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The assembly mechanisms and drivers of abundant and rare fungi in
dryland montane forest soils remain underexplored. Therefore, in this study,
we compared the distribution patterns of abundant and rare fungi and
explored the factors determining their assembly processes in a dryland
montane forest in China. Stronger distance-decay relationships (DDRs) were
found in abundant sub-communities than in rare sub-communities. In
addition, abundant fungi exhibited greater presence and wider habitat niche
breadth than rare fungi. Both the null model and variation partitioning
analysis indicated that dispersal limitation and environmental selection work
together to govern both abundant and rare fungal assembly, while dispersal
limitation plays a dominant role. Meanwhile, the relative influence of dispersal
limitation and environmental selection varied between abundant and rare
sub-communities, where dispersal limitation showed greater dominance in
abundant fungal assembly. Mantel tests demonstrated that soil pH and
phosphorus played critical roles in mediating abundant and rare fungi
assembly processes, respectively. Our findings highlight that the distinct
biogeographic patterns of abundant and rare fungi are driven by different
assembly mechanisms, and the assembly processes of abundant and rare
fungi are determined by diverse ecological drivers in dryland montane
forest soils.

dryland montane forest, biogeographic patterns, habitat niche, stochastic processes,
abundant and rare fungi
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Introduction

Soil microbes play crucial roles in mediating ecosystem
structure and processes, such as nutrient and material cycles
(Mooshammer et al., 2014; Delgado-Baquerizo et al., 2016; de
Sosa et al., 2018). Elucidating the fundamental assembly process
driving microbial richness and composition is vital to predicting
the response of ecosystems to global changes (Zhou and Ning,
2017). Indeed, most processes related to community assembly
can be classified into two classes: stochastic and deterministic
processes (Stegen et al., 2012; Zhou and Ning, 2017; Liu L. et al,,
2021). Niche theory postulates that niche processes, including
abiotic and biotic selection, determine community assembly
(Fargione et al., 2003). In contrast, the neutral theory assumes
that all individuals in communities are ecologically equivalent
and that communities are regulated by neutral processes, such
as dispersal limitation and ecological drift (Chase and Myers,
2011). Multiple ecological processes are generally believed to
work together and drive community assembly (Stegen et al.,
2013), whereas their relative roles depend on time and space
(Stegen et al., 2012; Dini-Andreote et al., 2015).

Soil microbial communities are primarily dominated by
a few abundant species, while a mass of other species (“rare
biosphere”) have an extremely low abundance (Jia et al., 2018;
Egidi et al, 2019). Rare and abundant microbial assembly
processes are subjected to divergent controlling mechanisms
(Liu et al., 2015; Gao et al,, 2020). Owing to the difference in
competition capacity and stress tolerance, rare and abundant
microbes exhibit quite different biogeographic patterns (Jiao
and Lu, 2020b). Hence, comparing the ecological distribution
and assembly mechanisms of rare and abundant microbes
may be a good way to better infer microbe-driven ecosystem
functioning. To date, biogeographical studies on abundant
and rare bacteria have been extensively conducted in diverse
environments (Jiao et al,, 2017; Gao et al,, 2020; Hou et al,,
2020). Compared with bacteria, fungi have a larger body size
(Powell et al, 2015) and can decompose complex molecules
from plant litter inaccessible to most bacteria (Boer et al., 2005;
Romanf et al., 2006). A previous study has found that soil fungal
communities are structured by dispersal limitation, whereas
deterministic factors shape bacterial composition in drylands
(Wang et al, 2017). Our previous study has demonstrated
that abundant and rare bacteria exhibit distinct biogeographic
patterns and assembly mechanisms in the dryland montane
forest. Therefore, a comparison between abundant and rare
fungi is vital to exploring soil microbial assembly processes.
However, the difference in distribution patterns and assembly
processes between rare and abundant fungi in dryland montane
forests has been barely elucidated.

