora
have received considerable prospects for clinical application.
To define biomarkers in the development of early lung
adenocarcinoma, we explored the role played by intestinal flora
changes using 16S rRNA sequencing and then attempted to
correlate the intestinal flora changes with the development of
infiltrating carcinoma. These data provided a theoretical basis for
the accurate diagnosis and classification of early lung cancer.

MATERIALS AND METHODS

Samples
The 89 fecal samples for 16S rRNA sequencing were obtained
from 28 healthy people and 61 lung cancer patients initially
diagnosed by histopathology and computed tomography
(CT). The lung cancer patients were further divided into 3
groups based on different histopathology as prescribed by
WHO classification on Tumors of the Lung, Pleura, Thymus,
and Heart in 2015, which include Atypical Adenomatous
Hyperplasia/Adenocarcinoma in situ patients (AAH/AIS group,
n = 8), minimally invasive adenocarcinoma patients (MIA group,
n = 18), invasive adenocarcinoma patients (IA group, n = 35).
None of the patients received therapy, such as chemotherapy,

radiation therapy, targeted therapy, immunotherapy, or surgery
before sample collection. We excluded patients who had one of
the following conditions: congestive cardiac failure, respiratory
failure, renal failure, severe liver dysfunction, consumption of
probiotics or antibiotics within 1 month before admission. The
control group was of 28 healthy people (HP group) who did not
use any type of antibiotics or probiotics within 1 month before
admission. Fresh fecal samples from all the participants were
collected by the fecal sample collection kit (MGI Tech Co., Ltd.,
China) for intestinal microbial gene testing. The fecal samples
were transferred into a sterilized tube containing stabilizer
N-octylpyridine, which is a reliable reagent suitable for storage
and transportation at room temperature. Then the fecal samples
were frozen at –80◦C immediately until DNA extraction. This
study was conducted by the Declaration of Helsinki. The study
was approved by the ethics committee of Yueyang Hospital of
Integrated Traditional Chinese and Western Medicine Affiliated
with Shanghai University of Traditional Chinese Medicine
(NO.2016-059). Each patient gave signed informed consent
before the study. The clinical trial registration date was August 9,
2017, and the registry number was NCT03244605.

Fecal DNA Extraction and 16S
Sequencing
Microbial DNA was extracted from 89 fecal samples (61
fecal samples from lung cancer patients and 28 fecal samples
from healthy people) by QIAamp R© Fast DNA Stool Mini
Kit following the manufacturer’s protocol. Briefly, the
V3–V4 variable regions of the bacterial 16S rRNA gene
were amplified by polymerase chain reaction (PCR) using
universal primers 338F: (ACTCCTACGGGAGGCAGCAG)
806R:GGACTACHVGGGTWTCTAAT). The extracted DNA
was purified by silica gel and then quantified using a QuantusTM

Fluorometer. The PCR cycle conditions included an initial
denaturation at 95◦C for 3 min; followed by 30 cycles at 95◦C
for 30 s, primer annealing at 52◦C for 30 s, and extension
at 72◦C for 45 s; followed by a final elongation at 72◦C for
10 min. The PCR products were then analyzed in 2% agarose
gel. Subsequently, purified amplicons were pooled in equimolar
amounts, and paired-end sequenced on Illumina HiSeq/MiniSeq
for genome analysis.

Microbiome Data Analysis
The raw FASTQ files were first de-multiplexed, quality-filtered
using chimera check, and then merged using FLASH (Magoč
and Salzberg, 2011) with the sequences which were processed
using the Cutadapt v1.3 and QIIME v1.8.0 (Cock et al., 2010).
Briefly, forward, and reverse bacterial 16S rRNA reads were
merged with a minimum length of 200 bps, and then we used the
pick_open_reference method in the QIIME analysis to perform
OTU clustering. The clustering algorithm used Uclust, and the
database used the Greengenes 2013-08 release1 version, and the
similarity threshold was 80% for all sequences. Thereafter, we
performed Operational Taxonomic Units (OTUs) division and
statistical analysis, and the remaining parameters were the default

