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Gene regulation is a key process for all microorganisms, as it allows them 

to adapt to different environmental stimuli. However, despite the relevance 

of gene expression control, for only a handful of organisms is there related 

information about genome regulation. In this work, we inferred the gene 

regulatory networks (GRNs) of bacterial and archaeal genomes by comparisons 

with six organisms with well-known regulatory interactions. The references we 

used are: Escherichia coli K-12 MG1655, Bacillus subtilis 168, Mycobacterium 

tuberculosis, Pseudomonas aeruginosa PAO1, Salmonella enterica subsp. 

enterica serovar typhimurium LT2, and Staphylococcus aureus N315. To this 

end, the inferences were achieved in two steps. First, the six model organisms 

were contrasted in an all-vs-all comparison of known interactions based 

on Transcription Factor (TF)-Target Gene (TG) orthology relationships and 

Transcription Unit (TU) assignments. In the second step, we  used a guilt-

by-association approach to infer the GRNs for 12,230 bacterial and 649 

archaeal genomes based on TF-TG orthology relationships of the six bacterial 

models determined in the first step. Finally, we  discuss examples to show 

the most relevant results obtained from these inferences. A web server with 

all the predicted GRNs is available at https://regulatorynetworks.unam.mx/  

or http://132.247.46.6/.
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Introduction

Bacterial and archaeal organisms respond to diverse stimuli via the subtle mechanism 
of regulation of gene expression at the transcriptional level, and this involves DNA-binding 
proteins known as transcription factors (TFs). These proteins act by interacting with specific 
sites, usually upstream of the transcription start site, inducing or blocking access of the RNA 
polymerase to the promoter. In general, when a TF binds at a site that overlaps the promoter 
region of a gene, the system is repressed; when the binding site is upstream of the promoter, 
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the system is activated (Browning and Busby, 2016). In addition, 
this regulatory system is coordinated with the sensing of 
endogenous or exogenous stimuli by these regulatory proteins, i.e., 
they have the ability to sense diverse conditions for the cell to 
contend against environmental changes. For instance, in the 
bacterium Escherichia coli K-12, approximately three-quarters of 
TFs respond directly to extracellular signals through 
phosphorylation and binding to small molecules, such as 
allolactose or maltose (Balderas-Martínez et al., 2013).

In this context, the regulatory system can be conceptualized 
as a circuit, where one TF can regulate multiple Target Genes 
(TGs) and multiple genes can be regulated by one or diverse TFs, 
all of them assembled into a gene regulatory network (GRN). In 
GRNs, nodes represent genes and the connections between them 
indicate that the TF-encoding gene regulates another gene; this 
type of network can be represented by directed graphs (Karlebach 
and Shamir, 2008).

To date, GRNs have been determined for only a few bacterial 
models from three different phyla: Proteobacteria, including 
Escherichia coli K-12, Salmonella enterica subsp. enterica serovar 
typhimurium LT2, and Pseudomonas aeruginosa PAO1; 
Firmicutes, including Bacillus subtilis 168 and Staphylococcus 
aureus N315; and Actinobacteria, including Mycobacterium 
tuberculosis. The lack of GRNs for most microorganisms is due to 
the fact that reconstruction depends largely on experimental 
data. Therefore, the inference or expansion of regulatory 
relationships between TFs and their TGs in organisms beyond 
the bacterial models will allow us to understand diverse biological 
processes, such as cell growth, response to environmental 
changes, or cell division, among others.

In this regard, various approaches have been explored to 
reconstruct regulatory networks in bacteria, such as RegPrecise 
(Novichkov et al., 2010), with a large amount of information 
available for regulons of diverse organisms, or the work of 
Castro-Melchor et  al. (2010) based on the transcript and 
functional similarities to infer regulatory networks in 
Streptomyces coelicolor, among others. However, the main 
limitations of these reconstructions are associated with the 
experimental information data.

