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Fat deposition affects meat quality, flavor, and production in pigs. Fat

deposition is influenced by both genetics and environment. Symbiotic

microbe with the host is an important environmental factor to influence

fat deposition. In this study, the fat deposition traits were measured in

239 individuals obtained from Tongcheng pigs × Large White pigs resource

population. The interactions between genetics and gut microbiome in fat

deposition traits were investigated through whole-genome sequencing and

cecum microbial 16S ribosomal RNA sequencing. The results showed that

the percentage of leaf fat (PL) and intramuscular fat content (IMF) were

significantly influenced by host genetics–gut microbiome interaction. The

effects of interactions between host genetics and gut microbiome on PL

and IMF were 0.13 and 0.29, respectively. The heritability of PL and IMF was

estimated as 0.71 and 0.89, respectively. The microbiability of PL and IMF was

0.20 and 0.26, respectively. Microbiome-wide association analysis (MWAS)

revealed Anaeroplasma, Paraprevotella, Pasteurella, and Streptococcus were

significantly associated with PL, and Sharpea and Helicobacter exhibited

significant association with IMF (p < 0.05). Furthermore, Paraprevotella was

also identified as a critical microbe affecting PL based on the divergent

Wilcoxon rank-sum test. Overall, this study reveals the effect of host genetics

and gut microbiome on pig fat deposition traits and provides a new

perspective on the genetic improvement of pig fat deposition traits.
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Introduction

Fat deposition is closely related to carcass and meat quality
traits in pigs. Fat deposition in different parts of the body has
different effects. Subcutaneous backfat thickness is an important
target trait in pig breeding. There is a negative correlation
between backfat thickness and carcass lean percentage. In
the viscera, fat could support and protect organs, and it
affects dressing percentage and feed consumption in pigs. In
addition, intramuscular fat content (IMF) is an important
factor determining the tenderness, juiciness, flavor, meat quality
characteristics, and consumer acceptance (Gao and Zhao,
2009). IMF is positively correlated with juiciness and flavor
of meat (Fortin et al., 2005). Thus, fat deposition is an
important economic trait of pigs, which affects meat quality
and production in pig. Furthermore, the physiological traits
and biochemical indices of pigs are similar to humans, thus,
pig can be used as a model animal for studying human obesity
(Hishikawa et al., 2005).

Fat deposition traits are a type of quantitative traits
with moderate-to-high heritability. This quantitative trait is
influenced by heredity and environment. The gut microbiota
that are symbiotic with the host are irreplaceable environmental
factors. The gut microbiome is known as the second genome
of humans (Zhu et al., 2010), which inhabits 10 times more
gut microbial cells than human cells (Savage, 1977). Pig has
richer gut microbes and is considered to be the main model
animal of human obesity and disease research (Hishikawa
et al., 2005; Merlotti et al., 2017). A reference gene catalog
of pig gut microbiome with a total of 7.69 million genes has
been established by metagenome sequencing of 278 pig fecal
microbiome (Xiao et al., 2016).

The influence of gut microbe on host phenotype, the ratio
of microbial relative abundance variance to the phenotype
variance, is defined as “microbiability” (Difford et al., 2018).
Microbiability has been used for the studies in pigs (Camarinha-
Silva et al., 2017; Tang et al., 2020), cattle (Difford et al., 2018),
and chicken (Wen et al., 2019b). According to the microbiability
of traits, cecal microbiota has a greater contribution to fat
deposition than other large intestine microorganisms (Wen
et al., 2019b; Tang et al., 2020). Moreover, the Treponema in
cecum has been reported to be associated with feed conversion
(Quan et al., 2018). The Prevotellaceae ucg-001 in cecum is
positively correlated with backfat thickness and IMF (Tang
et al., 2020). Besides, the cecum exhibits high capabilities
of degradation and digestion, whose metabolites can provide
energy for the host (Yang et al., 2016). Therefore, the cecum
could be considered as the representative of gut segments for
fat deposition research.

However, the effect of interactions between host genetics
and gut microbiome on fat deposition traits remains largely
unclear. In our study, the resource population was obtained
by crossing a Chinese local breed (Tongcheng pigs) and

a commercial breed (Large White pigs). We measured fat
deposition traits (backfat thickness at shoulder (SBFT), loin
(LBFT), rump (RBFT), average backfat thickness (ABFT),
percentage of leaf and caul fat (PL, PC, and PLC), and
intramuscular fat content (IMF)). We performed whole-
genome sequencing and cecal microbial 16S ribosomal RNA
sequencing of 239 pigs to determine whether there are any
interactions between the host genetics and gut microbiome.
Then, we estimated heritability and microbiability for the
detected interactions between host genetic–gut microbiomes
and further screened candidate microbes influencing traits. This
study provides a new perspective and opportunity for the genetic
improvement of pig fat deposition traits.

