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Biofouling of marine surfaces such as ship hulls is a major industrial problem.

Antifouling (AF) paints delay the onset of biofouling by releasing biocidal

chemicals. We present a computational model for microbial colonization

of a biocide-releasing AF surface. Our model accounts for random arrival

from the ocean of microorganisms with di�erent biocide resistance levels,

biocide-dependent proliferation or killing, and a transition to a biofilm

state. Our computer simulations support a picture in which biocide-resistant

microorganisms initially form a loosely attached layer that eventually

transitions to a growing biofilm. Once the growing biofilm is established,

immigrating microorganisms are shielded from the biocide, allowing more

biocide-susceptible strains to proliferate. In our model, colonization of the AF

surface is highly stochastic. The waiting time before the biofilm establishes

is exponentially distributed, suggesting a Poisson process. The waiting time

depends exponentially on both the concentration of biocide at the surface and

the rate of arrival of resistant microorganisms from the ocean. Taken together

our results suggest that biofouling of AF surfacesmay be intrinsically stochastic

and hence unpredictable, but immigration of more biocide-resistant species,

as well as the biological transition to biofilm physiology, may be important

factors controlling the time to biofilm establishment.

KEYWORDS

computational modeling, marine biofouling, antifouling paint, stochastic model,

biofilm establishment

1. Introduction

Marine biofouling is a pervasive problem in the shipping industry. Biofilm formation

on ship hulls increases hydrodynamic drag, resulting in higher fuel consumption which

leads to higher economic and environmental costs (Bott, 2011; Schultz et al., 2011). This

is a major issue, since around 90% of the world’s trade is transported via the shipping

industry (Banerjee, 2017), accounting for 2.2% of global greenhouse gas emissions

(Yeeles, 2018; IMO, 2020).
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Marine biofouling of a newly immersed surface is a

dynamic process that is influenced by factors such as availability

of colonizers, local environmental conditions and species

interactions. Several stages are commonly observed during

the formation of biofouling (Callow and Callow, 2011).

Within a few seconds of a surface being submerged in the

marine environment, it becomes covered by a conditioning

layer of dissolved proteins and other organic detritus. The

surface can then become colonized by microbes in a matter

of hours, resulting in the formation of a biofilm. Finally,

in the macrofouling stage, larger marine invertebrates such

as barnacles or mussels attach (Callow and Callow, 2002).

Progression from one stage to the next is not causal, but

interactions between fouling species can influence the patterns

of colonization and biofouling accumulations (Callow and

Callow, 2011). In particular, the microbial biofilm facilitates

the attachment of the larger fauna (Dobretsov and Qian, 2006;

Qian et al., 2007), and there is evidence that prospective

macrofoulers can differentiate between biofilms with different

microbial species composition (Patel et al., 2003; Lau et al.,

2005). While macrofouling is the major contributor to drag and

ship hull degradation (Leer-Andersen and Larsson, 2003), the

microbial biofilm itself can also contribute significantly to the

increased drag on the ship (Lewthwaite et al., 1985; Barton et al.,

2007; Andrewartha et al., 2010).

Many researchers aim to develop novel alternative

technologies to limit the growth of biofilms and the subsequent

attachment of macrofoulers on the outer hulls of ships and

boats. For example ultrasound (Legg et al., 2015), UVC-emitting

surfaces (Salters and Piola, 2017), and regular proactive surface

cleaning (“grooming”) (Swain et al., 2022) are often perceived

as being relatively environmentally-benign solutions. However,

in practice, vessels are generally coated with specialist paints

and while biocide-free “fouling-release” paints are available, and

are successfully used on many vessels, they reportedly account

for only 5–10% of sales by volume for the commercial shipping

sector (Bressy and Lejars, 2014). For now, biocidal antifouling

(AF) paints, which contain and release biocide, are still very

widely used.

It has been estimated that AF coatings reduce the fuel costs

of the shipping industry by $60 billion each year, as well as

lowering yearly emissions of carbon dioxide and sulphur dioxide

by 384 million and 3.6 million tonnes, respectively (figures

estimated in 2010, Salta et al., 2010). The most commonly

used types of biocidal AF paint—self-polishing and ablative

coatings—are designed such that the matrix of the paint

solubilizes slowly in seawater, ensuring a relatively controlled

and constant biocide release rate (Thomas et al., 1999; Chambers

et al., 2006; Ma et al., 2017). Modern biocidal AF paints often

use an inorganic copper compound, particularly cuprous oxide,

in conjunction with an organic or metal-organic compound

such as 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT),

copper pyrithione or zineb as co-biocides to provide broad

spectrum protection against the wide range of marine fouling

organisms thatmay be encountered (Finnie andWilliams, 2010).

The paint product used on any particular vessel is generally

selected on the basis of the customer’s expectations for cost vs.

performance. Furthermore, in many countries, including EU

countries, UK, USA, Canada, China, Australia andNewZealand,

the use of biocidal AF paints is increasingly tightly controlled

by regulation in response to environmental concerns associated

with the release of biocide into marine waters (Pereira and

Ankjaergaard, 2009).

While most commercial antifoulings are effective at

preventing the growth of marine fouling on most vessels over

the required service period, which may be up to 7.5 years, no

single product is effective at preventing all fouling on all vessels.