Hence, to determine the GRNs in bacterial and archaeal 
genomes with no information on their regulatory interactions, 
we  mapped orthologous interactions among the six bacterial 
models to identify novel TF-TG interactions. Next, we used a guilt-
by-association approach to infer the GRNs for 12,230 bacterial and 
649 archaeal genomes, based on TF-TG orthology relationships of 
six bacterial species with well-known regulatory interactions and 
Transcription Unit (TU) assignments (i.e., operonic organization). 
The “guilt-by-association” principle has been applied to deduce 
functional relationships (Oliver, 2000), and used to predict gene 
function in various types of biological networks, for example in 
virulence factors of the bacterial pathogen, Aeromonas veronii (Li 
et al., 2021). The reconstructed networks were evaluated in terms 
of their topological properties, identifying TFs as hubs, modules, 
and co-regulated genes. Thus, our approach allowed us to confer a 

degree of accuracy regarding the existence of each inferred 
interaction. Therefore, the predicted interactions must 
be considered as a starting point to further exploration, both in 
silico and experimentally. We suggest that posterior analysis must 
consider the identification of DNA-binding sites upstream the 
probable regulated gene or a functional analysis with Gene 
Ontology and global expression profiles, as it has been already 
suggested in other cellular systems beyond bacteria and archaea 
(Chen, 2017). Finally, a web server with all the predicted GRNs is 
available to the scientific community at https://regulatorynetworks.
unam.mx/ or http://132.247.46.6/.

Data and methodology

Genomes used for reference

The information for six bacterial genomes used in this work 
was downloaded from either the NCBI server or RegulonDB: 
E. coli K-12 MG1655 (NC_000913.3, GCF_000005845.2), 
B. subtilis 168 (GCF_000009045.1), P. aeruginosa PAO1 
(GCF_000006765.1), S. typhimurium LT2 (GCF_000006945.2), 
S. aureus N315 (GCF_000009645.1), and M. tuberculosis 
(GCF_000195955.2). For each genome, the FASTA sequence was 
obtained from the “gbff/gbk” files parsed with an ad hoc program 
(Supplementary material, ParserGBK.py), to add the appropriate 
label in the header: NCBI gene ID, local gene ID, gene name, 
product description, and organism name. Sequences with missing 
information were annotated as “NODATA.” In addition, the 
12,230 genomes of bacteria and 649 archaeal genomes were 
downloaded from the NCBI RefSeq genome database on May 18, 
2021, to infer their GRNs.

Gene regulatory interactions

The regulatory interactions were obtained from specialized 
databases [DBTBS for B. subtilis release 5 (Sierro et al., 2008),1 
RegulonDB release 10.9 for E. coli (Santos-Zavaleta et al., 2019a),2 
M. tuberculosis (Kapopoulou et al., 2011; Sanz et  al., 2011), 
RegulomePA release 1.0 for P. aeruginosa,3 Salmonet release 2.0 
for S. typhimurium LT2 (Métris et al., 2017), and for S. aureus 
N315 (Ravcheev et al., 2011; Poudel et al., 2020)] and posteriorly 
homogenized, following the same format: First column 
corresponds to the assigned number by regulatory interaction per 
organism; second column, TF associated; third column, Target 
gene; and the other columns indicate the annotations derived 
from the original networks (Supplementary material). These 
GRNs are summarized in Table 1.

1 https://dbtbs.hgc.jp

2 http://regulondb.ccg.unam.mx

3 www.regulome.pcyt.unam.mx
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Ortholog identification

The protein sequences from each model organism were used 
as reference to identify the orthologs in an all-vs-all genomes 
fashion using the program Proteinortho (Lechner et al., 2011) 
with the following parameters: E-value ≤105, coverage ≥70%, and 
identity of ≥25%, as previously described for the identification of 
TFs (Flores-Bautista et al., 2020).

Transcription units

The predictions of Transcription Units (TUs) or operons were 
obtained using the method described by Moreno-Hagelsieb and 
Collado-Vides (2002). In brief, the predictions were based on the 
transcription direction and the intergenic distance (shorter 
intergenic distances and in the same direction for genes in the 
same TU).

