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Marine oil spills are a significant concern worldwide, destroying the ecological
environment and threatening the survival of marine life. Various oil-degrading
bacteria have been widely reported in marine environments in response to
marine oil pollution. However, little information is known about culturable
oil-degrading bacteria in cold seep of the deep-sea environments, which are
rich in hydrocarbons. This study enriched five oil-degrading consortia from
sediments collected from the Haima cold seep areas of the South China
Sea. Parvibaculum, Erythrobacter, Acinetobacter, Alcanivorax, Pseudomonas,
Marinobacter, Halomonas, and Idiomarina were the dominant genera. Further
results of bacterial growth and degradation ability tests indicated seven
efficient alkane-degrading bacteria belonging to Acinetobacter, Alcanivorax,
Kangiella, Limimaricola, Marinobacter, Flavobacterium, and Paracoccus,
whose degradation rates were higher in crude oil (70.3-78.0%) than that
in diesel oil (62.7-66.3%). From the view of carbon chain length, alkane
degradation rates were medium chains > long chains > short chains. In
addition, Kangiella aquimarina F7, Acinetobacter venetianus F1, Limimaricola
variabilis F8, Marinobacter nauticus J5, Flavobacterium sediminis N3, and
Paracoccus sediminilitoris N6 were first identified as oil-degrading bacteria
from deep-sea environments. This study will provide insight into the bacterial
community structures and oil-degrading bacterial diversity in the Haima
cold seep areas, South China Sea, and offer bacterial resources to oil
bioremediation applications.
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Introduction

Petroleum hydrocarbons have been common organic
pollutants in marine environments for millions of years
(Hassanshahian et al, 2014; Hazen et al, 2016; Akyuz and
Celik, 2018; Paniagua-Michel and Fathepure, 2018; Love et al.,
2021). With petroleum transportation industry development
and exploitation in offshore sea areas, the occurrence frequency
of marine oil spills has shown increasing trends over time
(Ma et al, 2021b). It was estimated that approximately 1.3
million tons of petroleum hydrocarbons enter the marine
environment annually from anthropogenic and natural sources
(Hassanshahian et al., 2012; Ventikos and Sotiropoulos, 2014;
Hazen et al, 2016). Among them, approximately 0.6 million
tons of petroleum hydrocarbons were derived from natural
seeps and could cover all oceans in the world with a thickness
of 20 molecules (Head et al., 2006; Gao et al, 2015). Thus,
petroleum hydrocarbon pollution poses a significant threat
to marine ecosystems (Head et al, 2006; Emtiazi et al,
2009; Hazen et al., 2010; Hassanshahian et al., 2014; Jagtap
et al, 2021). Therefore, it is necessary to develop eco-
friendly technologies to remove oil contamination from marine
environments.

Previous studies have widely reported many physical,
chemistry, and bioremediation technologies. Compared to
physical and chemical methods, microbial remediation has
more advantages of low cost, high efficiency, and sustainability
(Kujawinski et al., 2011; Paniagua-Michel and Fathepure,
2018; Zhao et al, 2018; Poddar et al., 2019; Socolofsky
et al, 2019). Bacteria are better oil degraders than other
microorganisms (Das and Chandran, 2011; Shi et al., 2021).
Hence, it is critical to obtain highly effective oil-degrading
bacteria. More than 70 genera of marine bacteria have
been successfully isolated and identified as oil degraders
(Bao et al., 2012; Ferrari et al, 2019). Some of them were
obtained from deep-sea environments with unique habitats.
For example, Ma et al. (2021b) obtained 35 oil-degrading
bacteria from sediments in the deep-sea hydrothermal
areas of the South Mid-Atlantic Ridge. Thirty-four PAH-
degrading isolates were obtained from the deep-sea water
column of the SWIR at a depth of 4,766 m (Shao et al,
2015). Gao et al. (2015) isolated 11 strains of oil-degrading
bacteria from the deep-sea sediments of the South Mid-
Atlantic Ridge. Shi et al. (2021) isolated 162 strains of
oil-degrading bacteria from the Southwest Mid-Indian Ocean
Ridge sediments.

Cold seeps are an extreme environment of low temperatures,
high hydrostatic pressure, and the absence of light in the deep
sea and have regular influxes of petroleum hydrocarbons due
to natural seepage (Niu et al,, 2017; Potts et al,, 2018; Cui
et al,, 2019; Van Landuyt et al,, 2020). Hydrocarbons, as carbon
sources, can promote the growth of oil-degrading bacteria in
cold seep ecosystems (Pachiadaki and Kormas, 2013; Cui et al,,

Frontiers in Microbiology

02

10.3389/fmicb.2022.920067

2019). Consequently, it is scientific to screen oil-degrading
bacteria from deep-sea cold seep environments. Chemical
compositions and geographic locations vary in different cold
seep areas, which may harbor distinct microbial populations
(Pop Ristova et al, 2012; Ruff et al, 2015; Zhang et al,
2020). Thus, the diversity of oil-degrading bacteria may vary
in different cold seep areas. The Haima cold seep, a newly
discovered cold seep, was first reported on the northwestern
slope of the SCS in 2015 (Liang et al., 2017). To date, minimal
studies have been conducted on the microbial communities of
Haima cold seeps (Niu et al., 2017; Zhuang et al., 2019; Jing et al.,
20205 Ling et al., 2020). The diversity of oil-degrading bacteria in
the Haima cold seep areas remains unexplored.