The onset of fouling can be hard to predict and among the

primary variables are likely to be vessel operational profile and

environmental factors (Kidd et al., 2016). Commonly, some level

of microbial fouling over the 5–7 year docking cycle is observed

on ship hulls protected by biocidal paints. However, as biofilm

fouling also causes increased frictional drag, paints which

minimize slime formation are advantageous. Understanding

how AF paints affect microbial biofilms is therefore essential so

as to design and utilize them with maximal effectiveness and

minimal environmental impact.

Here, we present a computational model for the colonization

of an AF surface by a multispecies microbial community.

Our model predicts biofilm formation dynamics and provides

insight into the microbial diversity of the biofilm. Our

simulations suggest that biofilm formation on the AF surface

can be stochastic, with an exponential distribution of waiting

times before biofilm establishment. In our model, the average

time before significant biofilm accrues on a surface depends

exponentially on both the concentration of biocide and the rate

of arrival of resistant organisms from the ocean. Taken together

our model puts forward a picture in which biocide-resistant

organisms immigrate stochastically from the ocean, and

eventually trigger biofilm formation in a process that can itself

be stochastic. In our model, once biofilm growth is established,

the outer part of the biofilm is shielded from the biocide and can

support the growth of more biocide-susceptible organisms. Our

work should provoke debate about the mechanisms controlling

biofouling of AF surfaces under different parameter regimes and

the extent to which the biofouling process may be inherently

stochastic and unpredictable.

2. Methods

2.1. A computational model for biofilm
growth on an AF surface

We present a model for biofilm deposition and growth

on a marine AF surface (Figure 1). To capture the key
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FIGURE 1

(A) A model for microbial colonization of an AF surface. Microbes immigrate from the well-mixed marine environment into the edge

microhabitat. They can replicate, die, migrate between adjacent microhabitats, or detach from the edge microhabitat. Once the population of

the edge microhabitat reaches a threshold size, a new edge microhabitat is added. This creates an expanding series of microhabitats,

representing the growth of a marine biofilm. Each microhabitat i contains a concentration of biocide, ci, which decreases exponentially with

distance from the surface. (B) Biocide concentration ci as a function of microhabitat index i. The biocide concentration has a maximum value

cmax (here 5 ppm), and decreases exponentially in successive microhabitats; note that we only simulate up to a system size of 40 microhabitats.

(C) Biocide inhibition curves (pharmacodynamic function φ) as a function of biocide concentration c for microbes with MIC values between 1

and 10 ppm. Positive values of φ indicate microbial growth; negative values of φ indicate microbial death. The dashed black line represents the

boundary between microbial growth and death. Microbes with lower MIC values are more susceptible to the biocide and therefore die at lower

biocide concentrations.

aspects—the spatial gradient of biocide as it diffuses away

from the surface and the multispecies nature of the biofilm—

in a computationally efficient manner, we use a coarse-grained

“microhabitat” modeling approach (Greulich et al., 2012; Allen

and Waclaw, 2019; Sinclair et al., 2019) (also widely known as a

“deme” modeling approach). The biofilm is modeled as a series

of slices, here called microhabitats, labeled with index i that runs

from i = 0 to L. The first microhabitat (i = 0) is immediately

adjacent to the AF surface and subsequent microhabitats extend

into the marine environment (Figure 1). Each microhabitat

contains a different concentration of biocide, representing the

concentration gradient that results from diffusion of biocide

from the surface (Figure 1B).

In the model, we track the population density of microbes

within eachmicrohabitat. Microbes are introduced to the system

via immigration from the marine environment. Rather than

assigning a taxon to each microbe, we categorize microbes

according to their level of resistance to the biocide, defined

by a minimal inhibitory concentration (MIC) value. Therefore

in some sense our model can be viewed as an ecotype model,

where “ecotype” here refers to the level of biocide resistance.

The biocide resistance of immigrant microbes is chosen from a

distribution, such that highly biocide-resistant species are rare.

Initially, microbes immigrate into the first microhabitat

(adjacent to the surface) and form a loosely-attached layer,

proliferating or dying according to their level of resistance to

the biocide. If the local biocide concentration exceeds the MIC

for a particular microbe, that microbe will tend to die, whereas

if the biocide concentration is less than the MIC value, it will

proliferate (Figure 1C). When the population density in the

first (surface) microhabitat reaches a threshold size, the biofilm

expands into the next microhabitat; further immigrants then

attach to the new outer microhabitat. This process continues,

with new microhabitats being added as the population in the

outermost one reaches a threshold, such that the biofilm expands

outwards. Therefore the number L of microhabitats increases

as the simulation progresses. Microbes within the biofilm can

replicate, die, migrate between adjacent microhabitats or, in the

outermost microhabitat only, detach from the biofilm.

We simulate this model using a stochastic agent-based

approach which tracks the number of microbes of each biocide-

resistance level in each microhabitat. The key model parameters

are: the maximal biocide concentration cmax at the surface-

seawater interface, the steepness α of the biocide gradient, the

parameters µ and σ of the log-normal MIC distribution of the

immigrating microbes (which control the mean MIC value for
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immigrants and the percentage of immigrants with MIC above

cmax), the microbial immigration rate rimm, the maximum rate

of microbial growth rmax, which also controls the maximal rate

of biocide killing, the carrying capacity K of a microhabitat

(which depends on the microhabitat thickness δz and lateral

area δa), the population size N∗ at which a microhabitat

transitions to the biofilm state (which also depends on δz

and δa), the detachment rate rdet, the rate rmig of migration

of microbes within the biofilm, and the biocide-independent

microbial mortality duniform.

We now describe in more detail the components of our

model and the parameter values.