An open question in ecology is whether and how
environmental factors regulate the balance among different
assembly processes (Tripathi et al, 2018). In fact, the
environmental moderators of soil microbial community
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assembly processes have been widely examined in numerous
ecosystems (Delgado-Baquerizo et al, 2020; Liu L. et al,
20215 Ni et al,, 2021). Studies have reported that community
assembly processes of soil microbes are influenced by different
environmental variables, such as aridity, temperature, salinity,
soil pH, and nutrients (Zhang et al., 2019; Jiao and Lu, 2020a;
Wan et al,, 2021), and their relative influence depends on
soil microbial taxa, ecosystem types, and inquiry scales. As a
particular component of dryland ecosystems, dryland montane
forests are mainly distributed in high-elevation regions.
Compared with grasslands and deserts, dryland montane forests
are characterized by higher nutrient and water availability and
lower temperatures (Wang et al., 2021a). Moreover, dryland
forests have been reported to be particularly sensitive to climate
change and associated increases in water stress (Liu et al., 2013;
Poulter et al., 2013). Our previous studies have observed that
soil pH and temperature rather than aridity drive the assembly
processes of abundant and rare bacteria in dryland montane
forests (Wang et al, 2021b). More importantly, studies on
agricultural ecosystems and wetlands have demonstrated that
divergent environmental factors mediate the assembly processes
of abundant and rare fungi (Jiao and Lu, 2020a; Wan et al,
2021). Therefore, exploring the foremost drivers of soil fungal
assembly processes in dryland montane forests may provide
new evidence for fundamental mechanisms generating and
maintaining biodiversity in drylands. However, the relative
influence of different environmental factors on abundant and
rare fungal assembly processes remains unclear.

Here, we aim to compare the distribution patterns and
assembly mechanisms of abundant and rare fungi in dryland
montane forest soils and test how different environmental
factors jointly drive the assembly processes of abundant and rare
fungi. Hence, we collected 24 samples from major distribution
regions of dryland montane forests in China and assessed soil
fungal communities based on high-throughput sequencing data
of ITS. We hypothesized that (1) abundant and rare fungal sub-
communities have distinct distribution patterns and assembly
mechanisms and (2) divergent environmental factors regulate
the assembly processes of abundant and rare fungi.

Materials and methods
Study region and field sampling

According to the distribution range of forest habitat, we
selected 24 sites from a mountain forest ecosystem in northern
Xinjiang, China, during the peak of the growing season (July-
August) in 2016 (Supplementary Figure 1). The study region
covers more than 450,000 km?. Its general topography is
characterized by two longitudinal mountain systems (i.e., the
Tianshan Mountains and Altay Mountains) separated by a basin
(the Junggar Basin). The climate is mainly arid or semi-arid,
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with high variability of precipitation and temperature. At each
site, a 20 m x 20 m plot was established from the representative
vegetation. After that, 15 soil cores were combined per plot,
taken at depths of 0-10 cm, and then mixed into a composite
sample. Then all composite samples were sieved through a
2 mm mesh and divided into two portions: one portion was
stored in thermally insulated boxes (at 4°C) for determining soil
physicochemical properties, and the other was stored at —20°C
until DNA extraction.

Soil and climate data

Soil physicochemical properties, including soil pH, total
phosphorus (TSP, g/kg), total nitrogen (TSN, g/kg), total organic
carbon (TOC, g/kg), soil available nitrogen (AN, mg/kg),
moisture content (SM, %), and soil N: P and C: N ratios. SM
was measured gravimetrically by drying at 105°C to a constant
weight. Soil pH was measured at a soil-to-water ratio of 1:2.5.
TOC was measured by the K,Cr,07 oxidation method. TSN
was measured by the Kjeldahl procedure. AN was measured
by the alkali diffusion method. TSP was measured by the
molybdenum blue method.

Climatic variables, including mean annual temperature
(MAT) and mean annual precipitation (MAP), were extracted
from the WorldClim global climate database using the
geographic coordinates of each site (resolution: 1 km x 1 km).!
We then obtained annual potential evapotranspiration (PET)
from CGIAR-CSI (with a resolution of 1 km x 1 km).2 The
aridity index (AI) was estimated as the ratio of MAP to PET
(AI = MAP/PET; UNEP, 1992).

Molecular and bioinformatics analysis

Total fungal DNA was extracted from 0.5 g of well-mixed
fresh soil samples using E.Z.N.A. soil DNA kits (OMEGA, USA)
following the manufacturer’s instructions. The fungal internal
transcribed spacer (ITS) region was amplified using universal
primers ITS1F (5-CTTGGTCATTTAGAGGAAGTAA-3') and
ITS2 (5'- TGCGTTCTTCATCGATGC-3') (Gardes and Bruns,
1993). High-throughput sequencing was performed on an
Mlumina Miseq PE300 sequencing platform at Beijing Allwegene
Tech, Ltd. (Beijing, China).