In the present study, sediments were collected from the
Haima cold seep areas of the South China Sea. Oil-degrading
consortia were enriched from the sediments with crude and
diesel oil as the sole carbon and energy sources. This research
investigated the effects of oils on microbial community, studied
oil-degrading bacterial diversity, screened high-efficiency oil-
degrading strains, and explored the degradation ability of
alkanes by high-efficiency oil-degrading bacteria. This study will
provide a new perspective for understanding the community
structure and biodiversity of culturable oil-degrading bacteria
in the deep-sea sediments of the Haima cold seep. In
addition, this study will provide bacterial resources for oil
bioremediation applications.

Materials and methods

Sediment collection

The five surface sediments were collected from different
stations of the Haima cold seep area (16.9°N, 110.4°E) of the
northern South China Sea using the Haima ROV during the
cruise R/V Haiyang VI of the Guangzhou Marine Geological
Survey, China, in September 2020. Five sediment samples were
recorded as F J, I, N, and G. Sediments of F and ] were
collected from the different degrees of the active cold seep areas,
which are covered by a mass of mussels and contain abundant
methane gas. The sediment of I was obtained from the non-
active cold seep area without organisms. Sediments of N and
G were gained from the inactive cold seep area with clams and
the extinct cold seep area with dead mussels, respectively. After
collection, the sediment samples were put in sterile centrifuge
tubes and immediately stored at 4°C until the experiment
started in the laboratory.

Media and chemicals

In this study, crude oil was obtained from a Shengli Oil
Production Plant, China, and diesel oil is marine diesel oil.
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Marine mineral culture (MMC) medium was used to enrich oil-
degrading consortia and degradation ability tests for alkanes by
oil-degrading bacteria. MMC medium was prepared following
descriptions in a paper by Liu and Shao (2005). Specifically,
the MMC medium contained three solutions of solution I
(1 L), solution II (10 mL), and solution III (10 mL). The
solution I was composed of NaCl (24 g), NH4NOs3 (1 g),
KCl (0.7 g), KH,PO,4 (2 g), NayHPO, (3 g), and 1 L DDW.
Then, the pH was adjusted to 7.4 by using a NaOH solution
(10 mol/L). Solution IT was only composed of MgSO4-7H,0
(35 g) in 100 mL of DDW. Solution III contained CaCl, (2 mg),
FeCl3-6H,0 (50 mg), CuSO4 (0.5 mg), MnCl,-4H,0 (0.5 mg),
and ZnSO4-7H,0 (10 mg) in 1 L DDW. Marine Broth 2216
agar (MA, BD Difco) plates were used to isolate strains from
oil-degrading consortia. Before use, solution III was sterilized
by filtering, and all other media were autoclaved at 121°C
for 20 min. For analysis of alkanes, chromatographic grade
hexane and anhydrous sodium sulfate were purchased from
Tedia (USA) and Sinopharm (Shanghai, China), respectively.
All experiments used oil as the sole carbon and energy
source.

Enrichment of oil-degrading consortia

About 1 g of surface sediment for each sample was
inoculated into a 100 mL MMC medium containing a 1 g/L
mixture of crude and diesel oil (ratio of the concentration of
crude oil to diesel oil = 1:1) as the sole carbon and energy sources
in a 250 mL Erlenmeyer flask. For the first enrichment, cultures
were aerobically incubated at 28°C and 150 rpm in the dark
for 7 days. Then, 5 mL of enriched cultures was transferred
into 100 mL fresh MMC media with 1 g/L oil and further
cultivated for the second enrichment under the same conditions.
Similarly, the third enrichment was conducted. After the three
continuous enrichments, five different oil-degrading consortia
were obtained for further isolation of oil-degrading bacteria.

Analysis of bacterial community
structure

The bacterial community structure of cultures at the
beginning of incubation and after every enrichment was
analyzed by high-throughput sequencing technology. The
total DNA of cultures was extracted using a DNeasy
PowerSoil Kit (supplied by QIAGEN GmbH, Germany)
according to the protocols. (V3-V4) of the
16S rRNA genes were PCR-amplified with primers
338 F  (ACTCCTACGGGAGGCAGCAG) and 806R
(GGACTACHVGGGTWTCTAAT) (Shi et al, 2021). After
purification, PCR products were sequenced using the Illumina

Regions

MiSeq sequencing platform (Majorbio, Shanghai, China).
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Isolation, identification, and
phylogenetic analysis of oil-degrading
bacteria

Bacterial isolation was performed by serial dilution and
plating on 1.5% MA plates using 100 pl of culture from
each oil-degrading consortium. These plates were incubated
at 28°C for 5-7 days. Colonies with distinct morphologies
were streaked on fresh MA plates for purification. All obtained
bacterial strains were stored in 25% glycerol at -80°C for
further analysis. Following the manufacturer’s instructions,
the DNA of bacterial strains was extracted by a bacterial
genomic DNA extraction kit (Shanghai, SBS Genetech Co.,
Ltd., China). The 16S rRNA gene sequence was PCR-
amplified with primers 27F and 1492R. The PCR products
were sequenced by TsingKe Biological Technology Co., Ltd.
(Guangzhou, China), using the sanger sequencing platform.
Bacterial identification was performed by aligning the 16S
rRNA gene sequence in the EzBioCloud database. Based
on the 16S rRNA gene sequences of bacterial strains and
their closest species, a neighbor-joining phylogenetic tree was
constructed by MEGA version 7.0 with 1,000 bootstrap values
(Kumar et al., 2007).