2.1.1. Biocide gradient

We assume that the concentration of biocide decreases

exponentially with distance away from the AF surface. This

is consistent with a scenario in which biocide diffuses

from the surface and is degraded at a uniform rate

(Supplementary material). Therefore, in our model, the

concentration ci of biocide in the i-th microhabitat is given by

ci = cmaxe
−α

(

i+1
2

)

δz ,

where
(

i+1
2

)

δz represents the midpoint of the i-th

microhabitat.

2.1.2. Biofilm initiation and expansion

In our model, microhabitats can be in one of two possible

states: A “pre-biofilm”, in which microbes are loosely attached,

with a low population density, and B “biofilm”, in which

microbes are more strongly attached (Sinclair et al., 2022).

A microhabitat transitions from state A to state B when its

microbial population reaches a critical value N∗. When this

happens, a new microhabitat (in state A) is created. This model

mimics a quorum-sensing-mediated transition from planktonic

to biofilm physiology (see Section 4, Moore-Ott et al., 2022;

Sinclair et al., 2022). Our simulations are initialized with one

microhabitat (i = 0, L = 0) in state A, adjacent to the

surface. Once the population in this first microhabitat reaches

N∗, a second microhabitat is created, adjacent to the first one.

Thus the growing biofilm is modeled as a series of connected

microhabitats extending away from the surface into the ocean.

2.1.3. Microbial immigration

New microbes are introduced into the outermost

microhabitat at rate rimm. To mimic the microbial diversity of

the marine environment, we classify microbes according to their

degree of biocide resistance. Thus, each immigrating microbe

is assigned a numerical value denoting its minimum inhibitory

concentration (MIC) of biocide (see below). This MIC value

serves as a form of ecotype identifier and is inherited upon

proliferation.

To our knowledge, the distribution of biocide MIC values

for marine microbes has not yet been characterized. MIC values

for bacteria more generally have been found to be log-normally

distributed (Turnidge et al., 2006), therefore we assume that the

biocide MIC values for microbes immigrating from the ocean

follow a log-normal distribution :

P(x) =
1

xσ
√
2π

exp

(

−
(ln x− µ)2

2σ 2

)

,

where P(x) is the probability of obtaining MIC value x and

the parameters µ and σ control the mean and width of

the distribution (specifically the mean MIC value is given

by MICave = exp
(

µ + σ 2/2
)

and the probability of

obtaining an MIC value greater than a threshold MICt is
[

1− erf
(

(lnMICt − µ)/(σ
√
2)
)]

/2). We used an in-house

computational code to set the values of µ and σ to

achieve a chosen mean MIC and a chosen percentage of

immigrating microbes with MIC higher than the surface biocide

concentration cmax. We then sampled MIC values from the

log-normal distribution using standard methods (Press et al.,

2007).

2.1.4. Detachment and migration

Microbes are removed from the outermost microhabitat

(which is in the loosely attached state (i); see above) at rate rdet.

Microbes also move between adjacent microhabitats at rate rmig.

2.1.5. Microbial proliferation and death

Within a given microhabitat, microbes proliferate if the local

biocide concentration is lower than their MIC, and die if the

biocide concentration exceeds their MIC. Following previous

work (Regoes et al., 2004; Greulich et al., 2012; Sinclair et al.,

2019), we model the rate of proliferation/biocide killing using

the following pharmacodynamic function (Regoes et al., 2004):

φ(c,MIC) = rmax

(

1−
6 (c/MIC)2

5+ (c/MIC)2

)

This function is positive if the concentration c is less than

the MIC, and negative if c > MIC. It is a specific case of the

general function proposed by Regoes et al. (2004), which we

have used in previous work (Greulich et al., 2012; Sinclair et al.,

2019); similar functions would produce equivalent results. Since

microbial mortality in the ocean is high even in the absence of

biocide (Servais et al., 1985; Pace, 1988; Menon et al., 2003), we

also include a uniform turnover rate duniform for all microbes,

irrespective of the biocide concentration. Finally, we account for

the finite supply of nutrient and space within a microhabitat by

including a logistic growth term 1−N/K, with carrying capacity
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FIGURE 2

Simulation of microbial colonization of an AF surface. An example of a simulation run in which a biofilm is established. The population

composition vs. time t is represented in 3 di�erent ways. In all cases, the colors represent the resistance levels (MIC, in ppm) of microbes within

the population (see color scale). For each time point, a vertical bar shows the state of the population; these bars are stacked adjacent to each

other to show dynamical changes. This run stopped when the biofilm reached the thickness limit of 40 microhabitats. The green dashed lines

represent times at which new microhabitats were added to the system. For clarity, only the first 3 such events are shown. (a) Total population

size and composition. Here, the bar height represents the total population size. The colors show the resistance levels within the population;

here, individual bars for each microhabitat are stacked such that the lower part of each bar represents the region of the biofilm close to the

surface while the upper part represents the region further from the surface. (b) Same plot as in (a), but with a log scale on the vertical axis. (c)

Relative population composition. Here, the colors represent the resistance levels present in the population, as fractions of the total population.

K, such that growth slows as the population size N in a given

microhabitat approaches the carrying capacity (Tsoularis and

Wallace, 2002).

In summary, in a microhabitat with biocide concentration

c and microbial population N, microbes with a given MIC

behave as follows. If c < MIC, they proliferate at rate

φ(c,MIC)
(

1− N
K

)

while simultaneously dying at rate duniform.

If c > MIC, these microbes do not proliferate, but instead they

die at rate |φ(c,MIC)| + duniform. Daughter microbes retain the

same biocide resistance level as the mother; i.e., mutations are

not included in the model.