Inference of GRNs

The reference genomes were used to scan the 12,230 bacterial 
and 649 archaeal genomes to identify their orthologs and map 
their interactions considering the following criteria: If the 
orthologs of the TF and its TG of the model organism were found 
in a new genome, the interaction was assigned using guilt by 
association. In a second step, predicted TUs were used to expand 
the TF-TG interactions as follows: If the first gene of the 
orthologous TG in an organism corresponded to the first gene in 
the TU, the other genes belonging to the TU were associated with 
the same TF. Finally, each network was integrated using all the 
ortholog assignments with the six reference GRNs. All the 
network interactions can be  inferred by running the script 
pipeline.sh, provided as Supplementary material and Figure 1.

Regulatory modules

The GRNs were analyzed by using Cytoscape (Shannon et al., 
2003; Otasek et  al., 2019) to obtain their degree, clustering 

coefficient, and other centrality metrics. Hubs were obtained by 
using networkX from python (Hagberg et al., 2008). In addition, 
to identify transcriptional co-regulators and modules in a GRN, 
the CoReg software was used. In brief, CoReg calculates gene 
similarities based on the number of common neighbors of any two 
genes in the network (Song et al., 2017).

Web server

The GRNs inferred for all the bacterial and archaeal genomes 
are available through the web server at https://regulatorynetworks.
unam.mx/, which is built on HTML5, JQuery, and Php languages, 
while the data are stored in a MySQL database. For the data 
display, we use the Cytoscape JS (Franz et al., 2016) framework 
due its capabilities to represent nodes and edges of the network 
with determined properties, allowing users to change forms, 
colors, and layer visualization of the network.

Method performance and statistical 
analysis

GRNs were compared using two different approaches to 
establish the reliability of the approach, one based on the ability 
to recover edges and the second focusing on the ability to recover 
network motifs (Milo et al., 2002) by comparing the six reference 
networks with networks for the same genomes generated using 
our approach.

First, based on the orthologous annotations made with 
Proteinortho, we created a GRN for each of the reference bacteria 
using a naming convention that ensures that genes that are 
orthologous among them share the same name in each of the six 
GRNs used as reference. Then, we  created networks for each 
reference organism based on the regulations transferred from the 
other five GRNs, again using the consensus gene names. GRNs 
with consensus gene names were then compared, following two 
procedures implemented in LoTo (Martin et  al., 2017). 
We  employed binary classification metrics to evaluate the 
similarities between pairs of GRNs as follows: Edges present in 
both compared networks are considered true positives (TPs), 

TABLE 1 Total new interactions per organism.

Contribution source → B. subtilis 
168 E. coli K-12

P. 
aeruginosa 

PA01

S. 
typhimurium 

LT2

S. aureus 
N315

M. 
tuberculosis 

H37Rv
TUs New 

interactionsNetwork contributed ↓

B. subtilis 168 (2738) – 395 (21.69%) 34 (1.86%) 255 (14.00%) 206 (11.31%) 286 (15.70%) 828 (45.46%) 1821

E. coli K-12 (3616) 248 (14.79%) – 157 (9.36%) 600 (35.79%) 125 (7.45%) 193 (11.51%) 393 (23.62%) 1,676

P. aeruginosa PA01 (998) 139 (5.56%) 1,117 (44.69%) – 709 (28.37%) 92 (3.68%) 331 (13.24%) 679 (27.17%) 2,499

S. typhimurium LT2 (2969) 259 (10.71%) 1,135 (46.95%) 140 (5.79%) – 124 (5.13%) 238 (9.84%) 608 (25.15%) 2,417

S. aureus N315 (709) 355 (43.88%) 173 (21.38%) 8 (0.98%) 109 (13.47%) – 79 (9.76%) 177 (21.87%) 809

M. tuberculosis H37Rv (2637) 70 (9.02%) 242 (31.18%) 17 (2.19%) 140 (18.04%) 22 (2.83%) – 405 (52.19%) 776

The number of interactions, the contribution percentage of each organism (row “contribution”) to the new interactions, and the extension by TU assignment, is indicated. The number of 
interactions in the original network is indicated in brackets (first column).

https://doi.org/10.3389/fmicb.2022.923105
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://regulatorynetworks.unam.mx/
https://regulatorynetworks.unam.mx/


Romero et al. 10.3389/fmicb.2022.923105

Frontiers in Microbiology 04 frontiersin.org

genes only present in one of the networks are false negatives 
(FNs) if they are only in the reference network, True Negatives 
(TNs) are the edges absent in both compared networks, and false 
positives (FPs) if they appear only in the network we compared 
with the reference. This edge-based approach is used to compare 
predicted GRNs versus reference networks, and it indicates 
overall network similarity (The DREAM5 Consortium et  al., 
2012). The second approach relies on the presence or absence of 
the motifs defined by Milo et al. (2002) that have been related to 
functional patterns in GRNs. Instead of considering TF-gene 
interactions, in this second approach, we considered TP motifs 
present in both compared networks, FN motifs are only found in 
the reference network, and FPs are only present in the network 
compared against the reference GRN.

