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Microbial volatile organic 
compounds: Antifungal 
mechanisms, applications, and 
challenges
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The fungal decay of fresh fruits and vegetables annually generates substantial 

global economic losses. The utilization of conventional synthetic fungicides is 

damaging to the environment and human health. Recently, the biological control 

of post-harvest fruit and vegetable diseases via antagonistic microorganisms 

has become an attractive possible substitution for synthetic fungicides. 

Numerous studies have confirmed the potential of volatile organic compounds 

(VOCs) for post-harvest disease management. Moreover, VOC emission is a 

predominant antifungal mechanism of antagonistic microorganisms. As such, 

it is of great significance to discuss and explore the antifungal mechanisms of 

microbial VOCs for commercial application. This review summarizes the main 

sources of microbial VOCs in the post-harvest treatment and control of fruit 

and vegetable diseases. Recent advances in the elucidation of antifungal VOC 

mechanisms are emphasized, and the applications of VOCs produced from 

antagonistic microorganisms are described. Finally, the current prospects and 

challenges associated with microbial VOCs are considered.
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Introduction

Fruit and vegetable losses are between 35 and 55% of their production volume, 
depending on the region. Considering that the decay of fruits and vegetables is a 
consequence of phytopathogen proliferation on their edible parts, various new anti-
phytopathogenic strategies are actively being investigated (Leneveu-Jenvrin et al., 2020). 
Generally, fruits are protected against decay using chemical substances; however, 
consumer acceptance of such pesticides is decreasing considering their associated 
environmental pollution and possible harmful health effects. Furthermore, pathogens can 
develop resistance against pesticides such as carbendazim and diethofencarb (Ocampo-
Suarez et al., 2017). SO2 can be used as a fungicide during fruit storage and can inhibit 
post-harvest pathogen growth in grapes, reduce fruit respiration rate, and maintain fruit 
quality. However, excess SO2 can cause bleaching of grapes, and the SO2 residue can 
be detrimental to human health (Considine and Foyer, 2015). Several areas, such as the 
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United  States and the European Union, have promoted the 
“Integrated Pest Management (IPM)” project to reduce and 
ultimately eliminate chemical pesticide usage (Diaz et al., 2020). 
Therefore, it is crucial to develop safer, environmentally friendly, 
and effective methods against pathogenic fungi.

The usage of antagonistic microorganisms in the biological 
control of post-harvest fruit and vegetable diseases may be  a 
promising substitute for synthetic fungicides. Antagonistic 
microorganisms inhibit pathogenic growth via competition for 
nutrients and space, parasitism, antibiosis, host resistance 
induction, volatile organic compound (VOC) emission, and 
biofilm formation (Zhang et  al., 2020). In particular, VOC 
emission is a predominant antifungal mechanism of antagonistic 
microorganisms. Accordingly, Contarino et  al. (2019) 
demonstrated that VOCs produced by Wickerhamomyces 
anomalus, Metschnikowia pulcherrima, Aureobasidium pullulans, 
and Saccharomyces cerevisiae effectively inhibited post-harvest 
pathogenic molds. Moreover, each antagonist can produce a wide 
variety of VOCs. The main VOCs emitted by biological control 
yeasts are alcohols (ethanol, 3-methylbutan-1-ol, and 
2-phenylethanol) and esters (ethyl acetate and 3-methylbutyl 
acetate). Volatiles do not require antagonistic microorganisms 
direct contact with food and are, thus, currently considered 
potential biofumigants.

VOCs derived from antifungal bacteria, filamentous fungi, 
and yeasts are used for the control of pathogenic fungi in fruits 
and vegetables. Herein, we review all reported biological control 
strategies of VOCs for the management of pathogenic fungi in 
fruits and vegetables. First, microbial-derived VOCs are discussed 
in detail, whereafter, recent advances in the elucidation of VOC 
antifungal mechanisms are emphasized. Finally, the applications 
of VOCs derived from biological control microbes, and the 
associated prospects and challenges are reviewed.

VOCs derived from biological 
control microbes

Yeast-derived VOCs

The application of yeast as a biological control agent (BCA) 
has been extensively studied; seeing as they are environmentally 
friendly, have no negative toxicological impacts, and their large-
scale cultivation is effortless and cost-effective (Mari et al., 2016). 
Moreover, yeast strains, such as Aureobasidium spp., Candida 
spp., Kloeckera spp., Metschnikowia spp., Pichia spp., 
Saccharomyces spp., Rhodotorula spp., and Wickerhamomyces 
spp., have been reported to have antifungal properties (Lemos 
Junior et al., 2020). Various mechanisms have been postulated to 
describe these antifungal properties, including enhanced natural 
host defenses, competition for nutrients, and antifungal VOC 
production. Among these mechanisms, the production of VOCs 
may be particularly pertinent to the antifungal properties of yeast 
(Figure 1A; Table 1).