2.1.6. Simulation algorithm

The model was simulated using a tau-leaping

algorithm (Gillespie, 2001), which takes account of the

stochasticity of individual immigration, migration, birth, death

and detachment events. The algorithm is modified compared to

the standard tau-leaping algorithm to avoid negative population

sizes (Cao et al., 2005); see also Supplementary material. For the

data shown in Figures 2–4, the simulations were continued until

either 6 months of simulated time had elapsed or the biofilm

had grown to a thickness of 40 microhabitats. For the biofilm

establishment time data shown in Figures 5, 6, the simulated

time was increased to 1 year.

2.1.7. Model parameters

The parameter values used in our simulations are listed,

together with their sources, in Table 1. For some parameters,

further explanation is given in Supplementary material.

Importantly, our parameter set is in the “stochastic biofilm

initiation regime” identified in previous work (Sinclair et al.,

2022). This means that the predicted population size in the

first microhabitat is below the biofilm threshold N∗, even for

a microbe that is fully biocide-resistant. Therefore we expect

to see initial loose colonization of the first microhabitat, with

a population size below the threshold N∗, before a stochastic

fluctuation in the population size pushes the system over the

threshold, triggering biofilm formation (Sinclair et al., 2022).

3. Results

3.1. Microbial colonization of an AF
surface

Figure 2 shows the results of a typical simulation run in

which the AF surface becomes colonized. In Figure 2a, the

dynamics of biofilm development are represented as a series

of vertical bars, corresponding to the biofilm population at

increasing times. The height of each bar corresponds to the total

biofilm population size, illustrating the overall growth dynamics

of the biofilm. Within each bar, the colors show the composition

of the population in terms of biocide resistance level, from

purple (low MIC; susceptible) to orange (high MIC; resistant).

To account for the spatial structure of the biofilm, each vertical

bar consists of a stack of smaller bars, each corresponding to

one microhabitat. Thus, the lower part of each bar represents

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2022.920014
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sinclair et al. 10.3389/fmicb.2022.920014

FIGURE 3

Changes in alpha diversity during biofilm development. Three diversity indices are computed, defining a “species” as a microbial type with a

distinct MIC value. Values of the diversity indices are averaged over all of the simulation runs which exhibited biofilm growth. (A) Average

number of species S as a function of time. (B) Average Shannon index H as a function of time. (C) Average Shannon equitability E as a function of

time. While S increases with time, H and E both decrease.

FIGURE 4

Variability among replicate simulation runs. Community composition of 3 replicate simulations runs in which biofilm formed (each column

shows an independent simulation run). The upper panels show total community size and composition (as in Figure 2a), while the lower panels

show the relative abundance of microbes with di�erent MIC values (as in Figure 2c). The color scale indicates MIC value. As in Figure 2, the

green dashed lines indicate the times at which new microhabitats are added (for the first 3 microhabitats only). Replicate A shows an example of

a run which reached the “thickness limit” and stopped early.

the region of the biofilm close to the surface while the upper part

represents the region further from the surface. Figure 2b shows

the same information as Figure 2a but with a log scale on the

vertical axis, allowing the early-time dynamics to be more clearly

seen. Figure 2c focuses on changes in the microbial community

composition as the biofilm develops. Here, the vertical height of

the bars is scaled by the population size, and within each bar the

colors are ordered by MIC value. This gives a view of changes

in the relative abundance of different biocide resistance levels

within the total population (note that information on spatial

structure is lost in Figure 2c).

In our simulations, biofilm formation happens as follows.

First, the initially empty surface acquires a loosely attached

layer of microbes, corresponding to a single microhabitat with a

population density below the biofilm threshold. Microbes arrive

in this layer by immigration, but since the biocide concentration

is high close to the surface, most of them rapidly die. Some

marginally resistant immigrants are able to replicate, but for our

chosen parameter set, even a fully resistant microbe would not

initially achieve a population size above the biofilm threshold

(see Section 2 and Sinclair et al., 2022). Therefore the loosely

attached layer is maintained for some time. During this time, its

population fluctuates due to random immigration, proliferation

of more resistant microbes and death (Figure 2b). Eventually,

one of these population fluctuations pushes the total population

size above the biofilm formation threshold N∗ (Sinclair et al.,

2022). At this point, the first microhabitat transitions to the

biofilm state and a second microhabitat is added. This triggers
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FIGURE 5

Probability of biofilm establishment. (A) Normalized histogram (blue) of the number of replicate simulation runs in which biofilm has not yet

formed by time t, for 2,000 replicate simulations, for cmax = 4.7ppm. The fitted exponential probability distribution, ps(t), is shown in orange. (B)

The probability distribution ps(t), for a range of values of cmax. Here, the percentage of resistant microbes is set to 14% for the cmax value of 5

ppm. (C) The mean biofilm establishment time, tf , as a function of cmax. The mean biofilm establishment time increases exponentially with cmax.

FIGURE 6

Parameter dependence of mean biofilm establishment time. The mean biofilm establishment time tf is plotted as a function of various model

parameters. (A) Maximal biocide concentration cmax, (B) Percentage of biocide resistant microbes in the ocean, (C) Immigration rate rimm, (D)

Detachment rate rdet, (E) Biofilm transition threshold N∗/K, (F) Maximal growth/biocide killing rate rmax. All plots are shown with a log-scale on

the y-axis.

the second stage of biofilm development, in which biofilm

growth is inevitable. Although the second microhabitat may

spend a short time in the loosely attached state1 its lower biocide

concentration means that it soon transitions to the biofilm

1 In some of our simulations the high death rate in the first microhabitat

causes net migration of microbes inwards from the second microhabitat,

suppressing population growth in the second microhabitat.

state. Subsequent microhabitats are rapidly added, such that the

biofilm grows approximately linearly in time.