Materials and methods

Resource population, fat deposition
traits measured, and sample collection

The resource population is an advanced generation
intercross population. F1 was obtained by crossing 36
Tongcheng sows (a Chinese local breed) with 11 Large White
boars (a commercial breed). The F1 sows and boars were
subsequently intercrossed to produce F2. Then, intercross
was performed in each generation until F9 population was
produced. In this study, a total of 239 individuals from 9 to
10 intercross generations including 119 castrated boars and
120 castrated sows were used for further analysis. All the pigs
were provided by Yunzhi Farm (Tongcheng Country, Hubei
province, China) with coincident feeding and management
conditions. All individuals were healthy, and they were not
administered any antibiotics before being slaughtered.

The phenotypes of 239 pigs were collected, including
live body weight (BW) before slaughter, carcass weight
(CW), backfat thickness at the thickest shoulder (SBFT), loin
(LBFT), rump (RBFT), weight of leaf fat, weight of caul fat,
and intramuscular fat content (IMF). Backfat thickness was
measured using Vernier caliper. The average backfat thickness
(ABFT) was an average of three measurements of backfat
thickness at the shoulder, loin, and rump. The weight of leaf
and caul fat was measured using a scale with an accuracy of
0.01 kg. The percentage of leaf fat (PL) was calculated as the
weight of leaf fat divided by CW. Similarly, percentage of caul
fat (PC) was calculated as the weight of caul fat divided by
CW. The percentage of leaf and caul fat (PLC) was sum of
PL and PC. A near-infrared spectroscopy analyzer was used
to measure the IMF of the longissimus dorsi samples. The
longissimus dorsi samples were collected from the penultimate
3rd to 4th thoracic vertebrae, about 20–30 cm long. The gut
contents of 239 individuals were sampled from cecum after pigs
were slaughtered, snap-frozen in liquid nitrogen, and stored
at −80◦C until sequencing. Spleen tissues were collected into
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50 ml centrifuge tubes containing 75% alcohol by volume and
stored at−20◦C.

All the animal experiments in this study were approved
by the Animal Care and Use Committee of Huazhong
Agricultural University.

Whole-genome sequencing and
analysis

Genomic DNA samples were extracted from spleen of 239
pigs to construct the whole-genome sequencing libraries. Each
library was sequenced using 150 bp paired-end reads with a
HiSeq X5 instrument (Illumina). To minimize mapping error,
low-quality reads were removed using FastQC software. The
clean reads from each pig were aligned to the porcine reference
genome using the Burrows-Wheeler Alignment tool (BWA
ver 0.7.15) with default parameters. We subsequently used the
Picard toolkit to sort the alignment results and remove potential
PCR duplicate reads. The resultant alignments were indexed
using SAMtools (ver 1.6) and processed with the Genome
Analysis Toolkit (GATK, ver 3.7). To call variants, we set a
minimum quality score as 20 based on the bases and mapped
reads. The single nucleotide polymorphisms (SNPs) of each pig
were combined to obtain a common dataset of single nucleotide
polymorphism (SNP) data, and the dataset was processed by
GATK. Finally, the software PLINK (ver 1.90) was used for
quality control of the obtained dataset with the following
filtering criteria: SNP call rate >80%, minor allele frequency
>1%, and Hardy–Weinberg equilibrium p-value<10−6.

16S ribosomal ribonucleic acid
sequencing and analysis

First, the total DNA of cecal contents was extracted
to construct sequencing library, and 30 ng genomic DNA
samples and their corresponding fusion primers were used to
prepare PCR reaction system. PCR reaction was performed to
amplify V3-V4 region of 16S ribosomal RNA (rRNA) with the
primers of 338R (ACTCCTACGGGAGGCAGCAG) and 806R
(GGACTACHVGGGGTWTCTAAT). A 468 bp segment was
amplified by PCR with the number of tags of 50,000. The
PCR products were purified by using Agencourt AMPure XP
magnetic beads and dissolved in the Elution Buffer. Agilent
2100 Bioanalyzer was used to detect the fragment range and
concentration of the library. According to the size of the
inserted fragment, HiSeq platform was selected for pair-end
sequencing. FLASH (Fast Length Adjustment of Short reads, ver
1.2.11) was used to splice the sequences. Based on the sequence
overlapping relationship, the paired reads obtained from pair-
end sequencing were assembled into tags. The assembled
tags were clustered into operational taxonomic units (OTUs)