Volatile organic compounds produced by Pichia spp. reduce the 
incidence of Monascus purpureus by up to 39.22%, and 
2-phenylethanol elicits its antifungal effect on M. purpureus by 
inducing protein synthesis and DNA damage (Zhang et al., 2021). 
Moreover, 2-phenylethanol is also the main antifungal VOC 
produced by Candida intermedia. VOCs produced by C. intermedia 
can affect protein biosynthesis, proliferative activity, mitochondrial 
metabolism, and detoxification. Accordingly, C. intermedia-
produced VOCs and 2-phenylethanol successfully inhibit Aspergillus 
carbonarius radial mycelial growth and reduce ochratoxin A (OTA) 
production (Tilocca et al., 2019). Furthermore, Ruiz-Moyano et al. 
(2020) found that VOCs produced by Hanseniaspora uvarum 
effectively controlled the incidence of Botrytis cinerea in strawberries 
and cherries; the main VOCs identified included acetic acid, 
octanoic acid, ethyl propanoate, N-propyl acetate, 2-methylpropyl 
acetate, 2-methylbutyl acetate, furan-2-ylmethyl acetate, benzyl 
acetate, 2-phenylethyl acetate, and heptan-2-one.

Masoud et  al. (2005) demonstrated that, during coffee 
processing, VOCs produced by Pichia anomala, Pichia kluyveri, 
and H. uvarum inhibited the growth of Aspergillus ochraceus and 
prevented the production of OTA. Moreover, the most effective 
VOC was 2-phenylethyl acetate, which completely inhibited 
A. ochraceus growth at 48 μg/L headspace. Similarly, VOCs 
produced by Saccharomyces spp. hampered spore production and 
mycelial growth of A. carbonarius and A. ochraceus. Among the 
Culture Collection of Agricultural Microbiology (CCMA) 
Saccharomyces spp. strains, S. cerevisiae CCMA 0159, 1,299, and 
1,302 exhibited the most efficient in vitro inhibition of 
ochratoxigenic fungi, while also reducing in vivo OTA production 
to 0.04–10.11 μg/kg (de Souza et al., 2021).

Jaibangyang et  al. (2020) identified Candida nivariensis 
DMKU-CE18 as an effective VOC-producing (mainly pentan-1-ol) 
yeast against the growth and conidial germination of Aspergillus 
flavus. Moreover, Jaibangyang et al. (2021) revealed that Kwoniella 
heveanensis DMKU-CE82-produced VOCs induced conidia 
structural damage, inhibited mycelia and conidiophore 
development, and reduced aflatoxin B1 (AFB1) production to less 
than 20 ppb in A. flavus contaminated corn grains. The major 
VOCs produced by K. heveanensis DMKU-CE82 were closely 
matched to 3-methylbutan-1-ol, 2-methylbutan-1-ol, 
1,1-dimethylhydrazine, and 3-methylbutanoic acid. Debaryomyces 
nepalensis-produced VOCs predominantly include 2-phenylethanol 
and can play important roles in the suppression of Colletotrichum 
gloeosporioides. This is of great significance, considering that 
C. gloeosporioides-induced fruit anthracnose results in tremendous 
economic losses due to the latency of the infection (Zhou 
et al., 2018).

Bacteria-derived VOCs

Volatile organic compounds produced by bacteria have low 
molecular weights and polarities and can effortlessly diffuse 
through porous soil structures and over great atmospheric 

https://doi.org/10.3389/fmicb.2022.922450
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fmicb.2022.922450

Frontiers in Microbiology 03 frontiersin.org

distances (Figure  1B; Table  2). These properties significantly 
contribute to the potential applications of bacterial VOCs in 
various environments, including in plantation fields and 
greenhouses, and during storage (Arrarte et  al., 2017). 

Correspondingly, several studies have demonstrated the potential 
applications of bacterial VOCs in plant disease management and 
in post-harvest disease control (Dhouib et  al., 2019; Calvo 
et al., 2020).

A

B

C

FIGURE 1

Molecular classes of major active compounds in volatile organic compounds (VOCs) from yeast (A), bacterial (B), and fungal (C). The active 
compounds in VOCs exert promising antimicrobial activities in the biological control of plant pathogens.

https://doi.org/10.3389/fmicb.2022.922450
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fmicb.2022.922450