In the simulation of Figure 2, the first (loosely attached)

stage of biofilm formation is characterized by biocide-

susceptible micro-organisms (dark colors in Figures 2b,c at

early times), but the transition to the second stage (sustained

growth) coincides with the arrival of a more biocide-resistant

microbe (orange color in Figure 2), which later dominates the
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TABLE 1 Parameters used in our computational model.

Parameter Definition Value Source/Rationalization

δz Microhabitat thickness 1 µm Approx. width of one microbial layer

δa Microhabitat lateral area 0.5 mm× 0.5 mm Implies assumed lateral diffusion area for QS

signals (van Gestel et al., 2021); see Section 4.5

rmax Max. growth rate, controls biocide kill rate 0.083 h−1 (varied in Figure 6) Growth rates observed for marine bacteria

(Middelboe, 2000; Ploug and Grossart, 2000;

Grossart et al., 2003)

duniform Uniform death rate 0.018 h−1 Ocean mortality (Servais et al., 1985; Pace, 1988;

Menon et al., 2003)

K Carrying capacity of microhabitat 550 microbes

(2.2× 106mm−3)

Marine biofilm density on fouling-release coatings

(Dobretsov and Thomason, 2011)

N∗ Population threshold for biofilm transition 0.75×K Adjusted to biofilm growth rate (Dobretsov and

Thomason, 2011); see Supplementary material

MICave Average biocide MIC 3.179 ppm Adjusted to fix overall killing rate; see

Supplementary material

µ MIC distibution scale parameter: mean of the

normally distributed natural logarithm of

MIC distribution,

2.48 (Figures 2–4); varied in

Figure 6

Set to achieve desired MICave and pcres

σ MIC distribution shape parameter: standard

deviation of the normally distributed natural

logarithm of MIC distribution

0.71 (Figures 2–4); varied in

Figure 6

Set to achieve desired MICave and pcres

pcres % of immigrants with MIC> cmax 16% (Figures 2–4; varied in

Figure 6

No data available to our knowledge

cmax Maximal biocide concentration at seawater

interface

5 ppm (varied in Figures 5, 6) Assume to be controlled by biocide solubility in

seawater, e.g., 4.7 ppm for Kalthon930 (O’Neil,

2013)

α Biocide gradient parameter 0.01 µm−1 Consistent with diffusion/degradation; see

Supplementary material

rimm Immigration rate 20 h−1 (varied in Figure 6) Scaling of values reported by (Fletcher and Loeb,

1979); see Supplementary material

rmig Migration rate 0.1 h−1 Scaling of values for Pseudomonas biofilms (Rice

et al., 2003); further decreased by factor of 10 for

computational convenience

rdet Detachment rate 0.22×rmax (varied in Figure 6) Adjusted to biofilm growth rate (Dobretsov and

Thomason, 2011); see Supplementary material

tmax Maximum simulation time 6 months (Figures 2–4); 1 year

(Figures 5, 6)

Computational feasibility

Lmax Maximum biofilm thickness 40 microhabitats Computational feasibility

biofilm community (Figure 2c). Possibly the immigration of this

microbe provided the population fluctuation that triggered the

transition to biofilm formation. Furthermore, Figure 2c shows

that as the biofilm grows, less resistant microbes also become

significant in the community. This suggests a shielding effect:

the more resistant microbial type populates the inner parts of

the biofilm (Figure 2a), where the biocide concentration is high,

allowing for less resistant microbes to contribute to population

growth in the outer parts (see the outer layer of darker color in

Figures 2a,b).

3.2. Diversity of the biofilm community

To further understand changes in community composition

during biofilm development (alpha diversity), we investigated

the dynamics of three quantitative measures of community

structure. The number of species Smeasures how many distinct

microbial types (with distinct biocide MIC values) are present

in the simulation at any time. The Shannon index H =
−
∑

i pi ln pi measures diversity, taking account of the relative

abundances pi of the species that are present: H increases
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when more species are present, or when their abundances are

more evenly distributed. The Shannon equitability E = H/ ln S

measures the evenness of the distribution of species abundances:

a value of 1 means that all species are equally abundant, while

a value close to 0 means that one (or a small number of)

species is dominant. Figure 3 shows dynamical changes in S, H,

and E during biofilm development, averaged over 63 replicate

simulation runs.

On average, the number of distinct microbial types S within

the biofilm community increases in time (Figure 3A). This is

consistent with the addition of new microbial types to the

community by immigration as the biofilm grows (Figure 2a);

since the biocide concentration decreases away from the surface,

immigrant microbes are more likely to be viable as the

biofilm expands.

However, both the Shannon index H and the Shannon

equitability E decrease, on average, as the biofilm grows

(Figures 3B,C). This is consistent with the picture that

emerges from Figure 2c, in which the microbial abundance

distribution remains highly skewed, even at late times. In

other words, the biofilm community is dominated by the most

biocide-resistant microbial type, even when it has become

thick enough that the biocide concentration at the growing

edge is negligible. This is indicative of a priority effect:

biocide-resistant organisms that are able to establish early in

biofilm development, when the biocide is thin, maintain their

dominance at later times even when biocide-resistance is no

longer advantageous.