1http://greengenes.lbl.gov/Download/
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parameters for QIIME. The index of observed species, Chao,
Shannon, Sobs and Simpson were used to calculate alpha (α)
diversity metrics. The beta (β) diversity measurements including
Principal Component Analysis (PCA) and Principal Coordinates
Analysis (PCoA) were used by the unweighted UniFrac metric.
The PCA and PCoA were based on unweighted uniFrac distance.
The statistical significance was evaluated using analysis of
similarities (ANOSIM). In addition, the Linear Discriminant
Analysis (LDA) Effect Size (LEfSe) method was used to evaluate
the influence of each differentially abundant taxon. We further
conducted an correlation network analysis to identify the co-
occurring intestinal microbes under different histopathology
types. To analyze the correlation network, we calculated the
Spearman correlation between different groups of phylum using
the R package cooccur. Subsequently, significant and robust
correlations (P-value < 0.01, |ρ| ≥ 0.6) were used to construct
a network using the R package psych. Gephi (v0.9) was then
used to construct network figures. Finally, pathway enrichment
analysis was performed using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and the Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) 2.0 database (Kanehisa et al., 2008; Langille et al.,
2013; Douglas et al., 2020).

Statistical Analyses
Statistical tests were performed in R (3.0.2; R Foundation for
Statistical Computing) and Prism software (Graph Prism7.0
Software Inc., CA, United States). Data were expressed as a
mean ± standard deviation (SD) and the differences among the
groups were evaluated by Wilcoxon rank-sum test. The Wilcoxon
rank-sum test (for two groups) or Kruskal-Wallis test (for more
than two groups) was used to analyze the diversity between multi-
groups. Besides, Fisher’s exact test was performed on categorical
variables, whiles the chi-square test was used for categorical
variables. A value P< 0.05 was considered statistically significant.

RESULTS

Patient Characteristics
Clinical characteristics of all the participants were listed in
Table 1. No difference was observed in age, sex, disease stage,
smoking status and family history (P > 0.05).

Clustering Analysis of Operational
Taxonomic Unit
A total of 1,243 Operational Taxonomic Units (OTUs) were
annotated for subsequent analysis, including 15 phyla, 81
families, 253 genera, and 555 species of gut microbes (Figure 1A).
The coverage of 16S rRNA sequencing was 400–440 bp and the
average length of these fragments was 415 bp (Supplementary
Figure 1A). The data showed that the sobs index tended to be
stable as sampling increased, which indicated that the depth of
our sample sequencing met the analysis requirements for the
diversity of intestinal flora (Supplementary Figure 1B).

Taxonomic Analysis of the 16S rRNA
Sequence Data
To explore the features of the gut microbial community of the
lung cancer patients, the relative microbiota taxon abundance in
the lung cancer groups was compared with healthy people. The
predominant genera were defined as those comprising greater
than 1% of the total gut bacteria. Bacterial taxonomy distribution
of the three lung cancer groups demonstrated increased density
and clustering compared to the healthy controls group. In
addition, a total of 605 OTUs were obtained for the HP group,
639 OTUs for the AAH/AIS group, 780 OTUs for the MIA group,
and 944 OTUs for the IA group as shown by the Venn diagrams
(Figure 1A). The number of unique OTUs in each group was
36, 38, 104, and 159 in AAH/AIS, MIA, IA, and HP groups,
respectively. In addition, the HP and the lung cancer groups
had a total of 446 shared OTUs, indicating that there was the
high similarity between the structure of the intestinal flora of the
healthy group and the lung cancer patients (Figure 1A). Rank-
Abundance curves showed that the intestinal flora of the healthy
group had higher abundance and diversity compared to the lung
cancer groups (Figure 1B).

The Alpha Diversity of the Gut Microbiota
To investigate the diversity of the bacterial species in the gut
ecosystem in each group, the microbial alpha diversity was
measured as shown in Figure 2. Alpha diversity evaluates
the diversity of microbial communities in a region, reflecting
the richness and evenness. We obtained data such as species
abundance by observation of various index values such as
Chao, Shannon, Sobs, and Simpson index. Community richness
can be measured by Chao index, while community diversity
indices includes Shannon index and Simpson index. Sobs index
represents the number of species observed in the sample
(OTU number). The Chao, Shannon, Sobs index are positively
correlated with the richness and diversity while the Simpson
index is negatively correlated with them. We then employed a
t-test to define the significance of the differences in the index
values between the four groups. The Chao, Shannon, or Sobs
index (P< 0.05) demonstrated that the diversity index of the HP
group was significantly higher compared to the three lung cancer
groups, while the Simpson index was lower compared to the three
lung cancer groups (P< 0.05). Our results demonstrated that the
intestinal flora of lung cancer patients was significantly different
from in the HP group, and the gut microbiota abundance and
diversity of the lung cancer patients were lower than the HP
group. In addition, there was no significant differences in the
indices of the different lung cancer groups (P > 0.05).