Fungal sequences > 200 bp with an average quality
score > 20 and without ambiguous base calls were quality
processed within the QIIME package (Version 2.0). After
that, the remaining high-quality sequences were clustered into
operational taxonomic units (OTUs) using a 97% similarity
threshold within UPARSE. The taxonomy of each ITS gene

1  http://www.worldclim.org

2 https://cgiarcsi.community/category/data/
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sequence was analyzed by comparison with sequences within
the UNITE database (Version 8.2). OTUs were picked at 97%
sequence similarity. Meanwhile, OTUs with reads of less than
20 were discarded to avoid the random influence on the
identification of rare taxa (Jiao and Lu, 2020a). To eliminate
the influence of sequencing depths on the analyses, sequences
were rarefied at 21,042 sequences from each sample. In this
study, OTUs with relative abundances above 0.1% of the total
sequences were regarded as abundant, while those with relative
abundances below 0.01% were defined as rare. Soil fungal raw
sequences used in this paper are available in the NCBI Sequence
Read Archive under BioProject PRINA825059.

Statistical analyses

Firstly, 11 environmental variables (MAT and Al for
climate; SM, TSN, TOC, SAN, TSP, CN, NP, and pH for
soil attributes; Altitude) were used in this study. To reduce
strong collinearity between variables, we removed TOC and
NP according to Pearson’s > | 0.7| (Supplementary Figure 2).
Geographic distance matrices were calculated based on GPS
coordinates, and then standardized environmental Euclidean
distance matrices were calculated within the “vegan” package
(Oksanen et al.,, 2015). The Bray-Curtis community dissimilarity
distance was estimated to reflect the variance in species
composition (B-diversity) among soil fungal communities. The
slope of ordinary least-square regression between compositional
similarity (1-B-diversity) and geographic distance was further
used to quantify the distance—decay relationships (DDRs).

Levins’ niche breadth (B) index was employed to elucidate
the patterns of stochastic and deterministic processes and their
effects on soil fungal communities (Levins, 1968). The B-value
of each fungal OTU was calculated following the previous study
(Jiao et al.,, 2020). A higher B-value indicates a wider habitat
niche breadth. Community B-values (Bcom) were quantified
by abundance-weighted mean B-values from all fungal OTUs
occurring within each community (Wu et al,, 2018). A fungal
community with a higher B-value is expected to be more
metabolically flexible (Pandit et al., 2009). Notably, the “niche.
width” function of the “spaa” R package was applied to calculate
Levins’ niche breadth (B) index.

Abundance-based null model and neutral model analyses
were used to infer the influence of ecological processes on soil
fungal assembly (Kraft et al, 2011; Myers et al., 2013; Ning
etal, 2019). In brief, 999 null local communities were generated
by randomly resampling individuals into a local community
with probabilities proportional to the regional abundance of
the species while maintaining the same species richness and
abundance (Ning et al., 2019; Liu W. et al,, 2021). Afterward,
the standardized effect size (B-deviation) of B-diversity was
calculated using the following formula: B-deviation = [B-
diversity,;; — Mean (B-diversity,,;)]/standard deviation
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(B-diversity,,;), where B-diversity,,; and B-diversity,,s can
denote the mean Bray-Curtis dissimilarity of null communities
and observed PB-diversity, respectively. Stochastic processes
dominate community assembly if the B-deviation is statistically
the
remarkably greater than zero indicates a dominant influence

indistinguishable from zero; otherwise, B-deviation
on dispersal limitation of heterogeneous selection. Conversely,
the domination of homogenizing dispersal or homogeneous
selection would be supported if the B-deviation is significantly
less than zero (Zhang et al., 2020). The null-model analysis was
performed using “tNST” within the NST package (Ning et al.,
2019). Additionally, the null-model approach conducted based
on phylogenetic 3-diversity can better evaluate the relative roles
of different assembly processes (Stegen et al.,, 2013). However,
fungal ITS is a variable region and cannot be aligned, so this
study did not implement such analyses (Zinger et al.,, 2019).
Meanwhile, the contribution of stochastic processes was further
calculated using a neutral model by predicting the association
between abundance and frequency of taxonomic occurrence
(Sloan et al., 2006). R? indicates the fit to the neutral model. The
neutral model analysis was performed using the “snm” function
within the iCAMP package (Ning et al., 2020).