3.3. Colonization of the AF surface is
stochastic

Repeating our simulations with the same parameter set as

in Figure 2, we observed that very different outcomes can arise

in replicate simulation runs. Out of 625 replicate simulation

runs, 100 (16%) established a biofilmwithin 6months’ simulated

time (defining “biofilm establishment” when the population

in the first microhabitat exceeds the biofilm threshold N∗).
Among those simulation runs in which biofilm established,

we observed strong variability in the community dynamics.

Figure 4 shows the results of three of the replicate simulations

in which biofilm established. These simulations vary strongly in

the duration of the first, loosely-attached, stage of colonization.

Because sustained biofilm growth starts at different times, the

final biomass of the biofilm is different in the 3 runs, even though

the rate of sustained growth is similar. The 3 replicate runs

also show quite different community composition. Replicate

A shows a similar pattern to the simulation of Figure 2, in

which a somewhat resistant microbe appears around the time

of the biofilm transition and later makes up a significant

fraction of the community, while coexisting with less resistant

micro-organisms. The community of replicate B is far less

biocide-resistant. Replicate C, in contrast, contains a highly

biocide-resistant organism that almost completely dominates

the community, with less resistant microbes being confined

to the outer edge of the biofilm. The fact that replicate

simulation runs with the same parameter set show qualitatively

different outcomes (biofilm vs. no biofilm) as well as different

biofilm growth dynamics and community compositions, shows

that, in our model, biofouling of the AF surface is a highly

stochastic process.

3.4. Simulations can predict probability of
biofilm establishment on AF surfaces

From an industrial point of view, the waiting time before

biofilm establishment on an immersed AF surface is a useful

metric for inclusion in tesing and development as well as

for establishing in-service paint performance expectations.

To probe in more detail the factors influencing biofilm

establishment on AF surfaces, we performed 2,000 replicate

simulations. For each simulation, we monitored the time

of biofilm establishment. Figure 5A shows the fraction of

simulations in which biofilm has not yet established, as a

function of time (for a parameter set with cmax = 4.7

ppm). This normalized histogram allows us to obtain the

probability distribution ps(t) for the time before biofilm

establishment (dashed orange line in Figure 5A; this is known in

statistical physics as a survival function). Fitting the probability

distribution ps(t) to an exponential function ps(t) = e−t/tf

allows us to extract the mean biofilm establishment time tf .

Figure 5B shows the ps(t) curves for several values of the

surface biocide concentration cmax. The corresponding values

of the time to biofilm establishment tf are shown in Figure 5C.

The exponential function, shown as the dashed black line, is an

excellent fit to the simulation data. As the biocide concentration

increases, the exponential function decreases more slowly with

time, i.e., the mean time for biofilm establishment increases.

In statistical physics, exponential waiting time distributions

like that of Figure 5A are typical of Poisson processes. A Poisson

process describes an event whose probability of happening is

constant in time. In other words, in our simulations, biofilm

can initiate at any time, and the probability of this happening

within a given time interval is the same no matter how old the

surface is or what its history is. Therefore the timing of biofilm

establishment in a particular simulation cannot be predicted; it

is controlled by a stochastic process that is history-independent.

The exponential waiting time distribution also implies that even

if the average time to biofilm establishment is long, there will be

some instances of early biofilm formation.

To investigate what factors control the time to biofilm

establishment in our simulations, wemeasured (using thousands

of replicate simulations) how the mean biofilm establishment

time tf depends on the key parameters of our model (Figure 6).
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As expected, the mean biofilm establishment time increases

as the biocide concentration cmax increases (Figure 6A); this

dependence is exponential, suggesting that a small change

in biocide concentration can have a large impact on biofilm

establishment (note the logarithmic scale on the vertical

axes in Figure 6). The biofilm establishment time decreases

upon increasing the abundance of biocide-resistant immigrants

(Figure 6B) or the immigration rate (Figure 6C); this is

consistent with a picture in which the immigration of biocide-

resistant organisms plays a key role in the colonization process.

It is important to note that the model is not predicting evolution

of resistance but selective recruitment and proliferation of

higher resistance organisms drawn from the assigned natural

distribution. Increasing the rate rdet at which organisms detach

from the outer (loosely attached) edge of the biofilm increases

the average biofilm establishment time (Figure 6D), probably

because a higher detachment rate makes it harder for the

community in the first microhabitat to reach the threshold

size for biofilm initiation. Likewise, increasing the biofilm

formation threshold, N∗/K (Figure 6E) also increases the

biofilm establishment time, simply due to the fact that now

more microbes need to replicate/immigrate in order to reach the

required density for biofilm to be formed.

Interestingly, the time to biofilm establishment depends

non-monotonically on the parameter rmax, which controls both

the maximum growth rate for organisms whose MIC is greater

than the biocide concentration, and the biocide killing rate for

organisms whose MIC is less than the biocide concentration

(Figure 6F). This suggests the existence of qualitatively different

parameter regimes within the model. Investigation of the

community composition within the first microhabitat shows a

shift in the distribution of MIC values for low and high rmax

(Supplementary Figure 3). For low values of rmax, there are

more sensitive species present (i.e., immigrants with low MIC

values, that persist for a while but are eventually killed by the

biocide), while for high values of rmax, there are more resistant

organisms (i.e., the sensitive immigrants are rapidly killed and

only organisms that can grow in this environment survive). In

the low rmax, immigrant-dominated, regime, increasing rmax

speeds up the rate at which the biocide-sensitive immigrants are

killed, decreasing the population density of the first microhabitat

and making it harder for a biocide-resistant immigrant to

trigger biofilm formation. In contrast, in the high rmax regime,

increasing rmax increases the growth rate of the dominant

resistant organisms, making biofilm establishment more likely.