Frontiers in Microbiology 04 frontiersin.org

The antifungal capability of Bacillus subtilis on post-harvest 
citrus was first reported in the 1950s (Wilson and Chalutz, 
1989). Recently, VOC emissions were identified as the main 
antifungal mechanism of the Bacillus spp. strains. Massawe et al. 
(2018) identified eight Bacillus spp.-produced VOCs that 

reduced sclerotial production and inhibited mycelial growth of 
Sclerotinia sclerotiorum. Moreover, VOCs emitted by the 
B. subtilis CL2 strain inhibited the hyphal growth of four 
pathogenic fungi (Mucor circinelloides LB1, Fusarium 
arcuatisporum LB5, Alternaria iridiaustralis LB7, and 
Colletotrichum fioriniae LB8) and significantly reduced the 
weight loss rate and decay incidence of wolfberry fruits. The 
main active antifungal substances in these VOCs are butane-
2,3-dione and 3-methylbutanoic acid (Ling et al., 2021). VOCs 
produced by Bacillus pumilus and Bacillus thuringiensis 
significantly inhibit the in vitro mycelia growth of 
C. gloeosporioides. Accordingly, the inhibition incidences of 
inoculated mangos exposed to the VOCs of B. pumilus and 
B. thuringiensis were 94.3 and 87.6%, respectively (Zheng et al., 
2013). VOCs produced by Bacillus velezensis significantly 
inhibit in vitro and fruit borne B. cinerea, Monilinia fructicola, 
Monilinia laxa, Penicillium italicum, Penicillium digitatum, and 
Penicillium expansum growth; particularly M. laxa (66%), 
M. fructicola (72%), P. italicum (80%), and B. cinerea (100%). 
These VOCs mainly include nonan-2-one, undecan-2-one, 
heptan-2-one, butan-1-ol, 3-hydroxybutan-2-one, 
benzaldehyde, butyl formate, butane-2,3-dione, nonane, and 
pyrazine (Calvo et al., 2020). Furthermore, the B. velezensis-
produced VOCs; tetradecane, 2-phenylacetic acid, 
benzaldehyde, dec-1-ene, and 2-phenylethanol, also exhibit 
significant antifungal activity against Verticillium dahliae. In 
addition, B. velezensis application significantly reduces the 
incidence of Verticillium wilt by 70.43 ± 7.08% in tomato plants 
(Dhouib et al., 2019).

Wang et  al. (2020) reported that VOCs produced by the 
antagonistic bacteria, Pseudomonas fluorescens ZX significantly 
inhibited mycelial growth and conidial germination of P. italicum 
by 42.14 and 77.86%, respectively. Moreover, the primary active 
antifungal constituents of these P. fluorescens ZX-produced VOCs 
included organic acids and sulfur compounds (Wang 
et al., 2021c).

The VOCs derived from endophytic bacterial strains also 
exhibit antifungal activity against pathogens. Accordingly, 
Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia 
CR71 inhibits B. cinerea growth via VOC emission, with 
(methyldisulfanyl) methane as the main component (Rojas-Solís 
et  al., 2018). VOCs produced by tomato-derived endophytic 
bacterial strains, such as Bacillus nakamurai, Bacillus 
pseudomycoides, Bacillus proteolyticus, B. thuringiensis, 
Enterobacter asburiae, and Enterobacter cloacae, exhibit 
antifungal activity against B. cinerea (Chaouachi et al., 2021).

Volatile organic compounds produced by Pseudomonas sp. 
(No. 3, No. 35), Enterobacter sp. (No. 26, No. 34), Ralstonia sp. 
(No. 50), Bacillus sp. (No. 62), Arthrobacter sp. (No. 146), 
Brevibacillus sp. (No. 2–18), and Paenisporosarcina sp. (No. 
2–60) exhibits varying inhibitory effects (7.84–100%) on 
Rhizoctonia solani growth. In particular, Ralstonia  
sp. completely inhibits the growth of R. solani as a result of 
VOC production, among which ethyl benzoate, 

TABLE 1 Main yeasts emitting VOCs, their target pathogen and 
primary components.

Antagonist Target Main VOCs Reference

A. pullulans B. cinerea;

A. alternata

Ethanol;

2-methyl-propanol;

3-methyl-butanol;

2-phenylethanol

Yalage Don et al., 

2020

W. anomalus

M. pulcherrima

A. pullulans

S. cerevisiae

B. cinerea;

P. digitatum;

P. italicum

- Parafati et al., 2017

A. pullulans B. cinerea;

C. acutatum;

P. expansum;

P. digitatum;

P. italicum

2-phenylethanol Di Francesco et al., 

2015

H. uvarum B. cinerea trans-

cinnamaldehyde

Guo et al., 2019

S. cerevisiae P. guajava 3-methyl-1-butanol;

2-methyl-1-butanol

Dalilla et al., 2015

C. jadinii A. carbonarius 2-phenylethanol Farbo et al., 2018

L. thermotolerans

C. jadinii

C. friedrichii

C. intermedia

A. ochraceus - Fiori et al., 2014

S. cerevisiae

W. anomalus

M. pulcherrima

B. cinerea - Parafati et al., 2015

C. intermedia A. carbonarius 2-phenylethanol Tilocca et al., 2019

C. sake P. expansum;

B. cinerea;

A. alternata;

A. tenuissima;

A. arborescens

3-methylbutyl 

hexanoate;

3-methylbutyl 

pentanoate;