using software USEARCH (ver 7.0.1090). Clustering analysis
was performed by using UPARSE under 97% similarity to
obtain representative sequence of each OTU. Afterward, OTU
representative sequences were aligned against the Greengene
database by ribosomal database project (RDP) classifier (ver 2.2)
software to obtain the annotation at the levels of phylum, class,
order, family, and genus.

Analysis of interactions between host
genetics and gut microbiome

Construction of genomic relationship matrix
A total of 14,139,625 filtered SNPs were used to estimate

the genomic relationship matrix (GRM) using the HIBLUP
software1 according to the following equation:

G = MM
′

/2
n∑

i =1

pi(1− pi)

In which M indicates m (the number of individuals) × n
(the number of loci) matrix, and pi is the frequency of
the coded allele.

Construction of microbial relationship matrix
All the OTUs were used to construct the microbial

relationship matrix (MRM) by R script (Wen et al., 2019b) based
on the following equation:

mij =
1
N

N∑
o =1

(Xio − Xo) (Xjo − Xo)

σ2
o

In which mij is the estimation of microbial similarity in
cecum of individual i and individual j; Xio and Xjo indicate
the relative abundance of OTU o in the cecum of individual i
and individual j; Xo represents the average relative abundance
of OTU o in cecum of the whole population; σ2

o is the
variance of OTU o relative abundance; and N is the total
OTU count in cecum.

Interactions between host genetics and gut
microbiome

The following multiple random effects model was
established to estimate variance components of the target
traits using HIBLUP software (see text footnote 1).

y = 1µ+ Z1g + Z2m + Z3a+ e

In which y is the n × 1 vector of the fat deposition traits;
µ is the overall mean; g ∼ N (0,Gσ2

g ) is the q × 1 vector of
host genetic random effect, where G and σ2

g are the GRM and
host genetic variance; m ∼ N (0,Mσ2

m) is the q × 1 vector of gut

1 https://www.hiblup.com/
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microbiome random effect, where M and σ2
m are the MRM and

gut microbiome variance; a ∼ N (0,Aσ2
a) is the q × 1 vector of

interactions between host genetics and gut microbiome random
effect, where A and σ2

a are the GRM × MRM and variance
of interactions between host genetics and gut microbiome; e
∼ N (0, σ2

e )is an n × 1 vector of residual effect, where σ2
e

is the residual variance; Z1, Z2, and Z3 are, respectively, the
corresponding incidence matrices of g, m, and a.

Estimation of heritability of fat
deposition traits

A total of 14,139,625 filtered SNPs were used to estimate
the principal components and heritability based on GRM using
genome-wide complex trait analysis (GCTA) software [ver
1.93.1; (Yang et al., 2011)] according to the following equation:

y = Kc + g1 + ε

where y is a vector of the phenotype; c is a vector of fixed
covariates, including sex effect and body weight (BW); K is the
matrix corresponding to c; and g1 is a vector of the total effects
of all SNPs following g1 ∼ N (0,G

′

σ2
g1
) where G

′

and σ2
g1

are the
GRM and genetic variance, respectively; and ε is the residual
effect. The G

′

estimation equation is as follows:

gjk =
1
N

N∑
i =1

(
Xij − 2pi

)
(Xik − 2pi)

2pi(1− pi)

In which gjk is the genetic similarity between individual j
and individual k; Xij and Xik represent the number of reference
alleles in individual j and individual k; pi is the reference allele
frequency; and N is the SNP number.

Estimation of microbiability of fat
deposition traits

The microbiability is referred to the ratio of cecum microbial
variance to phenotypic variance, and it was calculated by the
following equation:

y = Kc +m1 + ε

where y and ε are phenotype and residual effect vectors,
respectively. m1 is the gut microbiota effect following the m1

∼ N (0, Mσ2
m1
). The microbiability was estimated by GCTA

software with the MRM substituted for GRM. In our study,
c contained six covariates, namely, covariates 1–6. Covariate
1 included BW and the first five host genetic principal
components (PCs); covariate 2 included BW and the first two
PCs generated at SNPs which were significantly associated with
PL and IMF; covariate 3 consisted of BW, the first five host
genetic PCs, and the first two PCs generated at SNPs which were

significantly associated with PL and IMF; covariate 4 included
BW, sex, and the first five host genetic PCs; covariate 5 included
BW, sex, and the first two PCs generated at SNPs which were
significantly associated with PL and IMF; covariate 6 consisted
of BW, sex, the first five host genetic PCs, and the first two
PCs generated at SNPs which were significantly associated with
PL and IMF. The first five PCs were generated by the genome
relationship matrix to account for population structure.