LoTo calculates several metrics, but here we only focused on 
the most employed ones:

 
Precision P TP TP FP( ) = +( )/

 ( ) ( )Recall R TP / TP FN= +

and

 ( )F1 2PR / P R= +

To establish a baseline and determine whether the results from 
our approach are significant versus what can be expected by chance, 
we  also created a protocol to determine the expectancy of a 
transferred TF-gene regulation by chance. We  randomized the 
names TFs for the whole inferred networks 10,000 times to calculate 
expected TP, FP, TN, and FN values by comparing these randomized 
networks against their reference counterparts. This protocol ensures 
comparisons of random networks with the same characteristics, 
e.g., edges, TFs, and genes, against their actual reference. We then 
employed a G-test as implemented in SciPy (Virtanen et al., 2020) 
to determine whether the observed number of edges considered TP, 
FP, TN, and FN can be from the same distribution as that observed 
for the predicted networks without randomization.

Results and discussion

Identification of new interactions in 
bacterial models

In order to evaluate and expand the GRNs of the six model 
organisms, the number of TFs, TGs, and their interactions was 
determined. To do this, we  downloaded six GRNs, and their 
interactions were displayed by using Cytoscape. In this work, 
we considered TFs as those proteins that activate or repress gene 

FIGURE 1

Flux diagram showing the inference of the GRNs. Six bacterial models were used to infer the GRNs in 12,230 bacterial and 649 archaeal genomes. If 
the pair A (TF) – B (TG) in a reference genome is identified (by orthology) in a new genome A′ (TF) –B′ (TG), the interaction is assigned. In addition, if 
the TG identified in the new genome is the first one in the TU, the interaction is extended to the other gene(s). One interaction in a new genome can 
be derived from one or more bacterial models. Finally, the reconstructed networks were evaluated in terms of their topological properties.
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expression but do not belong to the transcriptional basal 
machinery; therefore, sigma factors, antiterminators, terminators, 
and sensor proteins, among other proteins, were excluded from the 
resulting data set (Martínez-Núñez et al., 2013). Table 2 shows the 
number of interactions associated with each organism. The most 
studied bacterial species, E. coli K-12, has 3,616 interactions based 
on experimental evidence, followed by S. typhimurium LT2 (2,969 
interactions) and B. subtilis with 2738TF-TG interactions, whereas 
the GRN of S. aureus contains the smallest number of interactions, 
with 709. This difference could be  a consequence of the 
experimental evidence accumulated over the years and the number 
of experiments carried out and performed with each organism; i.e., 
there is a bias inherent to the experimental analysis towards specific 
organisms. For instance, in a recent collection of 668 experimentally 
characterized TFs in bacteria and archaea organisms (Flores-
Bautista et al., 2020), 33.5% was associated with E. coli K12, 23% 
with different strains of M. tuberculosis, and 19% with B. subtilis 
168; i.e., 76% of the complete collection is concentrated in few 
organisms; in contrast, 24% of the collection is distributed among 
78 different prokaryotes. This contrast in the information is also 
evident in more general databases, such as UniProtKB/Swiss-Prot, 
where E. coli K-12 is the bacterial organism with more proteins 
deposited and curated manually in the database.4

To determine the number of interactions shared between the 
six model organisms, we first used the program Proteinortho to 
assign orthology relationships between all proteins in the proteome 
of each bacterium. Once orthologous proteins were determined, 
we inferred regulatory interactions between organisms based on 
the presence of an orthologous TF and an orthologous target of 
that TF in the model GRN. In the second step, the interactions 
were expanded by using the TU assignments, as described in 
Materials and Methods. This comparison showed that E. coli and 
S. typhimurium LT2 share a high number of interactions, because 
of their phylogenetic closeness. In contrast, the actinobacterium 
M. tuberculosis is the organism with the lowest number of shared 
interactions with the other bacterial models as a consequence of 
its phylogenetic distance; only 12% (in average) of its interactions 
are shared with other bacteria (see Supplementary material).