4. Discussion

4.1. Stochastic microbial colonization of
an AF surface

Prevention of marine biofouling is a billion-dollar industry.

While non-biocidal products exist that provide a high degree

of fouling control, for many vessel types, biocidal AF paints

continue to be used in the majority of the market (Finnie and

Williams, 2010). Microbial biofilm formation is part of the

complex marine biofouling challenge, yet few computational

models exist for microbial biofilm formation on an AF surface.

In this work, we developed, to our knowledge, the first such

model, and analyzed its predictions.

The most striking result of our simulations is that

colonization of the AF surface can be inherently stochastic,

with identical initial conditions producing very different biofilm

formation trajectories. In our model, biofilm formation occurs

in two stages: initial formation of a loosely-attached layer of

microbes, followed by biofilm growth once the population

reaches a threshold density. The model biofilm community

tends to be dominated by a single more biocide-resistant

microbial type, even once the biofilm becomes thick enough

that microbes at the growing edge are exposed to a considerably

lower biocide concentration—an example of a priority effect.

However we also observe in our computer simulations that

biocide-resistant microbes shield the community from the

biocide, since less biocide-resistant microbes can join the

community once it has been established.

For the parameter set used here, a stochastic fluctuation

is needed to reach the threshold density for biofilm growth

(even for resistant microbes). We find that the waiting times

until biofilm establishment follow an exponential distribution,

suggesting that biofilm establishment can be modeled as a

Poisson process that is inherently unpredictable. In other

words, the probability that a biofilm establishes at any time

is independent of its history. Investigating the parameter

dependence of the average biofilm establishment time, we find

that it depends exponentially on the biocide concentration, the

immigration rate and the detachment rate. This supports a

picture in which immigration of microbes that are sufficiently

biocide-resistant to be able to grow in the region close to the

surface is a key factor in the triggering of biofilm growth.

For other parameter choices, we would expect our model

to behave differently. In particular, if the region close to the

surface (the first microhabitat) were able to support a microbial

population greater than the threshold density, then the arrival

of a resistant microbial type would immediately trigger biofilm

growth. In that regime, the biofilm establishment time would

simply be controlled by the rate of immigration of sufficiently

resistant microbes, and parameters controlling growth behavior

close to the surface (e.g., rdet) would not be expected to play a

role. We would also expect the average biofilm establishment

time to depend linearly on the immigration rate (rather than the

exponential dependence seen in our current simulations).

Estimating the accuracy of our model’s predictions is

difficult, since some of the model parameters are only known

within broad ranges (or not at all), and the quantities that

we predict (e.g., time to colonization) are rarely measured

systematically. We hope that this work will motivate the
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collection of this kind of data in future, but at present, the aim

of our work is primarily to pose the conceptual question of

whether, and under what circumstances, microbial colonization

of an AF surface could be inherently stochastic.

4.2. Biocide concentration profile

In this work, we have assumed, for simplicity, that the

biocide concentration decreases exponentially with distance

away from the AF paint surface. An exponential profile is

consistent with diffusion of the biocide combined with its

removal at a fixed rate (perhaps due to chemical degradation in

the seawater; see Supplementary material). In reality, however,

the concentration profile of biocide around a moving ship

coated in AF paint will be determined not only by diffusion

and any degradation mechanisms, but also by the fluid flow.

The resulting convection-diffusion problem is non-trivial, even

if assuming a planar surface with laminar flow in the parallel

direction (for example, biocide will accumulate along the flow

lines). Including the possibility of turbulent flowwouldmake the

model more complicated. There may also be feedback between

biofilm growth and the biocide concentration profile, since the

biofilmmight impede either the release of biocide or its diffusion

away from the surface.

For the purpose of the model we have adopted a single

biocide gradient profile. We note that most commercial coatings

are formulated with two or more biocides, which adds an

additional degree of complexity.

4.3. Distribution of biocide resistance
levels

In this work, we suppose that the MIC values for biocide

of microbes in the ocean (immigrants in our model) follow

a log-normal distribution. This assumption is based on MIC

measurements for bacteria more generally (Turnidge et al.,

2006); to our knowledge, little or no investigation has beenmade

of biocide-resistance distributions for marine microorganisms.

Furthermore, this distribution might be expected to differ in

different geographical regions or in different water bodies (e.g.,

estuaries compared to open ocean). We also note that biocide-

resistance is not the only trait that is relevant to biofilm

formation on an AF surface; in future models it might be

interesting to include other traits.

More generally, models such as ours are necessarily limited

in their representation of biological reality. Here we have

characterized microbes only by their biocide resistance ecotype,

but in reality, marine biofilms are diverse, containing a

mixture of prokaryotes and eukaryotes, where behaviors such

as motility, predation, exopolysaccharide production, metabolic

interactions and synergy/cooperation may all play a role. A

simple model such as that presented here has the virtue

of focusing on the effects of differential biocide resistance

amongmarine organisms, but necessarily neglects other possible

factors. For this reason, experimental testing of the model

predictions would be highly desirable.

4.4. Biocide killing

To model microbial growth and biocide killing, we used a

pharmacodynamic function proposed by Regoes et al. (2004)

to model the response of bacterial populations to antibiotic.