The Beta Diversity Analysis of the Gut
Microbiota
The Beta (β) diversity was used to evaluate the similarities and
differences of between-group diversity of each group, including
principal component analysis (PCA) and principal coordinates
analysis (PCoA) based on unweighted UniFrac distance. The
more similar the community composition of the samples is,
the closer they are to each other in the PCA or PCoA
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TABLE 1 | Baseline characteristics of health people and non-small cell lung cancer (NSCLC) patients.

Characteristics Total (n = 89) HP (n = 28) AAH/AIS (n = 8) MIA (n = 18) IA (n = 35) P-value

Age, years
Mean ± SD

55.88 ± 10.87 58.79 ± 11.16 49.00 ± 5.61 53.67 ± 12.34 56.26 ± 10.17 0.110

Sex, n (%)

Male 30 (33.71) 11 (39.29) 2 (25.00) 7 (38.89) 10 (28.57) 0.731

Female 59 (66.29) 17 (60.71) 6 (75.00) 11 (61.11) 25 (71.43)

Smoking status, n (%)

Smoker 10 (11.24) 5 (17.86) 0 (0.00) 3 (16.67) 2 (5.71) 0.279

Non-smoker 79 (88.76) 23 (82.14) 8 (100.00) 15 (83.33) 33 (94.29)

Family history, n (%)

Yes 7 (7.87) 0 (0.00) 0 (0.00) 1 (5.56) 6 (17.14) 0.098

No 82 (92.13) 28 (100.00) 8 (100.00) 17 (94.44) 29 (82.86)

Disease stage, n (%)

IA – – 0 (0.00) 17 (94.44) 30 (85.71)

IB – – 0 (0.00) 1 (5.56) 3 (8.57) 0.529

IIA – – 0 (0.00) 0 (0.00) 0 (0.00)

IIB – – 0 (0.00) 0 (0.00) 2 (5.71)

EGFR mutation, n (%)

L858R – – 0 (0.00) 1 (5.56) 8 (22.86)

19-del – – 0 (0.00) 0 (0.00) 4 (11.43) 0.074

Unknown – – 8 (100.00) 17 (94.44) 23 (65.71)

Solitary/multiple nodule, n (%)

Solitary – – 2 (25.00) 8 (44.44) 18 (51.43) 0.396

Multiple – – 6 (75.00) 10 (55.56) 17 (48.57)

Defecation, n (%)

Normal 62 (69.66) 28 (100.00) 7 (87.50) 15 (83.33) 27 (77.14) 0.067

Abnormal 27 (30.34) 0 (0.00) 1 (12.50) 3 (16.67) 8 (22.86)

HP, healthy people; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma.

FIGURE 1 | Taxonomic analysis of 16S rRNA sequence data. (A) Venn diagram of OTU shared among the four groups. (B) Rank-Abundance curves of intestinal
flora in four groups of samples.

diagram. Therefore, samples with high similarity in community
structure tend to cluster together, while those with very different
communities are far apart. We performed the PCA analysis
between the four groups as shown in Figure 3A. When PC1

(35.09%) and PC2 (25.33%) were taken as the abscissa and
ordinate, respectively, the four groups were well distinguished
(P = 0.007), demonstrating that the four groups had significant
differences in the composition of the intestinal bacteria. Besides,
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FIGURE 2 | Comparison of Alpha diversity index of intestinal flora among the four groups. (A) Microbial alpha diversity of Chao index. (B) Shannon index.
(C) Simpson index. (D) Sobs index. *Indicates P < 0.05 compared to the HP group.

in the PCoA analysis (Figure 3B), when PC1 (19.27%) and PC2
(11.75%) were taken as the abscissa and ordinate, respectively, the
four groups were farther apart in the coordinate chart (P = 0.001),
which indicated that there was a significant difference in species
diversity between the four groups.