Screening high-efficiency
oil-degrading strains

The growth of all isolates was tested in the MMC medium
with 1 g/L oil (ratio of crude oil to diesel = 1:1) as the sole
carbon and energy source. Specifically, strains were grown on
MA plates for 2 days, and fresh colonies were harvested by
centrifugation at 5,000 rpm for 10 min. Then, pellets were
washed twice with fresh MMC medium and resuspended in
fresh MMC medium to make final ODgyy values of about
1.0. Next, 1 mL culture was inoculated into 100 mL MMC
medium supplemented with 1 g/L oil in 250 mL Erlenmeyer
flasks and incubated for 11 days at 28°C and 150 rpm in
the dark. During incubation, cell growth was measured by
monitoring cell turbidity as indicated by optical density at
600 nm (ODgqp) at intervals of 1 day. After incubation, all tested
strains were generally divided into three categories based on the
ODggp values and visual phenomena: (i) small black particles
were produced, and bacterial cultures turned to be turbid with
the increase in ODgqg values (Supplementary Figure 1A), (ii)
almost no particles were observed, and bacterial cultures turned
to be brown with increasing ODggp values (Supplementary
Figure 1B), (iii) oils were adsorbed on the bottle wall,
and no turbidity change was observed in bacterial cultures
(Supplementary Figure 1C). From the strains in phenomena
(i) and (ii), seven strains with relatively higher OD600 values
belonging to different genera were considered high-efficiency
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oil-degrading strains and used for further characterization of
alkane degradation ability.

Alkane degradation ability by
high-efficiency oil-degrading strains

Alkane degradation ability by the selected bacterial strains
was studied in the MMC medium with crude or diesel oil as
the sole substrate. Briefly, MMC was prepared and divided
into 40 mL glass bottles. Each bottle contained 10 mL MMC
and 0.1 g crude or diesel oil. Isolates were cultured in MB
medium for 2 days, and cells were harvested by centrifugation
at 5,000 rpm for 10 min. Pellets were washed twice with
fresh MMC medium and resuspended in fresh MMC medium.
Next, they were transferred into 40 mL glass bottles to make
cultures with final ODggp values of about 1.2. Control groups
were set as 10 mL uninoculated MMC medium amended with
0.1 g crude or diesel oil. Experiment and control groups were
performed in triplicate and incubated at 28°C and 150 rpm
in the dark for 20 days. The whole bottle of bacterial cultures
before and after 20 days of incubation was stored at -20°C and
used to analyze alkanes. The degradation rates of alkanes (D,
%) were calculated by subtracting the decreased amounts of
alkanes in uninoculated control groups based on the following
equation: D = [(M1-M2)-M3]/M1 x 100%, where M1 is the
weight of alkanes before incubation; M2 is the weight of
alkanes after incubation; and M3 is the weight loss of alkanes
in control groups.

Analysis of alkanes in crude and diesel
oil by gas chromatography-mass
spectrometry

The culture was added and extracted with 10 mL hexane.
The sample was then transferred to a centrifuge tube and
centrifuged at 2,800 r/min for 10 min. After removing
the organic phase in the bottom layer, the water phase
in the top layer was extracted for the second time. The
third extraction was conducted similarly, and three extraction
liquors were combined. Next, 200 pL of the extraction
liquor was eluted by 25 mL of hexane in a silica gel
column containing the activated silica gel (5 g) and 1.0-
cm-high anhydrous granular sodium sulfate. The eluent was
concentrated to 1.0 mL under a stream of nitrogen and
used for analysis by a 6,890 gas chromatography-5,973 mass
selective detector (GC-MS, Agilent, Palo Alto, CA, USA)
system equipped with a fused silica capillary HP-5MS column
(30 m x 025 mm id., 025 pum film thickness, Agilent,
USA).
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Results and discussion

Effects of oils on bacterial community
structures

A total of 829,316 high-quality sequences were retrieved
from sequenced samples. The valid sequence numbers were
normalized to the minimum reads of 23,037 for analyzing
bacterial community diversity and abundance. Then, these
sequences were clustered into 2,632 OTUs at 97% nucleotide
similarity. Rarefaction curves of the Sobs and Shannon indices
at the OTU level showed that a sequencing depth of 23,037
was sufficient for subsequent analysis of bacterial community
structures (Supplementary Figure 2). The Wilcoxon rank-
sum test for the Chao, Shannon, and Simpson indices
revealed significant differences (p < 0.05) in the bacterial
community structures of cultures before enrichment and after
the third enrichment (Supplementary Figure 3). Furthermore,
compositions of bacterial communities were different between
the two groups of cultures before and after the third enrichment,
as revealed by non-metric multidimensional scaling (NMDS)
(Figure 1). In addition, the bacterial diversity of the five cultures
exhibited an apparent decrease from before enrichment to
after the third enrichment because of the selection process of
oils (Supplementary Figure 4). These results supported that
bacterial community structures were simplified under the effects
of oils, such as crude oil, diesel oil, and polycyclic aromatic
hydrocarbons (Liu et al, 2011; Sutton et al, 2013; Militon
et al,, 2015; Meng et al, 2016; Mahjoubi et al, 2021). Oil
contamination significantly caused the loss of bacterial diversity
in marine environments (Head et al., 2006; Catania et al., 2018;
Opyetibo et al., 2021).