The Bayesian information criterion (BIC) was calculated to
select the model with optimal covariates. The smaller the BIC
value was, the higher the model’s fitting level was. The BIC was
calculated according to the following formula:

BIC = kIn (n)− 2In(L)

where k is the number of model parameters, n is the number of
samples, and L is the likelihood value.

Identification of candidate microbes
with fat deposition traits

The divergent Wilcoxon rank-sum test and microbiome-
wide association analysis (MWAS) were used to identify the
candidate microbes for target traits.

Differences in genera, percentage of leaf fat,
and intramuscular fat content between
divergent groups

According to the distribution of fat deposition traits of
the 239 individuals, the highest 20% (n = 48) and lowest 20%
(n = 48) were formed into two extreme divergent groups. The
Wilcoxon rank-sum test was used to test the significance in
56 genera with average relative abundance greater than 0.01%
between the two groups. By the same method, microbes were
grouped in terms of the relative abundance of the genus, and
the significance in individual traits between the two divergent
groups was tested by the Wilcoxon rank-sum test with the
P < 0.05 as the chosen significant test criteria.

Microbiome-wide association analysis of
percentage of leaf fat and intramuscular fat
content

The MWAS between the fat deposition traits of 239
individuals and 56 genera whose average relative abundance was
more than 0.01% was conducted using Gaston package2 in R
software with the following equation:

y = Xβ + u+ ε

y is the vector of fat deposition traits; β is a fixed effect
vector, including 56 genera with average relative abundance

2 https://cran.r-project.org/web/packages/gaston
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value>0.01%; u is a random effect vector. At the same time, sex
and BW are considered as covariates. F-test is used to determine
the significance of the regression coefficients.

Results

Characterization of fat deposition traits
and sequencing outcomes

Host fat deposition phenotype characteristics are presented
inTable 1. There are three categories of fat depositions including
subcutaneous fat (SBFT, RBFT, LBFT, and ABFT), viscera fat
(PL, PC, and PLC), and intramuscular fat (IMF). All measured
traits displayed a high coefficient of variation (15.39 to 42.69%)
(Table 1). The distribution of each trait is shown in the
Supplementary Figure 1. The host genetics was analyzed by the
whole-genome sequencing, and the whole-genome sequencing
information of the 239 individuals was analyzed subsequently.
The SNPs were quality-controlled by Plink software. After

TABLE 1 Summary of fat deposition traits in the resource population.

Trait Sex N Mean SD CV (%)

SBFT (mm) ♂ 119 52.09 8.01 15.39

♀ 120 52.57 8.54 16.24

Total 239 52.33 8.27 15.8

LBFT (mm) ♂ 119 27.88 6.83 24.49

♀ 120 29.19 7.16 24.54

Total 239 28.54 7.01 24.58

RBFT (mm) ♂ 119 29.06 6.49 22.32

♀ 120 32 7.51 23.46

Total 239 30.53 7.16 23.44

ABFT (mm) ♂ 119 36.34 6.4 17.61

♀ 120 37.92 7.01 18.49

Total 239 37.13 6.75 18.16

PL (%) ♂ 119 6.57 1.37 20.79

♀ 120 6.52 1.32 20.31

Total 239 6.54 1.34 20.52

PC (%) ♂ 119 3.52 0.94 26.66

♀ 120 3.64 0.97 26.58

Total 239 3.58 0.95 26.62

PLC (%) ♂ 119 10.08 2.05 20.37

♀ 120 10.16 1.98 19.52

Total 239 10.12 2.02 19.91

IMF (%) ♂ 119 2.13 0.91 42.69

♀ 120 1.89 0.64 34.12

Total 239 2.01 0.8 39.6

SBFT, backfat thickness at shoulder; LBFT, backfat thickness at loin; RBFT, backfat
thickness at rump; ABFT, average backfat thickness; PL, percentage of leaf fat; PC,
percentage of caul fat; PLC, percentage of leaf fat and caul; IMF, intramuscular fat content;
SD, standard deviation; CV, coefficient of variation.