This function is convenient because it allows us to characterize

microbes by just a single number: the MIC value. All other

parameters are assumed to be the same for all microbial

types. Moreover, the pharmacodynamic function uses a single

parameter (rmax) to describe both the maximal growth rate and

the maximal rate of biocide-mediated killing. While this may be

true for Escherichia coli exposed to cell-wall targeting antibiotics

(Lee et al., 2018), it is unlikely to be universally true for marine

microbes. In reality, of course, we would expect different marine

microbial species to show qualitatively different growth and

death dynamics, both in the presence and absence of different

biocides. A wide range of bacterial, algal and diatomaceous

species have been observed to contribute to marine biofilm

formation onmodern antifouling paint surfaces (see for example

Muthukrishnan et al., 2017; Winfield et al., 2018; Papadatou

et al., 2021) and an additional factor is the well-known tolerance

of some common fouling species (e.g., Amphora coffeaeformis)

to some common biocides (e.g., copper-based compounds)

(Callow, 1986; Robinson et al., 1992). It would be of interest to

measure such growth and killing curves for marine organisms

exposed to common biocides and biocide combinations and

incorporate this data into computational models.

In our model, the biocide-resistance level might well

change when microbes transition from the loosely-attached

(“planktonic”) state to the biofilm state of growth (Mah and

O’Toole, 2001). For the simulations presented here, this might

not change the results significantly, since the biocide mostly

plays a role in the first microhabitat, before the transition to the

biofilm state. However, it might be an important factor in other

parameter regimes. Our model also does not, as yet, include a

fitness cost for biocide resistance. This might explain why we see

strong priority effects; biocide-resistant organisms that establish

early continue to dominate in the later stages of growth, even

far from the surface where the biocide concentration is low. It

would be interesting to investigate in future how a fitness cost

for resistance might alter the predicted species composition.

The fate of dead biomass would also be a relevant factor to

consider in future work. Here, we have simply removed dead

microbes from the system, implicitly freeing up space (in the

form of carrying capacity) for new microbes. Depending on

whether the biocide causes lysis, dead microbes might in fact
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remain within the biofilm, or they might even provide structural

elements such as DNA that might strengthen the biofilm. We

expect that these factors would have a quantitative, but not a

qualitative, effect on our results.

4.5. Density-dependent transition to the
biofilm state

A major assumption of our model is that the loosely-

attached community at the surface transitions to biofilm in

a density-dependent manner. Following other modeling work

(Moore-Ott et al., 2022; Sinclair et al., 2022), this represents a

quorum-sensing mechanism, based on extensive evidence for

the involvement of quorum-sensing in biofilm initiation in a

variety of microorganisms (Davies et al., 1998; Hammer and

Bassler, 2003; Yarwood et al., 2004; Koutsoudis et al., 2006).

However, it is also clear that other, non-density-dependent

signaling pathways, such as cyclic-di-GMP signaling, are also

central in biofilm initiation (Valentini and Filloux, 2016).

Moreover, even if quorum-sensing is involved, it is not clear

whether a collective transition to biofilm should be triggered by

the total microbial density, or whether distinct microbial types

might transition when their own densities reach a critical value;

in some cases a quorum-sensing transition has even been shown

to trigger biofilm formation at low, rather than high, cell density

(Hammer and Bassler, 2003; Yarwood et al., 2004). Other factors,

such as microbial surface sensing and motility on the surface

prior to full attachment via the production of expolysaccharide,

have also been ignored here (Marshall et al., 1971). The model

presented here is clearly a crude approximation, that should

be greatly improved as more information emerges on how

marine microbes initiate biofilm formation. Nevertheless we

hope that our model raises interesting questions that may

stimulate further investigation, in particular about the stochastic

nature of biofilm initiation.

The parameter δa in our model represents the lateral area

over which microbes sense the local density and undergo a

collective transition to the biofilm state, i.e., the lateral area

over which quorum sensing signals operate. A larger value of

δa would imply a larger carrying capacity and hence a larger

value of the biofilm transition population threshold N∗. In this

scenario, stochastic effects would be less important (Sinclair

et al., 2022). The spatial range of quorum sensing signals has

been addressed in recent work by van Gestel et al. (2021), who

concluded that the range depends on the molecular architecture

of the quorum-sensing system. A relatively long range (∼
100µm) is expected for quorum-sensing systems where the

signal is not “consumed” upon detection, while a much shorter

range is expected for systems where the signal is consumed

(van Gestel et al., 2021). In this work, our chosen value for

δa corresponds to longer-range quorum sensing. In reality, the

initiation of a multispecies biofilm might involve a diversity of

quorum sensing systems, each one of which might operate over

a different spatial range and lead to greater or lesser stochasticity.

4.6. Implications for AF paint design

Our simulations raise several interesting questions for the

design of AF paint. Firstly, they suggest that microbial biofilm

establishment may in some cases be inherently unpredictable,

since the underlying processes of immigration of resistant

microbes and their transition to the biofilm state, are stochastic.

However, our simulations identify key parameters that can

increase the average time before biofilm establishment. In

particular, for the parameter regime studied here, the biocide

concentration is a key factor, upon which the biofilm

establishment time depends exponentially. Furthermore, our

simulations point to a crucial role for the immigration of

biocide-resistant microbes in biofouling. Microbial biofouling

on AF paints is globally observed, and recognized species with

some biocide resistance (e.g., Amphora diatoms) have been

recovered from geographically distinct locations. Stochastic

microbial fouling processes may be an inherent component of

the global challenge for industrial shipping.
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