4 uniprot.org

In order to infer new interactions among the six bacterial 
genomes, they were compared and their interactions were assigned 
based on the presence of the TF-TG orthologous pairs. In this 
regard, Table 1 shows the number of new assignments and their 
proportion per organism. From this analysis, we found between 
776 and 2,499 new interactions, with S. typhimurium LT2 and 
P. aeruginosa the organisms determined to have more new 
interactions inferred. These larger numbers for S. typhimurium LT2 
and P. aeruginosa are probably a consequence of their phylogenetic 
closeness with E. coli K-12 (Fukushima et al., 2002) in comparison 
to the other organisms used as models. It is important that some 
regulatory interactions were found in more than one organism; 
therefore, the sum of the rows may not correspond to the total 
number of new interactions, as is the case for the regulator PhoB 
(NP_414933.1) of E. coli K-12, which regulates the cytochrome 
bd-I ubiquinol oxidase subunit (NP_415262.1), as inferred from 
the interactions previously described in the B. subtilis and 
M. tuberculosis networks.

Performance estimation of the approach

Regarding the reliability of interactions predicted by our 
approach, we compared networks with only TF-TG interactions 
derived from homology relationships for each of the six species with 
the respective reference GRNs. The comparisons were made by 
considering this to be a binary classification problem, and thus, 
edges (and graphlets) in both the reference network and the 
predicted GRN are TPs, edges only in the reference are FNs, and 
edges only in the predicted network are FPs. These results, shown in 
Table  2 for single edges and in Table  3 for graphlets, indicate a 
varying range of values depending on the compared bacteria. For 
recall (R), the rate of recovered TF-TG interactions ranged from 
0.028 for M. tuberculosis to 0.52 for S. enterica, whereas precision (P), 
which indicates the likelihood that the existence of an edge is 
correctly predicted, ranged from 0.20 for P. aeruginosa to 0.69 for 
S. enterica. These results are significantly different from those 
expected by chance, as shown by the very low p-values obtained with 
the G-test. When the same metrics for the presence and absence of 
graphlets were used (Table 3), we found a similar trend for each 
model GRN but with lower values for each metric. Lower values for 

TABLE 2 Single edge comparisons between the six reference networks employed in this work and their counterparts generated following our 
homology-based transfer approach from the other remaining networks.

Organism TP FP FN R P F1 p-value

B. subtilis 168 254 499 2,447 0.094 0.3373 0.147 4.01e–258

E. coli K-12 1,538 709 1,971 0.4383 0.6845 0.5344 0.0

P. aeruginosa PA01 51 202 938 0.0516 0.2016 0.0822 9.46e–39

S. typhimurium LT2 1,491 666 1,394 0.5168 0.6912 0.5914 0.0

S. aureus N315 229 237 466 0.3295 0.4914 0.3945 9.45e–229

M. tuberculosis H37Rv 71 138 2,494 0.0277 0.3397 0.0512 5.99e–52

Precision (P), Recall (R), and F1 were calculated using the true positive (TP), false positive (FP), and false negative edges (FN). P-value of the G-test indicates the significance of the 
differences between the averaged counts of TP, FP, TN, and FN in the 10,000 randomizations of the inferred networks and the results shown in the table.
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TABLE 4 Comparisons between experimentally and inferred GRNs.