The changes in bacterial community compositions during
the enrichments are shown in Figure 2. At the phylum
level, bacterial communities of the five cultures at the initial
phase of enrichment (stage 0) were different. In culture E
the dominant bacteria were Proteobacteria, Bacteroidetes, and
Epsilonbacteraeota, with a relative abundance of 34.7, 28.5,
and 14.5%, respectively. In culture J, more diverse bacteria
Chloroflexi,
and Patescibacteria were the dominant bacteria, and their
abundances were 14.1, 11.7, 24.0, 23.8, and 14.4%, respectively.
The culture I contained the dominant species of Chloroflexi

of Proteobacteria, Actinobacteria, Firmicutes,

and Atribacteria, with respective abundances of 51.2 and
11.3%, respectively. In cultures N and G, Proteobacteria,
Chloroflexi, and Acidobacteria were commonly predominant
bacteria, and they had relative abundances of 18.0, 35.8, and
12.1% and 13.6, 31.6, and 17.9%, respectively. After three
enrichments, Proteobacteria increased to be the predominant
species, and their relative abundances surpassed 95% in
all five cultures. In contrast, other dominant bacteria at
stage 0 decreased below 1% after enrichment. These results
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before enrichments; number 3 represents cultures after enrichments.

Non-metric multidimensional scaling (NMDS) analysis on the OTU level compares bacterial communities’ clustering patterns in cultures before
and after enrichments. F, J, I, N, and G represent five different cultures derived from five surface sediments. Number O represents cultures

suggested that oils could promote the growth of Proteobacteria
bacteria. Proteobacteria bacteria have been reported to have
been associated with oil degradation. Todorova et al. (2014)
suggested that Proteobacteria were the dominant species in
marine sediments polluted by oil. Gao et al. (2015) reported
that Proteobacteria bacteria were the key players in cultures
enriched from deep-sea sediments from the South Mid-Atlantic
Ridge, with crude oil as the sole source of carbon and
energy. Oyetibo etal. (2021) revealed that Proteobacteria was
the dominant species in the bacterial community of marine
sediments under the effects of oil. In addition, many other
studies have demonstrated that Proteobacteria are common
hydrocarbon-utilizing bacteria during the biodegradation of oils
in deep-sea environments (Hazen et al., 2010; Kostka et al., 2011;
Gao et al., 2015).

Similar to those at the phylum level, bacterial community
compositions also exhibited variations at the genus level. Three
kinds of change trends were observed for the relative abundance
of the top 20 genera during the whole enrichment. The relative
abundance of some bacteria exhibited decreasing trends during
enrichment, where Streptococcus and Sulfurovum decreased to
undetectable levels in cultures F and J. By contrast, other
bacteria showed increasing trends during the entire enrichment.
The low abundance of Pseudomonas and Marinobacter in
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cultures ] and N, Halomonas in culture G, and Acinetobacter
in culture F increased to be dominant genera after enrichment.
In addition, some bacteria increased after the first enrichment.
They dropped after the second and third enrichments, including
Mesorhizobium in culture 1, Vibrio in culture E Alteromonas
in cultures J, N, and G, Idiomarina in cultures ] and G, and
Parvibaculum and Erythrobacter in culture I (Figure 3 and
Supplementary Figure 5).

Characterization of oil-degrading
consortia

In this study, bacterial community structures showed
similarities and differences in five different oil-degrading
consortia, which were enriched from the deep-sea sediments
of the Haima cold seep areas (Figure 3 and Supplementary
Figure 5). A total of 228 OTUs were identified among the
five oil-degrading consortia. Consortium I comprised the most
significant number of OTUs (140). For the other consortia,
consortia E J, N, and G contained only 60, 56, 73, and 62 OTUs,
respectively (Supplementary Figure 6). These results indicated
that species of oil-degrading bacteria might be correlated with
geographic locations of sediments (Wang et al., 2014).
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Proteobacteria was the most predominant of the five
oil-degrading consortia at the phylum level. Their relative
abundances were 98.3, 95.8, 96.6, 97.2, and 99.0% in consortia
E ], L N, and G, respectively (Figure 2). However, at the genus
level, the diversities and abundances of the dominant genera
in oil-degrading consortia were distinct from each other.
As depicted in Figure 3 and Supplementary Figure 5, the
genera Acinetobacter and Alcanivorax were only markedly
enriched in consortia F accounting for their relative
abundances of 74.5 and 5.1%, respectively. Parvibaculum
(30.5%) and Erythrobacter (59.8%) were highly abundant in
consortium I and distinguished from other consortia. The
genera Pseudomonas and Marinobacter were two commonly
abundant bacteria, with relative abundances of 14.9, 81.9,
and 10.9% and 67.2, 9.7, and 51.9% in consortia J, N, and
G, respectively. In contrast, Idiomarina and Halomonas
were two other dominant genera in consortium G, and their
relative abundances were 5.1 and 24.2%, respectively. These
results revealed the selective effects of oils on the bacterial
compositions of cultures derived from deep-sea sediments
of the Haima cold seep areas, with genera of Parvibaculum,
Erythrobacter, Acinetobacter, ~Alcanivorax, Pseudomonas,
Marinobacter, Halomonas, and Idiomarina enriched as the
dominant genera (relative abundance > 5%). Previous studies
reported that some oil-degrading bacterial genera were present
at low or undetectable levels before oil pollution, but they were
found to predominate in oil-polluting marine environments
(Brooijmans et al., 2009; Oyetibo et al., 2021).