2-methylpropyl 

hexanoate

Arrarte et al., 2017

K. heveanensis A. flavus 3-methyl-1-butanol;

2-methyl-1-butanol;

1,1-dimethyl 

hydrazine;

3-methyl butanoic 

acid

Jaibangyang et al., 

2021

C. nivariensis A. flavus 1-pentanol Jaibangyang et al., 

2020

P. anomala

P. kluyveri

H. uvarum

A. flavus 2-phenyl ethyl 

acetate

Masoud et al., 2005

D. nepalensis C. gloeosporioides phenylethyl alcohol Zhou et al., 2018
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3-methylbutanoic acid, 2-ethylhexan-1-ol, 3-methylbutan-1-ol, 
and 6-methylhept-5-en-2-one are confirmed to be  toxic to 
R. solani (Wang et al., 2021a). Additionally, R. solani is also 
inhibited by VOCs derived from several Streptomyces spp. soil 
isolates, in which the effective VOC constituents include methyl 
2-methylpentanoate and 1,3,5-trichloro-2-methoxy benzene 
(Cordovez et al., 2015).

Gómez et al. (2021) identified several anti-phytopathogenic 
marine actinobacteria, including Streptomyces sp. (PNM-149), 
which exhibited antifungal activity against C. gloeosporioides 
growth via two major VOC components (methyl 2-aminobenzoate 
and 1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol). Moreover, 
Bacillus atrophaeus elicits significant inhibition against various 
fungal pathogens. The primary inhibitory VOCs produced by 

TABLE 2 Main bacteria emitting VOCs, their target pathogen and primary components.

Antagonist Target Main VOCs Reference

Bacillus methylotrophicus

B. thuringiensis

Fusarium oxysporum;

Botryosphaeria sp.;

Trichoderma atroviride;

C. gloeosporioides;

P. expansum

alcohols; phenols; ketones

hydrocarbons; aldehydes

esters; acids; pyrazines

He et al., 2020

Paenibacillus ehimensis C. gloeosporioides 2-furanmethanol;

phenylacetonitrile;

2,4-dimethyl pentanol

Coconubo Guio et al., 2020

B. velezensis B. cinerea;

M. fructicola;

M. laxa;

P. italicum;

P. digitatum;

P. expansum

2-nonanone; 2-undecanone

2-heptanone; butanol;

acetoin; benzaldehyde;

butyl formate; diacetyl;

nonane; pyrazine

Calvo et al., 2020

B. subtilis M. fructicola - Zhou et al., 2019

B. pumilus A. alternata;

Cladosporium ladosporioides;

Curvularia lunata;

F. oxysporum;

P. italicum

methyl isobutyl ketone;

ethanol;

5-methyl-2-heptanone;

2-methylbutylamine

Morita et al., 2019

B. amyloliquefaciens

B. artrophaeus

R. solanacearum benzaldehyde;

1,2-benzisothiazol-3(2H)-one;

1,3-butadiene

Tahir et al., 2017

Paenibacillus polymyxa Verticillium longisporum 2-nonanone;

3-hydroxy-2-butanone

Rybakova et al., 2017

P. fluorescens P. italicum dimethyl disulfide;

dimethyl trisulfide

Wang et al., 2021c

Pseudomonas sp. (No. 3, No. 35)

Enterobacter sp. (No. 26, No. 34)

Ralstonia sp. (No. 50)

Bacillus sp. (No. 62)

Arthrobacter sp. (No.146)

Brevibacillus sp. (No. 2–18)

Paenisporosarcina sp. (No. 2–60)

R. solani benzoic acid ethyl ester;

3-methylbutanoic acid;

2-ethyl-1-hexanol;

3-methyl-1-butanol;

6-methyl-5-hepten-2-one

Wang et al., 2021a

B. velezensis V. dahlia tetradecane;

benzeneacetic acid;

benzaldehyde;

1-decene;

phenylethyl alcohol

Dhouib et al., 2019

B. subtilis M. circinelloides;

F. arcuatisporum;

A. iridiaustralis;

C. fioriniae

2,3-butanedione;

3-methylbutyric acid

Ling et al., 2021
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B. atrophaeus HAB-5 against C. gloeosporioides included 
2-chloroacetic acid, tetradecyl esters, octadecane, and methyl 
hexadecanoate (Rajaofera et  al., 2019). Overall, these studies 
provide a foundation for the application of antagonistic bacteria 
in the control of fungal infections.