In summary, our data showed that there were significant
differences in the species diversity and community composition
of the intestinal flora between the lung cancer patients and
healthy controls, as well as certain differences in the diversity
and structure of the intestinal flora between the three different
pathological subgroups of lung cancer. However, the results of
Beta diversity can only illustrate the general similarities and
differences of diversity between each group. Therefore, the clear
information on detailed differences between the four groups were
further reflected by subsequent species taxonomic profiling at
different levels of biological classification.

Variation Analysis
Species Specificity in Multi-Level Tests
At the phylum level, Firmicutes, Bacteroidetes, and
Proteobacteria were the most common phyla identified in
the three lung cancer groups, contributing 87.27% (AAH/AIS),
93.53% (MIA), and 93.09% (IA) of the gut bacteria, respectively.
Firmicutes, Bacteroidetes, Proteobacteria, and Acidobacteria

contributed to 98.95% of the gut bacteria in the HP group
(Figure 4A). The lung cancer groups especially the MIA
group had a significantly lower abundance of Firmicutes, a
relatively higher abundance of Proteobacteria, Bacteroidetes,
and Fusobacteria compared to the HP group. On the other
hand, the AAH/AIS group showed a relatively low abundance
of Acidobacteria (Figures 4B–D). The ratio of Firmicutes to
Bacteroidetes can reflect the homeostasis of intestinal flora. The
Firmicutes/Bacteroidetes ratio in the HP group was 1.88, while
in the lung cancer group, the ratio was 1.12 (AAH/AIS), 0.48
(MIA), and 0.95 (IA), respectively.

In addition, analysis of relative abundance showed a clear
difference between the taxa with high and low abundance were
distinguished, and the color gradient were used to reflect the
similarity and difference of the composition of multiple samples
at each classification level. As shown in Figure 5, the difference
between the four groups of samples can be seen intuitively
according to the change in the color gradient.

Gut Microbial Signature in Lung Cancer Patients
The multi-level LEfSe was used to analyze biomarkers between
the lung cancer patients with different histopathology and the
healthy controls. Our results showed that dominant fecal gut
microbiota was specific to the histopathological types of lung
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FIGURE 3 | Beta diversity analysis of intestinal flora. (A) PCA analysis of intestinal flora in four groups of samples. (B) PCoA analysis of intestinal flora in four groups
of samples.

cancer. There were 74, 20, 15, and 15 bacterial taxonomic
clades that were significantly different in HP, AAH/AIS, MIA, IA
groups, respectively [log10 (LDA score) > 2] (Figure 6A).

We also analyzed the evolutionary relatedness of the intestinal
flora species as shown in Figure 6B. The data showed that
the species were divergent, which was in sync with the LDA
value distribution data. The data showed that the dominant
flora in each group of lung cancer patients was significantly
different from the healthy people, and there were also significant
differences in the characteristic flora in the lung cancer patients
based on the different pathological types.

The flora evolution analysis showed the relative content
of these dominant bacteria (Figure 7). In the HP group,
p_Firmicutes, c_Clostridia, and o_Clostridiales were
shown to be the most significant, while in AAH/AIS
group, g_Lachnoclostridium, g_Parasutterella, and
g_Eubacterium_coprostanoligenes had the highest abundance.
On the other hand, in the MIA group, p_Bacteroidetes,
o_Bacteroidale, and c_Bacteroidia were shown to be the most
significant genus, while in the IA group, g_Prevotella_9,
g_Klebsiella, and g_Eubacterium_eligens were most represented.
Besides, in the HP group, the dominant bacteria group was
classified at a high level, while the different lung cancer groups

were significantly reflected in the low-level classification.
Further analysis showed that o_Bacteroidales, o_Clostridiales,
f_Lachnospiraceae, f_Ruminococcaceae, g_Anaerotruncus,
g_Faecalibacterium, g_Prevotella_9, g_Roseburia, and
g_Subdoligranulum in HP group was significantly
different from MIA, IA, but not with AAH/AIS group
(Figure 7A). On the other hand, f__Peptostreptococcaceae,
f_Christensenellaceae, f_Veillonellaceae, g_Blautia,
g_Christensenellaceae_R-7_group, g_Haemophilus,
g_Lachnospira, g_Lachnospiraceae_NK4A136_group, and
g_Lachnospiraceae_UCG-001 were significantly different from
the other three groups (Figure 7B). These florae features may be
related to the development of lung cancer.