Oils were provided as the sole carbon and energy sources
for shaping oil-degrading consortia E J, I, N, and G. Hence,
the enriched genera in five oil-degrading consortia could be

considered bacteria to be related to oil degradation. The
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variation in their abundances during enrichment is depicted
in Figure 4. The abundance of the Erythrobacter dramatically
increased after the first enrichment, decreased after the second
enrichment, and finally increased to become dominant genera
in consortium I, showing an inclined “N” curve. The genera of
Acinetobacter in consortium F and Marinobacter in consortia |
and G all showed markedly increasing trends during the whole
enrichment period. In contrast, Alcanivorax in consortium F,
Halomonas in consortium G, and Marinobacter in consortium N
showed slight increases during the enrichments. The abundance
of Idiomarina in consortium G and Parvibaculum in consortium
I increased during the first and second enrichments and
decreased after the third enrichment. The abundance of
Pseudomonas exhibited two patterns: It continuously increased
during the enrichments in consortia J and N and showed an
inverted “V” curve in consortium G during the enrichments.
These results indicated that species of oil-degrading bacteria
might be correlated with geographic locations of sediments
(Wang et al,, 2014).

The dominant genera in the five oil-degrading consortia
have all been correlated with oil degradation. For example,
Alcanivorax and Marinobacter species are good marine
hydrocarbon-degrading bacteria (Kasai et al., 2002; Dastgheib
et al, 2011; Al-Mailem et al, 2013; Fathepure, 2014). In
addition, Parvibaculum and Idiomarina bacteria have been
identified as oil degraders in marine environments (Wang
et al, 2010; Fakhrzadegan et al, 2019). Many species in
the genus Acinetobacter have been successfully isolated from
different environments and have shown the oil degradation
ability for oils (Shiri et al, 2014; Acer et al, 2016, 2020;
Nkem et al, 2016; Ma et al, 2021a; Shi et al, 2021).
Pseudomonas bacteria were also reported to be capable of
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FIGURE 5

Neighbor-joining phylogenetic tree of representative OTU
sequences, isolates, and their related species. Bootstrap values
(expressed as percentages of 1,000 replications) greater than
50% are shown at branch points. Bar, 0.05 substitutions per
nucleotide position. Accession numbers are given in
parentheses.

degrading oils (Xue et al, 2015; Varjani and Upasani, 2016;
Gao et al, 2019). In addition, Pseudomonas bacteria were
usually enriched as significant components after hydrocarbon
pollution environments (Vandera and Koukkou, 2017). Strains
in the genera Erythrobacter and Halomonas contributed to
hydrocarbon degradation in marine environments (Roling et al.,
2002; Gao et al., 2015; Gutierrez et al., 2015; Neifar et al., 2019;
Perez Calderon et al., 2019; Peng et al., 2020).

Isolation and identification of potential
oil-degrading bacteria
Forty-two bacterial strains were obtained from five

oil-degrading consortia and were affiliated with 18 genera
belonging to Actinobacteria (2 strains), Bacteroidetes (4
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strains), Firmicutes (4 strains), Alphaproteobacteria (8
strains), and Gammaproteobacteria (24 strains). Among them,
Gammaproteobacteria was the largest class and comprised
Pseudidiomarina (2 strains), Marinobacter (4 strains),
Alcanivorax (4 strains), Halomonas (4 strains), Kangiella (1
strain), Acinetobacter (2 strains), Pseudomonas (6 strains), and
Vibrio (1 strain). Alphaproteobacteria was the second class and
was composed of Brucella (1 strain), Parvibaculum (1 strain),
Hyphomonas (1 strain), Limimaricola (1 strain), Paracoccus
(2 strains), Oceanibaculum (1 strain), and Erythrobacter (1
strain). In contrast, other phyla of Actinobacteria, Bacteroidetes
and Firmicutes were only composed of Dietzia (2 strains),
Flavobacterium (4 strains), and Enterococcus (4 strains)
(Figure 5 and Table 1). Gammaproteobacteria dominated
the bacterial communities of marine environments polluted
by oils (Head et al., 2006; Yakimov et al., 2007; Kostka et al.,
2011; Wang et al, 2014). In the Macondo well oil plume,
Gammaproteobacteria was major hydrocarbon-oxidizing
bacteria in microbial communities (Hazen et al, 2010).
Therefore, it was reasonable that most of the strains were
affiliated with Gammaproteobacteria.