Fungi-derived VOCs

In addition to yeast and bacteria, several fungal species elicit 
biological control activities by producing VOCs (Figure  1C; 
Table 3). Among the antagonistic fungi, the yeast-like fungus 
A. pullulans is recognized as a propitious post-harvest disease 
BCA (Di Francesco et  al., 2020a). Accordingly, Alternaria 
alternata and B. cinerea conidia germination and colony growth 
are suppressed by A. pullulans-derived VOCs, including ethanol 
and 2-phenylethanol as the key inducers of this inhibitory effect 
(Di Francesco et  al., 2015). Moreover, VOCs derived from 
A. pullulans L1 and L8 inhibit Monilinia fructigena mycelium 
growth (70 and 50%, respectively) and M. fructicola conidia 
germination (85 and 70%, respectively). As the most active 
compound among the VOCs, 2-phenylethanol displays inhibitory 
action against all the pathogens on cherry and apricot fruits (Di 
Francesco et  al., 2020b). In addition, VOCs generated by 
Aureobasidium subglaciale, of which 3-methylbutan-1-ol is the 
most effective, inhibit B. cinerea mycelial growth (65.4%; Di 
Francesco et al., 2020a). VOCs produced by A. pullulans, which 
mainly include ethanol, 2-methylpropan-1-ol, 3-methylbutan-
1-ol, and 2-phenylethanol, can increase intracellular reactive 
oxygen species (ROS) accumulation, lipid peroxidation, and 
content, leakage, thereby inhibiting B. cinerea growth 
(Don et al., 2020).

Trichoderma spp. plays an important role as a BCA in a wide 
variety of plants (Sunpapao et  al., 2018; Baiyee et  al., 2019). 
Accordingly, the major Trichoderma spirale T76-1-produced VOC 
(6-pentylpyran-2-one) suppresses Corynespora cassiicola and 
Curvularia aeria growth by 41.29 and 42.35%, respectively (Baiyee 
et al., 2019). Moreover, Trichoderma asperellum T76-14-emitted 
VOCs, particularly 2-phenylethanol, effectively inhibits Fusarium 
incarnatum growth (62.5%) and rot after 7 days of incubation 
(Intana et al., 2021).

Li et  al. (2010) reported suppressed P. italicum spore 
germination, mycelial growth, sporulation, and disease incidence 
in inoculated citrus in the presence of Streptomyces globisporus 
JK-1-derived VOCs. Moreover, these VOCs can inhibit B. cinerea 
growth on media and in inoculated tomatoes (Li et al., 2012).

Antifungal mechanism of VOCs

Limited information exists regarding the molecular and 
physiological mechanisms by which VOCs control post-harvest 
diseases. Nevertheless, the main mechanism underlying the 
antifungal effects of VOCs is the disruption of cell wall and 

membrane structures, leading to intracellular lysate leakage and 
oxidative stress induction (Figure 2).

Disruption of pathogenic fungi cell wall 
and membrane structures

The shape of microbial cells is maintained by the increased 
mechanical resistance provided by the cell wall and membrane. 
The cell wall is composed of three major macromolecules 
(mannoproteins, β-glucan, and chitin) essential for cell 
morphology sustainability and protection against mechanical 
damage. The integrity of fungal cell membranes, which are 
composed of proteins, phospholipids, and sugars, are vital to the 
survival of fungi. However, microbial VOCs can damage cell 
walls and membranes, resulting in microbial morphological  
changes.

Accordingly, B. cinerea treated with S. globisporus JK-1-
derived VOCs exhibit excessive vesiculation, thickened walls, 
and retracted membranes (Li et  al., 2012). Moreover, 
Trichoderma sp., Phoma sp., and Colletotrichum sp. exposed to 
Chromobacterium vaccinii-derived VOCs exhibit extensive 
morphological abnormalities, such as swollen hyphal cells, 
vacuolar depositions, and cell wall alterations (Ebadzadsahrai 
et  al., 2020). Tahir et  al. (2017) reported that benzaldehyde, 
1,2-benzothiazol-3-one, and buta-1,3-diene released by Bacillus 
spp. caused morphological and ultra-structural changes in 
Ralstonia solanacearum cells. Correspondingly, Wang et  al. 
(2021b) demonstrated inhibition of C. gloeosporioides growth via 
B. subtilis CF-3 VOC-induced downregulation of gene 
expression related to cell membrane fluidity, wall integrity, 
energy metabolism, and the production of cell wall-degrading 
enzymes. In addition, 2,4-ditert-butylphenol, which is a 
characteristic VOC of B.subtilis CF-3, elicits similar inhibitory 
effects on C. gloeosporioides.

Some VOCs directly target fungal cell membranes by 
increasing membrane permeability and cellular leakage. VOCs, 
such as organic acids, increase cell membrane fluidity, leading to 
membrane protein conformational changes, intracellular content 
leakage, and subsequent fungal cell death. Moreover, the direct 
insertion of Pseudomonas spp.-produced cis-9-heptadecenoic 
acid [(Z)-heptadec-9-enoic-acid] in the phospholipid bilayer of 
cell membranes, and subsequent interaction with fungal cell 
membranes increases membrane fluidity and eventuates in the 
death of pathogenic fungi such as B. cinerea (Avis and Belanger, 
2001). Furthermore, Bergsson et al. (2001) demonstrated that 
decanoic acid destroyed Candida albicans cell membranes, 
resulting in the outflow of cytoplasmic contents and rapid, 
effective elimination of the pathogen fungi.