Moreover, several specific genera were presented in both
lung cancer patients and healthy people. According to the
LEfSe analysis, the genera of Lachnospiraceae, Ruminococcaceae,
and Eubacterium were predominantly identified in both cancer
patients and healthy people. Specifically speaking, the genera of
Lachnospiraceae were in both healthy people and IA group. The
genera of Ruminococcaceae were both enriched in healthy people
and AAH/AIS group. Eubacterium genera were simultaneously
identified in healthy people and three lung cancer subgroups
AAH/AIS, MIA, and IA group.
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FIGURE 4 | Major OTUs at Phylum level in the HP group vs. the three lung cancer subgroups. (A) Major OTUs at Phylum level in the HP group. (B) Major OTUs at
Phylum level in the AAH/AIS group. (C) Major OTUs at Phylum level in the MIA group. (D) Major OTUs at Phylum level in the IA group.

Constructed networks revealed that samples from the HP
had fewer edges, a lower average degree and lower nodes
than those from the lung cancer group, which indicated
that there were fewer significant correlations of phylum
(Supplementary Table 1). In AAH/AIS group, average weighted
degree, density and clustering coefficient were higher than
the other three groups, demonstrating a elevation in the
network complexity. Co-occurrence was also found among
species of the Proteobacteria in AAH/AIS, MIA, IA environments
(Figures 8B–D), however, such co-occurrence was missing in the
healthy environment (Figure 8A).

Functional Profile of the Gut Microbiome in
Non-small Cell Lung Cancer
The KEGG and COG pathway analyses were performed to
explore potential differences in the functions of the microbiome
in lung cancer patients vs. healthy individuals.

Although the functional analyses showed significant similarity
between the lung cancer patients and the control group, the
microbiome of the lung cancer patients was abundant in
pathways such as carbohydrate digestion and absorption, which
was proportional to the development of lung cancer. On the other
hand, the KEGG analysis showed clustering of valine, leucine, and
isoleucine biosynthesis, arginine biosynthesis, and glutamatergic
synapse, which showed lower abundance in the lung cancer
patients than the healthy controls (Figure 9A). In addition,
diguanylate cyclase (COG2199) and RNA-binding protein

(COG1534) of the ABC (ATP-binding cassette) transporter
system were significantly downregulated in lung cancer patients
compared to the healthy controls, which might be promoting
utilization of glucose or ribose/galactoside to regulate energy. In
addition, exported protein (COG2911) ortholog was upregulated
in the lung cancer patients compared to the healthy controls
(P < 0.05) (Figure 9B).

DISCUSSION

Adenocarcinoma is the most common type of pathology in
NSCLC. With the development of imaging techniques like
High Resolution Computed Tomography (HRCT), CT imaging,
Positron Emission Tomography-Computed Tomography (PET-
CT), and Magnetic Resonance Imaging (MRI), the detection
rate of early lung adenocarcinoma has significantly improved.
However, how to analyze the prognosis of patients with early lung
adenocarcinoma is particularly critical.

There are three major types of pathology in early lung
adenocarcinoma, including adenocarcinoma in situ (AIS),
minimally invasive adenocarcinoma (MIA), and invasive
adenocarcinoma (IA) with a maximum tumor diameter
of ≤ 3 cm (Travis et al., 2015). Besides the AIS, there is atypical
adenomatous hyperplasia (AAH) with very similar morphology.
Although the CT imaging of the above lesions is mainly in the
form of ground-glass nodules, their prognosis is quite different.
AAH can be observed and followed up without surgery for years;
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FIGURE 5 | Species classification heat map analysis. The color gradient from blue to red indicates that the distance between the samples is from near toward far.

AIS and MIA could be treated by lobectomy without regional
lymph node dissection, with a 5-year survival rate of 100%; while
submerged IA with predominantly appendicular growth requires
lobectomy and regional lymph node dissection, with a 5-year
survival rate of 67% (Detterbeck et al., 2017). With the increase
in the detection rate of pulmonary ground-glass nodules, it is
essential to classify the degree of malignancy of the nodules.
Unfortunately, the ground glass nodules have similarities and
overlap in histomorphology, which blocks accurate diagnosis
and treatment. Presently, experienced pathologists identified
the types of early lung adenocarcinoma based on infiltrating
carcinoma components in the lesion, but there are no specific
biological markers of infiltrating carcinoma components in
lesions, especially for the early lung adenocarcinoma patients.
Therefore, it is urgent to explore non-invasive and economical
screening modalities which could easily detect samples with
high positive rates.