In this study, bacterial growth tests revealed that 21 potential
oil-degrading isolates exhibited vigorous growth with 1 g/L oil
(the ratio of crude oil to diesel oil = 1:1) as the sole carbon
and energy source. They were closely related to Acinetobacter
venetianus (strains F1 and J1), Alcanivorax marinus (strains
F2, J2, 11, and G1), Dietzia cinnamea (strains F4 and N1),
Enterococcus faecalis (strain G2), Flavobacterium sediminis
(strains 14, N3, and G3), Halomonas meridiana (strains I5
and N4), Kangiella aquimarina (strain F7), Limimaricola
variabilis (strain F8), Marinobacter nauticus (strains J5 and N5),
Paracoccus sediminilitoris (strain N6), Pseudomonas khazarica
(strain N8), and Vibrio furnissii (strain F11). Although other
strains were successfully isolated from oil-degrading consortia,
they did not display good growth on oils. This was probably
because some bioavailable metabolites were produced during
the degradation of oils by degrading consortia and supported
the growth of these strains (Vandera and Koukkou, 2017; Zhang
et al., 2020).

Twenty-one potential oil-degrading isolates have been partly
verified to be oil degraders in marine environments. Strains
of Alcanivorax marinus and Pseudomonas khazarica were
successfully isolated and identified as oil-degrading bacteria
from marine sediments (Lai et al, 2013; Tarhriz et al,
2020; Jagtap et al, 2021). In addition, many other members
belonging to these two genera were isolated from deep-sea
sediments or seawater (Kimata et al, 2004; Liu and Shao,
2005; Lai et al., 2013, 2016; Gao et al, 2015; Yang et al,
2018; Dong et al,, 2021). Strains of Acinetobacter venetianus
and Marinobacter nauticus were not obtained from marine
environments, and their oil degradation ability was also not
reported in other environments in previous studies. However,
numerous strains in these two genera were widely distributed in
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marine environments (Gao et al,, 2013; Mahjoubi et al., 2013;

Cui et al., 2016) and were characterized by their capability to

degrade hydrocarbons (Di Cello et al,, 1997; Luckarift et al,
2011; Lee et al., 2012; Fondi et al., 2016; Bendadeche et al.,
2019; Fakhrzadegan et al,, 2019). Although Dietzia cinnamea

10.3389/fmicb.2022.920067

and Enterococcus faecalis strains were not obtained from marine

environments, they were isolated from other environments and

showed degradation ability for petroleum hydrocarbons (von

der Weid et al., 2007; Bihari et al.,, 2011; Boontawan and

Boontawan, 2011; Procopio et al., 2013; Vignaroli et al., 2013;

TABLE 1 Taxonomic identification of bacterial isolates recovered from the five oil-degrading consortia of F, J, I, N, and G derived from five

surface sediments.

Consortia Isolate Closest type strains EzBioCloud accession number Similarity (%)
F1 Acinetobacter venetianus RAG-1 AKIQ01000085 99.86
F2 Alcanivorax marinus R8-12 KC415169 99.86
F3 Brucella cytisi ESC1 AY776289 100
F4 Dietzia cinnamea IMMIB RIV-399 AJ920289 99.42
F5 Enterococcus faecalis ATCC 19433 ASDA01000001 99.65
F F6 Hyphomonas jannaschiana VP2 ARYJ01000003 99.77
F7 Kangiella aquimarina DSM 16071 ARFE01000004 99.28
F8 Limimaricola variabilis ]-MR2-Y KJ569528 99.92
F9 Parvibaculum indicum P31 FJ182044 100
F10 Pseudomonas stutzeri ATCC 17588 CP002881 99.43
F11 Vibrio furnissii CIP 102972 ACZP01000015 99.86
J1 Acinetobacter venetianus RAG-1 AKIQ01000085 99.93
]2 Alcanivorax marinus R8-12 KC415169 99.93
13 Flavobacterium sediminis MEBiC07310 CP029463 99.71
J4 Halomonas meridiana DSM 5425 AJ306891 99.93
] J5 Marinobacter nauticus ATCC 27132 AB021372 99.43
J6 Pseudomonas balearica DSM 6083 CP007511 99.57
11 Alcanivorax marinus R8-12 KC415169 99.79
12 Enterococcus faecalis ATCC 19433 ASDA01000001 99.65
13 Erythrobacter flavus SW-46 AF500004 99.71
14 Flavobacterium sediminis MEBiC07310 CP029463 99.71
I 15 Halomonas meridiana DSM 5425 AJ306891 99.64
16 Marinobacter nauticus ATCC 27132 AB021372 99.64
17 Oceanibaculum indicum P24 AMRL01000052 99.85
18 Pseudidiomarina tainanensis PIN1 EU423907 99.93
19 Pseudomonas balearica DSM 6083 CP007511 99.79
N1 Dietzia cinnamea IMMIB RIV-399 AJ920289 99.57
N2 Enterococcus faecalis ATCC 19433 ASDA01000001 99.65
N N3 Flavobacterium sediminis MEBiC07310 CP029463 99.28
N4 Halomonas meridiana DSM 5425 AJ306891 99.79
N5 Marinobacter nauticus ATCC 27132 AB021372 99.78
N6 Paracoccus sediminilitoris DSL-16 MH491014 97.72
N N7 Pseudomonas balearica DSM 6083 CP007511 99.43
N8 Pseudomonas khazarica TBZ2 KX712072 99.36
Gl Alcanivorax marinus R8-12 KC415169 99.86
G2 Enterococcus faecalis ATCC 19433 ASDA01000001 99.58
G3 Flavobacterium sediminis MEBiC07310 CP029463 99.78
G G4 Halomonas meridiana DSM 5425 AJ306891 99.79
G5 Marinobacter nauticus ATCC 27132 AB021372 99.64
G6 Paracoccus sediminilitoris DSL-16 MH491014 97.36
G7 Pseudidiomarina donghaiensis 908033 PIPU01000013 99.43
G8 Pseudomonas balearica DSM 6083 CP007511 99.93
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Chen et al., 2017; Dilmi et al., 2017). Strains of Flavobacterium
sediminis, Halomonas meridiana, Kangiella aquimarina, Vibrio
furnissii, and Paracoccus sediminilitoris were isolated from
marine sediments (James et al, 1990; Yoon et al, 2004;
Hassanshahian, 2014; Bae et al., 2018; Wei et al., 2019), but there
was no report of their ability to degrade oils. In contrast, other
bacteria of these genera from marine environments showed their
hydrocarbon degradation ability, including Flavobacterium
(Flavobacterium petrolei sp. nov., Flavobacterium naphthae sp.
nov., and Flavobacterium beibuense sp. nov.) (Fu et al., 2011;
Chaudhary and Kim, 2018; Chaudhary et al., 2019), Halomonas
(Halomonas profundus sp. nov., Halomonas sp. strain BS53,
and Halomonas lionensis sp. nov.) (Simon-Colin et al., 2008;
Gaboyer et al, 2014; Fakhrzadegan et al, 2019), Kangiella
(Kangiella profundi sp. nov., Kangiella geojedonensis sp. nov.,
and Kangiella sp. strain DP40) (Romanenko et al., 2010; Yoon
et al, 2012; Li et al., 2015; Fakhrzadegan et al., 2019), and
Vibrio (Vibrio sp. strain NW4, and Vibrio sp. strain DS35)
(Fakhrzadegan et al., 2019). Limimaricola variabilis species have
not been isolated from natural environments in previous studies.
However, other strains in the genus Limimaricola were isolated
from marine environments. There was also no report of oil
degradation ability by bacteria in this genus (Wang et al., 2015).