Volatile organic compounds also alter fungal membrane 
permeability via peroxidation of membrane lipids. Accordingly, 
A. pullulans VOCs may trigger lipid peroxidation and 
electrolyte leakage in B. cinerea and A. alternata (Yalage Don 
et  al., 2021). Additionally, Psidium guajava exposure to 
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S. cerevisiae VOCs increased the membrane lipid peroxidation 
plasma membrane permeability (Dalilla et al., 2015). Excessive 
ROS production alters lipid layer composition and triggers 
lipid peroxidation via the conversion of unsaturated lipids to 
polar lipid hydroperoxides (Vazquez et al., 2019). Moreover, 
extensive lipid peroxidation-induced alterations in cell 
membrane permeability result in membrane disintegration, 
free radical chain reactions, and eventual cell death (Massawe 
et al., 2018).

In summary, cell and organelle membranes are potential 
VOC targets via membrane damage-induced cell structure 

deformation and cytoplasmic inclusion of organelle material. 
Moreover, VOCs may enter fungal cells via hydrogen bonding. 
Consequently, the forces created during this bonding disturb the 
aqueous solution of cell membranes and interfere with cellular 
physiology and functionality.

Effects of oxidative stress on fungal cells

Volatile organic compounds derived from biological control 
microbes trigger ROS accumulation and oxidative stress in fungal 

TABLE 3 Main fungus emitting VOCs, their target pathogen and primary components.

Antagonist Target Main VOCs Reference

Trichoderma asperelloides Colletotrichum sp.;

C. cassiicola;

C. lunata;

Ganoderma sp.;

P. oxalicum;

N. clavispora;

S. rolfsii;

S. cucurbitacearum

2-methyl-1-butanol;

2-pentylfuran;

acetic acid;

6-pentyl-2H-pyran-2-one

Phoka et al., 2020

Diaporthe apiculatum A. alternata;

Botryosphaeria dothidea;

B. cinerea;

Cercospora asparagi;

C. gloeosporioides;

Fusarium graminearum;

Sphaeropsis sapinea;

Valsa sordida

γ-terpinene;

α-terpinene;

4-terpineol

Song et al., 2019

Hypoxylon anthochroum F. oxysporum eucalyptol Macias-Rubalcava et al., 2018

Streptomyces alboflavus Fusarium moniliforme;

A. flavus;

A. ochraceus;

Aspergillus niger;

Penicillum citrinum

2-methylisoborneol Wang et al., 2013

A. subglaciale B. cinerea 3-methyl-1-butanol Di Francesco et al., 2020b

A. pullulans M. fructigena;

M. fructicola

2-phenylethanol Di Francesco et al., 2020a

S. globisporus B. cinerea;

S. sclerotiorum

- Li et al., 2012

A. pullulans B. cinerea;

C. acutatum;

P. expansum;

P. digitatum;

P. italicum

2-phenylethanol;

3-methyl-1-butanol;

2-methyl-1-butanol;

2-methyl-1-propanol

Di Francesco et al., 2015

Trichoderma viride Arabidopsis thaliana isobutyl alcohol;

isopentyl alcohol;

3-Methylbutanal

Hung et al., 2013

T. spirale C. cassiicola;

C. aeria

6-pentyl-2H-pyran-2-one Baiyee et al., 2019

T. spirale F. incarnatum phenylethyl alcohol Intana et al., 2021
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cells. Excessive ROS accumulation disrupts the redox balance, 
reacts with cellular macromolecules, such as lipids, proteins, and 
DNA, and eventuates in cell dysfunction or death.

Massawe et al. (2018) identified four endophytic Bacillus spp. 
VOCs that strongly induced ROS production in S. sclerotiorum 
mycelial cells. Insufficient detoxification of ROS by cellular 
antioxidant defense mechanisms, such as catalase (CAT) and 
superoxide dismutase (SOD) activities, results in oxidative stress. 
As such, the increased CAT and SOD activity observed by Fialho 
et al. (2014) in Guignardia citricarpa mycelia following S. cerevisiae 
VOC exposure indicated VOC-induced imbalanced fungal 
redox states.

Fialho et al. (2014) reported that S. cerevisiae CR-1 VOCs 
inhibited G. citricarpa growth by disrupting the intracellular 
redox homeostasis and triggering harmful ROS accumulation. 
Moreover, Xie et al. (2020) reported that the B. subtilis DZSY21 
VOC, 3-methylbutyl acetate, strongly induced intracellular ROS 
accumulation and inhibited mycelia growth and conidial 
sporulation of Curvularia lunata. Ye et  al. (2020) observed 
significant inhibition of Fusarium oxysporum f. sp. cucumerinum 
by Corallococcus sp. EGB VOCs, particularly 6-methylheptan-
1-ol. Accordingly, ROS accumulation and gradual fungal cell 
apoptosis occurred following 6-methylheptan-1-ol treatment.