Organism Target 
counts

Target counts 
extended _tu TF counts TF counts 

extended_tu Node count Node count 
extended _tu Edge count Edge count 

extended _tu

B. subtilis 168 1748 2,301 191 227 1799 2,339 2,738 4,559

E. coli K-12 1,618 2,188 196 252 1,670 2,224 3,616 5,292

P. aeruginosa PA01 604 1701 124 236 638 1741 998 3,497

S. typhimurium LT2 1,640 2,371 131 224 1,670 2,404 2,969 5,386

S. aureus N315 584 973 51 101 598 990 709 1,518

M. tuberculosis H37Rv 1,405 1710 76 107 1,431 1733 2,637 3,413

Columns as are follows: Genome name; columns 1, 3, 5, and 7 indicate the Targets, TFs, nodes, and number of interactions identified in the original networks; columns 2, 4, 6, and 8 
indicate the Targets, TFs, nodes, and number of interactions identified in the extended networks.

the metrics calculated with graphlets are expected, since a single 
edge that differs between two networks often affects various graphlets.

The expanded GRNs identified new 
TF-TG interactions

Based on the expanded networks, we identified new TF-TG 
interactions described in Table 4 that must be exhaustively analyzed. 
In this regard, we found an increase in the number of targets, TFs, 
nodes, and interactions for all the bacterial and archaeal extended 
networks. For instance, for M. tuberculosis H37Rv, there was an 
increase of 776 new interactions (305 new TGs and 31 new TFs), 
whereas for B. subtilis, 1821 new interactions (36 new TFs and 553 
new TGs) were identified. Therefore, we performed a literature 
search to find evidence to support our predictions. Based on these 
searches, and considering the 1,676 new interactions for E. coli K-12 
(56 new TFs and 570 new TGs), we  identified that 179 of  
these interactions have been described in the literature 
(Supplementary material); however, they are not deposited in 
RegulonDB. In particular, we found that the interaction of SoxS and 
ompW in the GRN of E. coli and inferred from S. enterica has been 
experimentally described. In E. coli, ompW is regulated by three 
TFs, as described in RegulonDB; however, we found that it could 
be also regulated by SoxS (Zhang et al., 2020) in a negative fashion.

We also found a new interaction, where CpxR could 
be regulating tar gene. This TF together CsgD has been described 
in bacterial adhesion, and belongs to the stationary-phase 
response (Santos-Zavaleta et al., 2019b). Experimental evidence 

suggests that CpxR and CsgD repress the transcription of fliA, 
flgM, and tar (Dudin et al., 2014), in addition to bglg and bglb 
(Mattéotti et al., 2011), and PdhR and lipA (Kaleta et al., 2010). 
These regulatory interactions identified by our orthologs 
inferences have not been documented in RegulonDB.

Web server

The GRNs inferred in all the bacterial and archaeal genomes 
are available through a web server whose interface is shown in 
Figure 2. The GRN of user-selected organisms are shown in an 
embedded interactive display that through a very intuitive mouse-
based interface allows the user to select subnetworks and different 
types of regulatory interactions. Edge and node colors can also 
be redefined, as well as the layout used in the network visualization, 
depending on their properties. Additionally, the user can display 
and visualize information related to Genes (name, protein ID, 
initial and end coordinates, and strand), and edges among nodes 
representing genes, including information about whether this is a 
new or known edge and the organism from which it was derived. 
Additionally, if information is available, by clicking on the node 
name or protein identifier, you can access the NCBI/Uniprot page 
related to the gene of interest.

Entire GRNs or used defined subnetworks can be downloaded 
in standard format for further inspection with tools such as 
Cytoscape, that in addition, connect our tool to the whole array of 
apps already available for this visualization tool. For more 
information and a more detailed description of both the input and 

TABLE 3 Graphlets absence comparison between the six reference networks employed in this work and their counterparts generated following our 
homology-based transfer approach from the other remaining networks.

Organism TP FP TN FN R P F1

B. subtilis 168 2,241 10,008 622,878,341 145,210 0.0152 0.183 0.0281

E. coli K-12 57,366 38,545 619,477,397 185,907 0.2358 0.5981 0.3383

P. aeruginosa PA01 101 2,815 73,261,825 12,989 0.0077 0.0346 0.0126

S. typhimurium LT2 56,206 50,622 362,053,161 134,678 0.2945 0.5261 0.3776

S. aureus N315 2087 5,176 17,864,376 19,578 0.0963 0.2873 0.1443

M. tuberculosis H37Rv 215 1876 117,513,083 234,607 0.0009 0.1028 0.0018
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output files, see the website https://regulatorynetworks.unam.mx/ 
or http://132.247.46.6/, help section, where an example is provided.