Degradation of alkanes by
high-efficiency oil-degrading strains

According to bacterial growth ability on oils, different
bacterial genera, and visual observations, seven strains of
F1, F2, F7, F8, J5, N3, and N6 were selected from 21
potential oil-degrading strains for further biodegradation tests
of alkanes (Supplementary Figure 7). The degradation rates
of alkanes (Cj9-Css) were calculated following the equation
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in section “Alkane degradation ability by high-efficiency oil-
degrading strains.” In control groups, the average weight loss
of C10-Cis, C16-Ca0, C21-Cas, Cp6-C30, C31-Css, and Cjo—
Cs5 in crude oil was 33.2, 4.6, 8.1, 5.6, 3.7, and 57.7 g,
respectively. Correspondingly, they were 254.7, 80.0, 14.7,
1.0, 0.0, and 350.4 pg in diesel oil. The tested isolates
exhibited high degradation efficiency for total alkanes, ranging
from 70.3 to 78.0% and 62.7 to 66.3% in crude and diesel
oil, respectively (Supplementary Table 1). Moreover, alkane
degradation efficiencies by seven isolates were all higher in
crude oil than in diesel oil, which was ascribed to the different
components and contents of alkanes in crude oil and diesel oil
at the beginning of incubation. The total content of alkanes
was three times lower in crude oil (322.2 pg) than in diesel
oil (1086.4 pg). The dominant alkane components were Cyo-
Cis, C16-Ca0, and C;;-Cys in diesel oil, while alkanes were
distributed evenly in crude oil. The contents of the alkanes of
C10-C15, C16-C20, C21-C25, C26-C30, and C31-C35 were
65.6, 81.5, 89.1, 64.5, and 21.4 pg in crude oil, respectively.
Correspondingly, their contents were 482.9, 470.2, 128.0, 5.3,
and 0.03 pg in diesel oil, respectively (Supplementary Figure 8).
Alkanes are proven toxic to microorganisms by changing cell
membrane function and inhibiting cell growth (Sikkema et al,,
1995; Singh et al., 2012; Chen et al.,, 2013; Kang and Nielsen,
2017). Therefore, it was reasonable that higher concentrations
of alkanes caused lower degradation rates in diesel oil than in
crude oil.

Among these seven strains, Alcanivorax marinus strain F2
and Kangiella aquimarina F7 showed the highest degradation
rates for total alkanes of 78.0 £ 2.1% in crude oil and
66.3 £ 0.3% in diesel oil, respectively. They showed the
degradation rates for total alkanes of 65.5% in diesel oil
and 72.5% in crude oil, respectively. As reported, Alcanivorax
strains became predominant taxa after crude oil spills and
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played essential roles in the bioremediation of oil spills
worldwide (Kasai et al., 2002; Hara et al, 2003; Harayama
et al., 2004; McKew et al., 2007a,b; Yakimov et al., 2007, 2019;
Rojo, 2009). In addition, other species of Alcanivorax were
reported to utilize alkanes of all lengths (C5-Csg) (Liu and
Shao, 2005; Singh et al, 2012; Xia et al, 2019). Moreover,
genes involved in alkane degradation, including cytochrome
P450s, alkane monooxygenases, and monooxygenase, were
all identified in Alcanivorax sp. strains (Hara et al,, 2004;
Throne-Holst et al., 2007; Wang and Shao, 2013; Xia et al,
2019; Freitas et al,, 2020; Zadjelovic et al.,, 2020). Kangiella
sp. had also been reported to have relationships with
hydrocarbon degradation, but there was no report of their
degradation ability for alkanes (Fakhrzadegan et al, 2019;
Freitas et al., 2020).