Recent studies have shown that intestinal flora can be
used in the diagnosis of human diseases such as tumors
(Zheng et al., 2020; Leng et al., 2021). Intestinal flora is a large
group of microorganisms that colonize the intestines, and
their homeostasis plays an important role in regulating the

development of human diseases and is referred to as the “second
genome” (Qin et al., 2010) or “a new organ” (Donaldson et al.,
2016). Previous data has demonstrated a pathogenic association
between the microorganisms and the gut-lung axis (Gut-lung
axis) (Budden et al., 2017), which is the basis for the regulation
of lung cancer by the intestinal flora microenvironment.
The intestines and the lung regulate each other through the
gut-lung axis, which relies on various biological structures
such as embryonic homology, mucosal immune channels, and
neurological channels. Besides, the intestinal microenvironment
could influence the occurrence, development, treatment, and
prognosis of lung cancer through various pathways. In our study,
we showed that the lung cancer group had significant differences
from the healthy group, which is consistent with previous reports
(Liu et al., 2019a). Thus, the microbiota has high sensitivity in
early lung adenocarcinoma compared to blood tumor markers
such as carcinoembryonic antigen (CEA), carbohydrate antigen
125 (CA125), and squamous cell carcinoma (SCC) antigen.

The α- and β-diversity results of lung cancer patients with
different histopathology types did not show any significant
differences, but the HP and AAH/AIS groups showed high
similarity, while the IA group was similar to the MIA group.
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FIGURE 6 | Identification of gut microbiota composition and abundance across the four groups. (A) Histogram of the distribution of LDA values for LEfSe analysis of
intestinal flora in four groups of samples. (B) Evolutionary map of species branching for LefSe analysis of intestinal flora in four groups of samples.

Frontiers in Microbiology | www.frontiersin.org 9 June 2022 | Volume 13 | Article 918823

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-918823 June 8, 2022 Time: 12:17 # 10

Qin et al. Gut Microbiome of Lung Cancer

FIGURE 7 | The comparison of relative abundant microbiome between each group. (A) The Characteristic flora which are significantly HP group is significantly
different from MIA, IA, and no difference. (B) The Characteristic flora which are significantly different between HP and the other three group. *P< 0.05, **P< 0.01,
***P< 0.001, ****P< 0.0001, ns, no significance.
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FIGURE 8 | Correlation network of the gut microbiome in the four groups. The correlation coefficient was calculated with Spearman rank correlation test (|ρ| ≥ 0.6).
Gephi (v0.9) was used for network construction. (A) Correlation networks in HP. (B) Correlation networks in AAH/AIS. (C) Correlation networks in MIA.
(D) Correlation networks in IA. Each circle represents the average relative abundance of a microbial species in that state. Node sizes are scaled according to their
degrees of connections.

FIGURE 9 | COG pathway and KEGG analysis in the four groups. (A) The relative abundance of COG pathway differentially enriched in the four groups. (B) The
relative abundance of KEGG pathway differentially enriched in the four groups.
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Together, these differences were not statistically significant but
was confirmed by specific flora structure.

Moreover, at the phylum level, Firmicutes were significantly
higher in the HP group compared to the AAH/AIS, MIA, and
IA groups, while the ratio of Firmicutes to Bacteroidetes was
lower than in the HP group. Previous data demonstrated that
all butyrate-producing bacteria belong to the Firmicutes. Besides,
butyrate is one of the most important fatty acids associated
with anti-inflammatory activity, cell proliferation, induction of
regulatory T cell differentiation, and apoptosis through activation
of signaling pathways (O’Keefe, 2016; Feng et al., 2018). High
rates of Firmicutes/Bacteroidetes phylum are frequently observed
in healthy adults, as previously demonstrated using a large
gut microbiome cohort study (Zhong et al., 2019). Reduced
Firmicutes/Bacteroidetes ratio has been shown to be associated
with dysbiosis of gastrointestinal tract metabolism, which results
in low concentration of circulating short-chain fatty acids,
and then influenced elements for host systemic immunity and
systemic inflammation (Liu et al., 2019b). This data shows that
there is a disrupted balance of gut microbiota in lung cancer
patients and the presence of distinct microbiota profiles from
those of precancerous lesions.