FIGURE 1

Phylum of relative abundance.

quality control, a total of 14,139,625 SNPs was obtained for
subsequent analysis.

The gut microbiome was analyzed by the cecal 16S rRNA
sequencing. The 16S rRNA sequencing analysis produced a
total of 31,801,522 reads from the 239 samples with an average
of 133,061 reads, and 2,324 OTUs were then clustered with
97% sequencing identity. Subsequently, these 2,324 OTUs were
clustered into 19 phyla, 33 classes, 56 orders, 87 families, and
144 genera (Supplementary Table 1). At the phylum level, the
phyla with relative abundance at the top five were Firmicutes,
Bacteroidetes, Proteobacteria, Fusobacteria, and Spirochaetes
(Figure 1). At the genus level, the average relative abundance
of 56 genera was greater than 0.01% (Supplementary Table 2).
The average Sobs index, Chao index, Ace index, Shannon index,
and Simpson index of the microbiota are 782.92, 970.75, 962.85,
4.63, and 0.04, respectively (Supplementary Table 3).

Influence of host genetic–gut
microbiome interactions on
percentage of leaf fat and
intramuscular fat content

The effects of host genetics and gut microbiome on all
traits were different (Table 2). The results indicated that host
genetics (g) and gut microbiome (m) exhibited 0.62 and 0.20
independent effect on SBFT, 0.68 and 0.18 independent effect
on LBFT, and 0.86 and 0.11 independent effect on RBFT,
respectively. In addition, ABFT displayed 0.75 g effect and
0.18 m effect. Generally, the g effect was higher than the m
effect in the presence of other environmental factors. RBFT
exhibited the highest g effect among backfat thickness at three
positions. The PC exhibited 0.40 g effect and 0.24 m effect.
However, PL displayed 0.77 g effect, 0.10 m effect, and 0.13
effect of interactions between host genetics and gut microbiome
(a). The multiple variance components completely explained
the phenotypic variation of PL and IMF. The IMF showed 0.71
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TABLE 2 Host genetics and gut microbiome effects for fat deposition traits.

Trait g m a

σ2
g σ2

g/σ
2
p P-value σ2

m σ2
m/σ2

p P-value σ2
a σ2

a/σ
2
p P-value

SBFT 65.92 0.62 0.23 20.92 0.20 0.14 0.00 0.00 0.25

LBFT 39.45 0.68 0.20 10.74 0.18 0.12 0.00 0.00 0.19

RBFT 66.19 0.86 0.22 8.07 0.11 0.10 0.00 0.00 0.25

ABFT 52.40 0.75 0.23 12.30 0.18 0.13 0.00 0.00 0.24

PL 1.54 0.77 0.18 0.19 0.10 0.09 0.26 0.13 0.18

PC 0.34 0.40 0.15 0.20 0.24 0.14 0.00 0.00 0.27

PLC 3.44 0.89 0.16 0.45 0.11 0.09 0.00 0.00 0.16

IMF 0.98 0.71 0.23 0.00 0.00 0.09 0.34 0.29 0.26

g, the effect of host genetics; m, the effect of gut microbiome; a, the effect of interactions between host genetics and gut microbiome; SBFT, backfat thickness at shoulder; LBFT, backfat
thickness at loin; RBFT, backfat thickness at rump; ABFT, average backfat thickness; PL, percentage of leaf fat; PC, percentage of caul fat; PLC, percentage of leaf fat and caul; IMF,
intramuscular fat content. The significant P-value bounds are P< 0.05.

independent g effect and 0.29 a effect, but no independent m
effect. The a effect of PL and IMF was estimated as 0.13 and
0.29, indicating that host genetic–gut microbiome interactions
affected the formation of PL and IMF.

Heritability and microbiability of
percentage of leaf fat and
intramuscular fat content

The heritability of PL was estimated as 0.71 and that
of IMF as 0.89. PL and IMF were mainly affected by host
genetics in the resource population (Table 3). To estimate
microbiability of PL and IMF, six models were established
based on host genetics, population structure, sex, and BW
(Supplementary Table 4). The BIC value was used to select
optimal model fitting PL and IMF. The optimal model to
calculate PL microbiability contained three covariates including
BW, the first five host genetic principal components (PCs), and
the first two PCs generated at SNPs significantly associated with
PL. The microbiability of PL was estimated as 0.20 (Table 3).
The optimal model to calculate IMF microbiability contained
two covariates including BW and the first two PCs generated
at SNPs significantly associated with IMF. The microbiability of
IMF was estimated to be 0.26 (Table 3).