The other five bacteria also showed remarkable degradation
rates but small differences in their ability to degrade total
alkanes. Acinetobacter venetianus strain F1, Limimaricola
variabilis strain F8, Marinobacter nauticus strain J5,
Flavobacterium sediminis N3, and Paracoccus sp. strain N6
had degradation rates for total alkanes (C;9—Css) of 74.9, 76.0,
70.3, 74.6, and 73.4% in crude oil and 62.7, 66.0, 64.0, 65.8,
and 65.4% in diesel oil, respectively (Supplementary Table 1).
The current findings were partly consistent with results from
previous studies. Specifically, Acinetobacter sp. strain was found
capable of utilizing alkanes of chain length Cy9-Cyp in marine
environments (Singh et al, 2012; Bendadeche et al,, 2019).
Marinobacter bacteria had a high degradation ability for short-
chain alkanes of Cg-Cjg, and no degradation was observed
for long-chain alkanes of C;5-Cy3 (Striebich et al, 2014).
Marine strains in the genera Flavobacteria and Paracoccus
were able to degrade alkanes. For example, Flavobacterium sp.
DS-71 isolated from deep-sea sediments could utilize alkanes
of chain length < Cy5 (Moriya and Horikoshi, 2002; Guibert
et al, 2016). Paracoccus sp. strains were reported to utilize
n-alkanes (Zhang et al., 2004). In contrast, there have been no
reports about the degradation ability of Limimaricola sp. strains
for alkanes.

We also analyzed the degradation rates of alkanes with
different carbons in crude oil and diesel oil (Figure 6).
The degradation rates of seven strains for alkanes were all
medium length > long chains > short chains. In crude oil,
the degradation rates were Cy;-C39 > C31-C35 > Cj9-Cys,
while the degradation rates were Cy;-C3g > C31-Cs5 > Cyo-
Cy in diesel oil. Specifically, degradation rates by seven
strains for Cj6-Csp ranged from 70.8 to 85.5% in crude oil,
while there were only approximately 48.3-48.8% and 50.7-
73.3% for Cy9-Cj5 and C31-Css, respectively. In contrast,
the degradation rates of Cj;-Csp, C3;-Css, and Cj9—-Cyo
ranged from 68.8 to 84.7%, from 28.4 to 67.7%, and from
444 to 55.1% in diesel oil, respectively. The degradation
rates of short-chain alkanes were worse than those of long-
chain alkanes because short-chain alkanes are usually toxic
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to bacteria, and long-chain alkanes have low solubility and
bioavailability (Hassanshahian et al., 2014; Fuentes et al., 2015;
Guermouche M’rassi et al., 2015; Vandera and Koukkou,
2017). The degradation rates of medium-chain alkanes were
faster than those of long-chain alkanes, which was due to
the higher hydrophobicity of long-chain alkanes (Smits et al,,
2002; Throne-Holst et al., 2006; Feng et al., 2007; Sanscartier
et al,, 2009; Singh et al,, 2012; Liu et al,, 2014). Unlike our
results, Shi et al. (2021) reported that the degradation rates of
short-chain alkanes of C;9—Cj9 were higher than those of long-
chain alkanes of C3;-Css. Ma et al. (2021b) found that strains
showed higher degradation rates for short-chain alkanes (Cyo-
Ci9) and medium-chain alkanes (Cy-Cy4) than long-chain
alkanes (Cy5-Css). This difference was attributed to different
bacterial species.

In summary, Kangiella aquimarina, Acinetobacter
venetianus, Limimaricola variabilis, Marinobacter nauticus,
Flavobacterium sediminis, and Paracoccus sediminilitoris were
identified as oil-degrading bacteria from deep-sea environments
for the first time. This study contributes to our understanding
of marine oil-degrading bacterial diversity and provides a
basis for in-depth research on the degradation mechanism of
hydrocarbons and the deep-sea adaptability of microorganisms.
Moreover, our study offers microbial resources for developing
bioremediation technology for marine oil pollution and further
studying the ecological environment significance of marine
oil-degrading bacteria.

Conclusion

In this study, five oil-degrading consortia were obtained
from deep-sea sediments of the Haima cold seep, the
South China Sea, with oil as the sole carbon source. Oils
enriched

decreased bacterial community diversity and

Parvibaculum, Erythrobacter, Acinetobacter, Alcanivorax,

Pseudomonas, Marinobacter, Halomonas, and Idiomarina
as the dominant genera. We successfully isolated 42 strains
from oil-degrading consortia. After degradation ability tests,
seven oil-degrading strains (Acinetobacter venetianus strain
F1, Alcanivorax marinus strain F2, Kangiella aquimarina
strain F7, Limimaricola variabilis strain F8, Marinobacter
nauticus strain J5, Flavobacterium sediminis strain N3, and
identified as

high-efficiency degrading bacteria, with higher degradation

Paracoccus  sediminilitoris strain N6) were
rates in crude oil than in diesel oil. The degradation rates
for alkanes were medium chains > long chains > short
chains. This study is the first report about oil-degrading
bacteria in the Haima cold seep areas, the South China
Sea, which helps understand the oil-degrading bacterial
biodiversity and expands degrading bacterial resources for oil
bioremediation applications.
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