Conclusion

In this work, we  have expanded the GRNs for six model 
organisms, by considering orthologous inference and TU 
assignments. This inference is based on the assumption that 
orthologous TFs generally regulate the expression of orthologous 
TGs (Yu et al., 2004; Galán-Vásquez et al., 2011; Lenz et al., 2020; 
Soberanes-Gutiérrez et al., 2021). The inferred interactions were 
included in the GRN, and their topological properties were 
calculated. In a second step, we  inferred the GRNs for 12, 879 
genomes, based on TF-TG orthology relationships of six bacterial 
species with well-known regulatory interactions and TU 
assignments. We discuss some examples to show the most relevant 
results obtained from this inference, and topological metrics are 
calculated for these networks. Therefore, our approach to reconstruct 
regulatory networks is a valuable resource of regulatory interactions 
occurring within bacteria and archaea cellular domains, and it may 
integrate with global expression data available for these organisms in 
order to improve global interaction data models. From an 
evolutionary perspective, the dynamics to expand or modify the 

repertoire of cellular functions that transcription factors control 
involves: (a) transcriptional rewiring whereby the promoters of 
orthologous genes in related species differ in the presence or absence 
of a binding site(s) for a conserved transcription factor(s); (b) 
embedding horizontally acquired genes under regulation of an 
ancestral transcription factor; (c) restructuring of the promoters 
controlled by a transcription factor; and (d) modifications in the 
transcription factors themselves (Perez and Groisman, 2009; Pérez-
Rueda et al., 2009). In this context, the inference of archaeal GRNs 
was based under the hypothesis that bacteria and archaea share a 
common ancestry in terms of their TFs, with posterior divergence 
(Bell and Jackson, 2001; Minezaki et al., 2005), whereas the origin of 
the ancestral basal transcriptional machinery cannot be ascertained, 
and it could have been bacterial or archaeal–eukaryal type. For 
instance, 53% of the total repertoire of archaeal TFs exhibit at least 
one homologue in bacterial genomes. In particular, archaea and 
clostridia share a common set of TFs classified in diverse 
evolutionary families (Kyrpides and Woese, 1998; Bell, 2005; Pérez-
Rueda and Janga, 2010), different to the families shared with several 
Actinobacteria and some Gammaproteobacteria. This reinforces the 
notion that TFs of bacteria and archaea share a common ancestry 
and highlight a close relationship between the TFs from archaea and 
Firmicutes. In addition, bacteria and archaea share an operonic 
organization (Seitzer et  al., 2020; Sueda et  al., 2021). Thus, the 

FIGURE 2

Online interface of the “regulatory networks” server storing the publicly available database. Diverse options are available for the user: a description 
of the system, a page to download the raw data, and the core section of the web to filter a GRN (purple box). To visualize load a network, the user 
can select the Gene Regulatory Network of the organism of interest in the “load a network” panel. In the Select network box, the user can Start 
selecting the name of the organism and click on the Load button to visualize the network on the right window (red box). This action will load the 
graph (black box) and node/edges properties (cyan box). Diverse layouts can be applied to visualize the network and specific nodes/edges to 
generate a new subgraph (green box) can be selected. As the graph visualization could be modified, the user can center/fit the network (White 
buttons) or reset the current visualization (Yellow button). Finally, for displayed nodes and edges, the user can download this network (Green 
button). In the example, in the right panel, the network is associated with the transcription factor DnaA (diamond) and their Target Genes (circles). 
Edges represent the transcription direction (when it is available). In the low panel, the TGs under the regulation of the TF are shown: NCBI ID, gene 
name, protein ID, start and end position, and strands. For more details of the web application, please refer to the Supplementary material.
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experimental information concerning GRN in archaea is limited. For 
instance, the GRN of Pyrococcus furiosus shows seven regulons and 
279 genes, which represent 13.5% (279 genes) of the total genes in 
this archaeon (Denis et al., 2018). Therefore, inferences of GRN are 
central to explore in detail the organisms included in this 
cellular domain.

Finally, we have provided readers with a website where all the 
networks can be analyzed and downloaded.
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