The characterizations in family and genus levels were more
complex and significantly varied from each group, presenting
a more diverse pathogenic population. Our results showed that
the Lachnospiraceae and Blautia genera were suppressed in lung
cancer patients, which was in agreement with previous studies
(Liu et al., 2019a; Zhang et al., 2019). The Lachnospiraceae
genera of the Clostridium family belongs to Firmicutes phylum,
which was suppressed in each lung cancer group compared to
the HP. Lachnospiraceae can protect the host against cancer
by producing butyric acid which plays an important role in
the suppression of tumor growth, regulation of immunity, and
participation in anti-inflammatory reactions (Daniel et al., 2017).
Each lung cancer group exhibited a decreased abundance of the
Blautia genus belonging to the Firmicutes phylum, which has
a role in digesting complex carbohydrates. The suppression of
the Blautia genus was also seen in irritable bowel syndrome,
non-alcoholic fatty liver diseases, Crohn’s disease, and diabetes.
However, the specific roles of these common specific florae and
their importance need further confirmation (Zhang et al., 2019).
Our results indicated that the composition and development
of bacterial communities varied in lung cancer with a different
course. Therefore, it is feasible to speculate that some microbiome
might be used for diagnosis, prognosis, therapeutics or fecal
microbiota transplantation in lung cancer.

Our data also showed that there was a lower abundance of
Faecalibacterium, Prevotella, Roseburia, and Subdoligranulum,
Anaerotruncus genera in lung cancer patients in IA and MIA
groups compared with HP, but no difference with AAH/AIS
group. Faecalibacterium was reported as a “favorable” gut
microbiome, which can enhance systemic and anti-tumor
immune responses mediated by increased antigen presentation,
and improved effector T cell functions as well as the tumor
microenvironment, which modulates the response of melanoma
patients to anti-programmed death-1(PD-1) immunotherapy
(Gopalakrishnan et al., 2018). It was also shown that patients

on Cytotoxic T Lymphocyte-associated Antigen-4 (CTLA-4)
blockade with a higher abundance of Faecalibacterium had a
prolonged PFS compared to those with a higher abundance
of Bacteroidales in the gut microbiome (Chaput et al., 2017).
Thus, these findings demonstrated that Faecalibacterium plays
an important role in immunotherapy. Prevotella belongs to the
Prevotaceae family of Bacteroides. It has a diverse bacterial
species and is a dominant genus in the human intestine. It is
negatively associated with metabolic diseases such as obesity and
diabetes (Lukens et al., 2014). In our study, we showed that
Prevotella decreased with lung cancer progression. Roseburia
genus has been shown to produce short-chain fatty acids,
especially butyric acid, which affects colon movement with
anti-inflammatory properties and has the potential of being a
probiotic (Sanders et al., 2019). Studies have shown that the
occurrence of colorectal cancer may be related to the reduction
of the Roseburia (Bisht et al., 2021). Our findings showed that the
reduction of Roseburia genus was associated with the occurrence
and progression of lung cancer.

In the healthy people group, the majority of gut bacteria
were associated with the production of short-chain fatty
acids (SCFAs), the regulation of the immune system, and
the modulation of metabolism. The microbial genera in
healthy people were characterized by a higher abundance
of beneficial bacteria that promote the restoration of gut
microenvironment balance, and some of them were identified
as the next-generation probiotics (Singh and Natraj, 2021).
However, these beneficial gut microbiota were not significantly
observed in either of the three subgroups of lung cancer
patients. On the contrary, most of the beneficial gut microbiota
were significantly decreased in lung cancer patients, and
some pathogenic bacteria such as proinflammatory or tumor-
promoting bacteria were more abundant in lung cancer patients.
Lachnoclostridium (Liang et al., 2020), Pseudomonas (Rathje
et al., 2020), Eubacterium_xylanophilum_group (Zhang et al.,
2020), Megasphaera (Lee et al., 2016), Klebsiella (Jian et al.,
2020), Citrobacter (Mullineaux-Sanders et al., 2019), and
Enterobacter (Yurdakul et al., 2015) were regarded as pathogenic
bacteria involved in inducing inflammation or generating cancer
development. Further studies will be conducted to investigate the
mechanisms of how these gut microbiota influence lung cancer
occurrence, progression and prognosis.