The genera that are significant
association with percentage of leaf fat
and intramuscular fat content

To identify the candidate microbiome from the resource
population, we tested the significance in traits or relative
abundance between the highest 20% and lowest 20% microbial
abundance or trait groups by Wilcoxon rank-sum test. We
chose the microbes with significant difference in trait and
genus relative abundance between divergent groups as candidate

microbes (Figure 2) in the subsequently association analysis.
PL and IMF had different candidate microbes. Campylobacter
and Paraprevotella exhibited significant difference between
divergent groups of PL, while PL also showed significant
difference between divergent groups of Campylobacter and
Paraprevotella (P < 0.05, Table 4). PL was 6.18% in the highest
20% group of Campylobacter relative abundance, while PL was
7.08% in the lowest 20% group (P < 0.05, Table 4). Then,
PL was 6.25% in the highest 20% group of Paraprevotella
relative abundance, while it was 6.95% in the lowest 20% group
(P < 0.05, Table 4). For divergent Wilcoxon rank-sum test of
IMF, Actinobacillus, Dialister, and YRC22 exhibited significant
differences in relative abundance between highest 20% and
lowest 20% groups (P < 0.05, Table 4). For divergent Wilcoxon
rank-sum test of genus relative abundance, Anaeroplasma,
Megasphaera, and Succinivibrio exhibited significant differences
between highest 20% and lowest 20% IMF (P < 0.05, Table 4).
However, there were no overlapping genera between divergent
groups of traits and genus relative abundance (Table 4).

Microbiome-wide association analysis
of percentage of leaf fat and
intramuscular fat content

The MWAS was used to investigate whether there were
significant associations between genus relative abundance
and traits (PL and IMF). The MWAS results are shown
in Supplementary Table 5. The number of microbes

TABLE 3 Heritability and microbiability of PL and IMF in the
resource population.

Trait h2 SE P-value m2 SE P-value

PL 0.71 0.17 <0.01 0.20 0.12 0.02

IMF 0.89 0.16 <0.01 0.26 0.12 0.02

h2 , heritability; m2 , microbiability. The significant P-value bounds are P< 0.05.
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FIGURE 2

Microbial detections via Wilcoxon rank-sum tests between divergent groups. Microbial abundance in the highest 20% group with lowest 20%
group traits. Displayed from the outer to the inner circle is the trait, the significance test in trait between the two groups with the highest and
lowest microbial abundance (Pm−trait), the significance test in each microbial abundance between the highest and lowest trait (Ptrait-m), where
p-values are plotted as –log10 (p-value); the red line shows the significance threshold (P < 0.05). Each point represents a microbe, and the big
point indicates the p-value passed the significance threshold. The dot on the same gray dashed line indicates that the Pm−trait and Ptrait-m values
for one microbe are all <0.05.

significantly associated PL and IMF was 4 and 2, respectively
(P < 0.05, Table 5). Notably, some genera showed high
significant associations with traits. For example, Anaeroplasma
was significantly associated with PL (P < 0.05), whereas
Sharpea with IMF. Moreover, Paraprevotella, Pasteurella,
and Streptococcus were also significantly associated with PL
(P < 0.05), while Helicobacter exhibited significant association
with IMF (P < 0.05).

We adopted two methods (divergent Wilcoxon rank-sum
test and MWAS) to screen microbes affecting PL and IMF at
the genus level and found that Paraprevotella was significantly

associated with PL in both methods (P < 0.05). As a significant
candidate genus, Paraprevotella is one of the most important
butyric acid-producing bacteria, and it may affect visceral fat
deposition by producing butyric acid (a short-chain fatty acid).

Discussion

Fat deposition trait is closely related to carcass and meat
quality traits in pigs, and it affects economic income and feed
consumption. Pig fat deposition traits are influenced by host
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TABLE 4 Microbiome relative abundance and trait Wilcoxon test of highest 20% and lowest 20% groups in the resource population.