Reactive oxygen species are mainly generated during aerobic 
respiration via the complex I  enzyme of the mitochondrial 
respiratory chain (Yalage Don et al., 2021). Furthermore, Zhang 

et al. (2021) demonstrated hypha morphological changes, cell 
membrane destruction, ergosterol reduction, and significant ROS 
accumulation in Ceratocystis fimbriata cells following exposure 
to Pseudomonas chlororaphis subsp. aureofaciens SPS-41 VOCs. 
Consequentially, oxidative stress-induced mitochondrial 
dysfunction and decreased ATP levels inhibited the growth of 
C. fimbriata. Moreover, S. cerevisiae-produced decanoic acid 
significantly decreases intracellular ATP levels and inhibits 
B. cinerea growth, possibly via mechanisms related to energy 
metabolism. Stevens and Hofmeyr (1993) demonstrated the 
cytoplasmic entry of octanoic acid and decanoic acid through 
S. cerevisiae membranes and subsequent H+ dissociation, 
significant cytoplasmic pH decrease, and membrane H+-ATPase 
activation. Cellular ATP exhaustion occurs during H+ emission, 
resulting in growth inhibition. Overall, VOC-induced ROS 
accumulation and oxidative stress lead to pathogenic fungal 
growth inhibition; however, the complete mechanism of ROS 
remains to be further elucidated.

Biological control applications of 
microbial-derived VOCs

Microbial VOCs have been applied in the control of diseases, 
such as grey mold, green mold, and blue mold, and to reduce 
toxins such as OTA (Figure 3).

FIGURE 2

Antifungal mechanism of the VOCs. VOCs damage cell walls and membranes, resulting in changes in the morphology of microbial cells and 
leakage of cell contents; VOCs disrupt redox balance and increase intracellular ROS level causing membrane lipid peroxidation, mitochondrial 
dysfunction, and decreased ATP levels.
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Grey mold, caused by B. cinerea, is a profound pre- and post-
harvest fruit and vegetable disease. More than 200 species of 
plants, including cucumbers, table grapes, tomatoes, and 
strawberries, are susceptible to gray mold infection (Huang et al., 
2012). Chemical fungicides are utilized in the management of this 
disease; however, B. cinerea effortlessly develops fungicide 
resistance due to its high genetic variability, prolific reproduction, 
and short life cycle (Chaouachi et al., 2021). Recently, research has 
been aimed at the development of environmentally-friendly 
control methods against B. cinerea, including BCA utilization. 
Botrytis cinerea disease incidence and severity on wound-
inoculated tomato fruit are inhibited when fumigated with 
S. globisporus JK-1 (Li et al., 2012). Moreover, the bio-fumigation 
of apples with A. pullulans L1 and L8 VOCs effectively controlled 
B. cinerea, Colletotrichum acutatum, P. expansum, P. digitatum, 
and P. italicum. The lesion diameter of apples inoculated with 
B. cinerea following A. pullulans L1 and L8 VOC exposure 
reduced by 88.9 and 94.4%, respectively. Moreover, A. pullulans 
L1 and L8 VOCs reduce the incidence of blue mold and bitter pit 
on apples by 73.9 and 44.4%, respectively (Di Francesco et al., 
2015). The VOCs produced by M. pulcherrima, W. anomalus, 
A. pullulans, and S. cerevisiae are highly effective in controlling 

gray mold-induced decay of grape berries (Parafati et al., 2015). 
Huang et  al. (2011) demonstrated that C. intermedia VOC 
(cyclooctatetraene and 3-methylbutan-1-ol) exposure significantly 
reduced the incidence and severity of Botrytis spp. strawberry rot. 
Moreover, the VOCs derived from Sporidiobolus pararoseus 
effectively suppressed strawberry gray mold disease under 
air-tight conditions (Huang et al., 2012). Similarly, the tomato-
derived endophytic Enterobacter sp. TR1 VOC (3-methylbutan-
1-ol) completely suppresses B. cinerea infection and growth at 
0.442 ml/L, whereas Bacillus spp. protects against fungal infection 
when applied to vegetative cells of tomatoes. VOCs derived from 
B. velezensis I3 reduce grey mold in grapes by 50%, while those of 
B. velezensis BUZ-14 decrease brown rot severity in apricots 
(Chaouachi et al., 2021).