Gut microbiota interaction is a key factor of the microbial
equilibrium. Our correlation networks results demonstrated that
the microbial network was complexed in the early stage of
lung cancer. These results suggest changes in gut microbial
homeostasis in the early stages of lung cancer. Our results also
showed the network indices including network density, clustering
coefficient and average degree was significantly different between
HP and lung cancer. Whether they could be used as quantitative
parameters to assess cancer risk and homeostasis of the lung
microbiome requires further study.

In addition, the predicted 16S functions showed that there
were significant differences between the different groups. These
results were in agreement with our hypothesis which showed
that in the early stages of lung carcinogenesis, there was no
significant disease progression in the AAH/AIS group compared
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with the HP group. Therefore, the structure of the intestinal
flora was closer compared to that of healthy individuals. In
contrast, patients in the IA and MIA groups were at a later
stage of lung cancer development and had a more altered flora
structure compared to the healthy individuals. We thought
that the tumor cells may produce metabolites and exhibit
different characteristics, and the metabolic disorders and tumor
abnormalities may progressively worsen as the disease progresses.
On the other hand, the harmful flora in the lung cancer group was
also reduced. To a certain extent, this was also a manifestation of
the imbalance of the intestinal flora. The Anaerotruncus genus
belongs to the Clostridium and participates in the carbohydrate
metabolism pathway. The final metabolites are beneficial acetic
and butyric acids. A previous study demonstrated that the
abundance of Anaerotruncus was significantly increased in the
intestinal flora of a mouse model with non-alcoholic fatty
liver-related cancer fed on high diet cholesterol (Zhang et al.,
2021). Besides, Anaerotruncus was significantly enriched in
the uterine microbiome of patients with endometrial cancer
(Walther-António et al., 2016).

The KEGG and COG analysis also showed significant
differences in the intestinal flora between lung cancer patients
and healthy individuals. Further functional analysis of the
intestinal bacteria revealed that the flora in lung cancer patients
was associated with carbohydrate digestion and absorption.
Our findings showed the same metabolic disorders and tumor
abnormalities in the intestinal flora. These bacteria may
shed different microbial bioactive molecules and affect the
utilization of valine, leucine and isoleucine biosynthesis, arginine
biosynthesis, glutamate synthesis, glucose, ribose/galactoside by
the host. Firmicutes could alter undigested carbohydrates and
proteins into acetate, which then produces energy for the
organism (Liu et al., 2019a). Furthermore, the reduced abundance
of the ABC (ATP-binding cassette) transporter system suggested
the potential for energetic and metabolic alterations in the
microbiota in lung cancer. This observation is consistent with the
hypothesis that lung cancer is fundamentally a metabolic disease
and that lung cancer patients often exhibit coexisting metabolic
disorder phenotypes and pathologies.

Existing data focused on comparative analysis of intestinal
flora changes, which investigated the characteristics of the
changes in intestinal flora in different lung cancer histopathology.
However, to our knowledge, there are no studies on the
relationship between intestinal flora and the development of
different histopathological lung cancers. Our study compared
the structure of intestinal flora in healthy individuals and
patients with different histopathology types in early stage lung
cancer. These findings may provide new insights into the
development of lung cancer, suggesting that the intestinal flora
may be closely related to the progression of lung cancer which
can help determine the stage of the disease. Using various
bioinformatics methods, such as α-diversity and β-diversity
analysis, we identified intestinal flora in lung cancer patients. The
population structure of the lung cancer patients was different
from the healthy population, which was consistent with previous
results. However, there was no overall imbalance in the structure
of the intestinal flora in patients with early lung cancer, indicating

that the imbalance does not significantly affect the occurrence
and development of lung cancer. Meanwhile, the observation of
dynamic observation with larger scale were needed in the future.

CONCLUSION

We classified lung cancer patients with different histopathology
types and performed a detailed study to characterize the
structure of intestinal flora. Our results revealed that the
different histopathology types of lung cancer were associated with
structural changes in the intestinal flora. AAH/AIS group had a
more similar structure to the HP group, while the IA and MIA
groups showed a greater change in the colony structure. Lung
cancer gut microbiome showed a decrease in SCFA-producing
and anti-inflammatory bacteria compared to healthy people,
while some pathogenic bacteria such as proinflammatory or
tumor-promoting bacteria were more abundant in lung cancer
patients. Our findings would provide clues for the use of intestinal
flora as a biomarker in the assessment of lung cancer progression
and the effective development of targeted therapy.
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