Trait Micro The 20% pigs of The 20% pigs of P-value The 20% pigs of The 20% pigs of P-value

highest trait lowest trait highest micro lowest micro

Micro Micro Micro Micro Trait Trait Trait Trait

mean SD mean SD mean SD mean SD

PL Anaeroplasma 0.04 0.05 0.03 0.04 0.12 7.01 1.12 6.28 1.08 <0.01

Campylobacter 0.31 0.81 0.65 0.9 <0.01 6.18 1.2 7.08 1.29 <0.01

Desulfovibrio 0.44 1.03 0.39 0.52 0.15 6.49 1.17 7.14 1.42 0.01

Escherichia 0.91 2.13 1.71 4.82 0.11 6.3 1.25 6.79 1.28 0.04

Haemophilus 0.01 0.02 0.03 0.08 0.01 6.23 1.12 6.68 1.64 0.09

Paraprevotella 0.03 0.06 0.08 0.23 0.02 6.25 1.36 6.95 1.39 0.03

IMF Actinobacillus 0.05 0.09 0.05 0.18 0.01 2.09 0.84 1.82 0.7 0.07

Anaeroplasma 0.04 0.04 0.03 0.04 0.16 2.22 0.84 1.83 0.51 0.01

Dialister 0.04 0.11 0.03 0.1 0.04 2.24 0.82 2 0.54 0.12

Megasphaera 0.43 1.72 0.11 0.3 0.07 2.22 0.78 1.91 0.51 0.02

Succinivibrio 0.01 0.02 0.04 0.09 0.27 1.78 0.66 2.07 0.65 0.02

YRC22 1.01 1.02 0.65 0.64 0.03 2.08 0.8 1.89 0.61 0.2

PL, percentage of leaf fat; IMF, intramuscular fat content; SD, standard deviation. The significant P-value bounds are P< 0.05.

genetics and gut microbiome. Our study found that PL and
IMF were influenced by the interactions between host genetics
and gut microbiome. Several studies have identified that host
genetics have interacted with gut microbiota and some host
genetic variations affect the gut microbiota (Li et al., 2019;
Bergamaschi et al., 2020; Wen et al., 2021). In our study, the IMF
showed 0.29 effect of interactions between host genetics and
gut microbiome, but no independent effect of gut microbiome.
The reason that the IMF showed no independent effect of
gut microbiome may be that gut microbiota affects IMF by
interacting with host genetics, but not alone. Then, we estimated
the heritability and microbiability of PL and IMF. In this study,
a total of 14,139,625 SNPs were obtained from whole-genome
sequencing of 239 samples from the resource population. GCTA
was used to construct the GRM and estimate heritability of
PL and IMF. The heritability of PL and IMF was estimated
as 0.71 and 0.89, respectively. The proportion of SNP variance
has been reported to be SNP heritability of traits (Yang et al.,

TABLE 5 Microbes significantly associated with PL and IMF.

Trait Genus Beta P-value

PL Anaeroplasma 3.16 0.03

Paraprevotella −0.83 0.03

Pasteurella −1.01 0.04

Streptococcus 0.04 0.03

IMF Helicobacter 0.12 0.01

Sharpea 2.53 <0.01

PL, percentage of leaf fat; IMF, intramuscular fat content. The significant P-value bounds
are P< 0.05.

2017). Heritability is calculated by genome sequencing data to
analyze the effect of genetics on human body weight (Yang
et al., 2010). The heritability is influenced by breed (Lopez et al.,
2018), sample size (Tang et al., 2020), and sequencing methods
(Uemoto et al., 2017). In addition, the heritability depends on
the population, because both the variation in additive and non-
additive genetic factors of each trait, and the environmental
variance are population-specific (Visscher et al., 2008). The
study results showed that when environmental factors of the
resource population were consistent, most of the variation that
is observed in the present population is caused by variation
in genotypes. Besides, PL and IMF of this resource population
were not strongly selected, and their genetic variation was large.
The pedigree information (Costa et al., 2015) and chip data
(Won et al., 2018; Wurtz et al., 2018) were widely applied
for quantitative trait locus (QTL) mapping. So far, no report
on more than 10 million SNP markers used for estimating
the heritability of quantitative traits in livestock and poultry
is available. This study provides a reference for heritability
estimation based on genome-wide SNP data.