The microbial metabolite, OTA, consists of the amino acid, 
phenylalanine, linked by an amide bond to a pentaketide 
dihydroisocoumarin. OTA is the second most predominant 
mycotoxin found in food and feed products, and is classified as a 
group 2B carcinogen by the World Health Organization (Farbo 
et al., 2018). Furthermore, OTAs are predominantly produced by 
Aspergillus spp. and Penicillium spp. in warm and tropical regions. 
Candida intermedia 235 and Lachancea thermotolerans 751 

FIGURE 3

Applications of VOCs. VOCs are applied to inhibit phytopathogenic fungi, such as grey mold, green mold, and blue mold that cause rot in fruit and 
vegetables; VOCs are also applied to inhibit pathogenic fungi that produce toxins such as OTA.
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significantly inhibit A. carbonarius on grape berries and in vitro, 
while VOCs produced by non-fermenting (Cyberlindnera jadinii 
273 and Candida friedrichii 778) and low-fermenting 
(C. intermedia 235 and L. thermotolerans 751) yeast strains may 
prevent in vitro A. carbonarius sporulation. Moreover, 
C. intermedia 235, L. thermotolerans 751, and C. friedrichii 778 
efficiently adsorb artificially spiked OTA from grape juice (Fiori 
et al., 2014). However, the main antifungal VOC in C. intermedia 
253 (2-phenylethanol) only partially mimics the metabolic effects 
of whole yeast VOCs (Tilocca et  al., 2019). Additionally, 
Saccharomyces spp.-produced VOCs hamper A. carbonarius 
CCDCA 10608 and A. ochraceus CCDCA 10612 spore production 
and mycelial growth (de Souza et al., 2021).

Penicillium digitatum (green mold) and P. italicum Wehmer 
(blue mold) result in significant post-harvest economical losses 
(Papoutsis et al., 2019). Both P. digitatum and P. italicum are wound 
pathogens that produce a large amount of airborne spores 
(Kellerman et al., 2016). The disease incidence of P. expansum on 
apples in the presence of Candida sake VOCs [mainly 
3-methylbutyl hexanoate, 3-methylbutyl pentanoate, 
2-methylpropyl hexanoate, and ethyl 4-(4-nitrophenyl)-1,3-
thiazole-2-carboxylate] is reduced by 53% and the severity by 20%, 
indicating that C. sake VOCs are effective P. expansum BCAs in 
apples. VOCs produced by W. anomalus efficiently reduce 
P. digitatum infections in mandarin fruits (Parafati et al., 2017). 
Moreover, Li et al. (2010) reported that blue mold sporulation and 
disease incidence on citrus were reduced in the presence of the 
VOCs from S. globisporus JK-1. Accordingly, Wang et al. (2020) 
reported suppressed citrus blue mold disease incidence and lesion 
size by VOCs from P. fluorescens. Moreover, the P. fluorescens 
VOCs (100 μl/L dimethyl disulfide and 10 μl/L dimethyl trisulfide) 
completely inhibited blue mold on citrus fruits (Wang et al., 2021c).

Prospects and challenges

In the post-harvest stage, VOCs may be regarded as ideal 
BCAs, considering that their activity does not require direct 
contact with the pathogen or food. However, to effectively apply 
these BCAs, their underlying antagonistic and pathogenic 
mechanisms must first be elucidated, thereby allowing for an 
understanding of their interactions and biology (Calvo et  al., 
2020). In the pre-harvest stage, VOCs are mainly used in open-
field agricultural and horticultural practices. The major challenge 
for large-scale VOC application in agricultural and horticultural 
practices is its volatility (Tilocca et al., 2020). Technical progress 
from controlled conditions to agricultural systems is required to 
overcome the current scaling limitations of VOC implementation, 
thereby formulating more effective and productive applications 
in the field and during post-harvest management.

To date, a large body of research exists on the utilization of 
VOCs as pre- and post-harvest BCAs. However, limited studies 
have reached the commercial development stage and launched 
commercial products. The main reason for this is the general lack 

of knowledge associated with VOC mechanisms of action. 
Moreover, the low solubility of VOCs in water limits its aquatic 
applications (Kanchiswamy et al., 2015).

Toxicity studies are a requisite for all novel BCAs that reach 
the market (Ocampo-Suarez et al., 2017). Considering that VOC 
activity ranges from proximal interactions via water diffusion to 
distant interactions via air diffusion, the possible hazards of VOCs 
need to be thoroughly evaluated (Spadaro and Droby, 2016). Some 
BCAs, such as Pichia kudriavzevii, are known nosocomial 
pathogens and may cause neonatal deaths (Nagarathnamma et al., 
2017). Thus, although numerous studies may be  generating 
valuable information in terms of disease control, the associated 
data would not be suitable for the practical development of BCAs.

Conclusion

Fruit and vegetable decay results in immense global economic 
losses and is harmful to human health. Biological control of post-
harvest fruit and vegetable diseases by antagonistic 
microorganisms has been extensively studied, and the post-
harvest disease management potential of VOCs has been 
confirmed; however, successful commercial application of VOCs 
is yet to be achieved. Therefore, future studies are required to 
comprehensively elucidate the antifungal mechanisms of VOCs to 
accommodate the development of antagonistic microorganisms 
suitable for commercial applications.
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