In our study, heritability estimation model was consistent
with microbiability estimation model. Both sex and BW were
used as covariates to explore the influence of cecal microbiome
on traits. To correct the effect of host genome on traits, the
first five PCs generated by the GRM and the first two PCs
generated at SNPs which were significantly associated with PL
and IMF are considered as covariates. In the previous study,
the first two PCs and the first five PCs of population structure
were used as covariates to estimate microbiability (Wen et al.,
2019b). In our study, the host heredity had major effect on traits.
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Several studies have reported that the microbiability of traits
was lower than the heritability of traits in pigs (Camarinha-
Silva et al., 2017; Tang et al., 2020; Khanal et al., 2021),
chicken (Wen et al., 2019b), and cattle (Difford et al., 2018).
In previous studies, the microbiability of the IMF was estimated
as 0.13 in Enshi pigs (Tang et al., 2020), estimated as 0.03–0.06
following different models in commercial F1 sows composed of
Yorkshire × Landrace or Landrace × Yorkshire (Khanal et al.,
2021). The microbiability of IMF in the resource population
was estimated to be 0.26, which was higher than that in the
previous study. The reason for the difference in these studies’
results is that estimation of microbiability is affected by breed,
environment, sample size, sequencing method, and estimation
algorithm (Wen et al., 2019a). So far, few studies have described
the microbiability of fat deposition traits in pigs, and estimation
of microbiability of fat deposition traits in pigs needs to be
further studied. Our estimated microbiability suggested that the
gut microbiome had an influence on PL and IMF and provided
a reference for microbiability estimation.

Pig fat deposition traits are affected by a large number
of complex microbes and their metabolites which are closely
related to host immune diseases, nutritional metabolism, and
body behavior (Patil et al., 2020). To select microbes affecting
traits, divergent Wilcoxon rank-sum test and MWAS were
applied in our study. The divergent Wilcoxon rank-sum
test has been used to analyze microbes in previous studies
(Yang et al., 2016; Gardiner et al., 2020). MWAS has been
proposed with reference to genome-wide association analysis
to establish the relationship between traits and gut microbes,
and it has been applied in basic research (Gilbert et al., 2016;
Vollmar et al., 2020). In our study, the divergent Wilcoxon
rank-sum test showed that Campylobacter and Paraprevotella
were significantly associated with PL, and the MWAS results
showed that Anaeroplasma, Paraprevotella, Pasteurella, and
Streptococcus were significantly associated with PL. Among
these genera, Streptococcus is reported as one of the most
abundant bacteria in the gut microbes of Jinhua Pigs (Yang
et al., 2018). Jinhua pig is an obese-type breed characterized
by higher levels of intramuscular fat (Miao et al., 2009).
MWAS results indicated that Helicobacter and Sharpea were
significantly associated with IMF. Sharpea azabuensis has been
reported to affect methane emissions in rumen, and it was
viewed as one of the important driving factors of lactic acid
production and utilization (Kamke et al., 2016). In previous
studies, lactic acid can reduce fat synthesis and accumulation
(Yonejima et al., 2013; Gan et al., 2020).

Divergent Wilcoxon rank-sum test and MWAS results
indicated that Paraprevotella was significantly associated with
PL, suggesting the influence of single genus on host phenotype.
Paraprevotella belongs to Bacteroidetes phylum which could
degrade cellulose and produce butyric acid (Gao et al., 2018;
Hasan et al., 2018). Butyric acid is a short-chain fatty acid
(SCFA), and SCFAs are closely related to glucose and lipid

metabolism and energy metabolism (Dabke et al., 2019).
It has been demonstrated that SCFAs enhance adipocyte
differentiation in porcine adipose tissue (Li et al., 2014). The
content of butyric acid has been reported to be positively
correlated with the relative abundance of Paraprevotella in
mouse feces (Fei et al., 2019). Butyric acid is a major energy
source for intestinal epithelial cells and plays key functional
roles in maintaining intestinal homeostasis and in overall health
status. It can promote the development of the intestine and
has antioxidant and anti-inflammatory effects (Fu et al., 2019).
Our data revealed a significant negative correlation between the
relative abundance of Paraprevotella and PL. Paraprevotella may
affect the intestinal homeostasis by influencing the anabolism of
butyric acid, thereby affecting the visceral fat deposition in pigs,
but the mechanism of Paraprevotella on affecting fat deposition
in pig needs to be further studied.

Conclusion

This study revealed that PL and IMF were influenced by the
host genetics–gut microbiome interaction. Through divergent
Wilcoxon rank-sum test and microbiome-wide association
analysis, we screened out Paraprevotellawhich were significantly
associated with PL. Overall, this study reveals the effect of host
genetics and gut microbiome on pig fat deposition traits and
provides a reference for the genetic improvement of pig fat
deposition traits, which can affect pig fat deposition by altering
the gut microbiome.
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