To further identify the relative roles of environmental
and dispersal limitation, we partitioned the relative influence
of spatial and environmental factors on p-deviations through
variation-partitioning analysis (VPA), which was performed
using the “vegan” package in R. Multiple regressions on
distance matrices (MRMs) were used to select environmental
and spatial factors through forwarding selection until P < 0.05.
The MRM test was performed using the “ecodist” package
in R. The individual influence of spatial factors represents
the effect of dispersal limitation, whereas the individual
effect of environmental distance indicates the importance of
environmental selection (Myers et al., 2013; Zhang et al., 2020).
After that, the effect ratio of environmental selection to dispersal
limitation (ESDS) was used to elucidate further the relative
importance of environmental selection and dispersal limitation.
Finally, the Mantel test was conducted to elucidate the influence
of different environmental factors on the relative importance of
different assembly processes.

Results

General distribution patterns of
abundant and rare taxa

After quality filtering and removing chimeric sequences,
505,008 high-quality sequences were clustered into 1,688
OTUs. Across those fungal OTUs, a total of 969 OTUs
(57.41%) with 23,647 sequences (4.68%) were identified as
rare fungi, while only 172 OTUs (10.19%) with 398,367

sequences (78.88%) were identified as abundant fungi
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(Supplementary Table 1). Abundant sub-communities were
mainly dominated by Ascomycota (54.08%), Basidiomycota
(27.17%), and Mortierellomycota (6.82%), whereas rare sub-
communities were primarily dominated by Ascomycota
(57.30%),  Basidiomycota  (18.17%),  Mortierellomycota
(5.03%), Chytridiomycota (3.05%), Rozellomycota (2.04%),
and Glomeromycota (1.59%) (Figure 1A).

Our results showed that abundant fungi had a greater
presence than rare fungi across soil samples. Specifically,
62.21% of abundant OTUs occurred in > 50% of samples,
whereas only 3.20% of the rare OTUS (31 OTUs) were
present in > 50% of samples (Figure 2A). Abundance-
occupancy relationships indicated that abundant fungi showed
weaker positive associations than rare fungi (Figure 2B).
Meanwhile, we observed remarkably higher mean Bcom values
in abundant sub-communities than in rare sub-communities
(Figure 1B). Remarkable DDRs between geographic distance
and community similarity were found in both abundant and
rare sub-communities (P < 0.001, Figure 3A), and the slope
of DDRs was much stronger in abundant sub-communities
than in rare sub-communities. Furthermore, abundant and rare
sub-communities did not differ significantly in community f-
diversity (Figure 3B). Both the species composition of abundant
fungi was mainly shaped by spatial factors, followed by SM and
TSN (R? = 0.311 and 0.308, Supplementary Table 2).

Assembly processes of rare and
abundant fungal sub-communities

The neutral community model explained a larger fraction
of the variation in the abundant sub-community (R*> = 0.87)
than in the rare sub-community (R? = 0.59; Table 1). The null
model analysis showed that B-deviations for both abundant and
rare fungal subcommunities were significantly greater than zero
(Figure 4A), implying the dominance of dispersal limitation
or heterogeneous selection. VPA showed that environment
and space explained the total amount of variation in rare
fungal B-deviations than in abundant B-deviations (Figure 4B).
Environmental and space individually explained 3.40 and 11.2%
of the variation in abundant fungal B-deviation, with an ESDR
of 0.30. Meanwhile, environmental and space individually
explained 8.67 and 21.23% of the variation in rare fungal -
deviation, with an ESDR of 0.408. These results showed that
both abundant and rare fungal assembly were mainly regulated
by dispersal limitation, while dispersal limitation played a
relatively more important role in the abundant fungal assembly.

The Mantel test showed that B-deviation of abundant sub-
communities was significantly related to the differences in MAT,
soil nutrient, and pH, while that of rare sub-communities was
significantly associated with differences in altitude, MAT, Al,
soil nutrient, and pH (Table 2). Among these environmental
factors, the B-deviation of abundant sub-communities was more
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influenced by the difference in pH, while that of rare sub-
communities was more influenced by the difference in TSP.
Increasing differences in soil pH and phosphorus resulted in
increased stochasticity for abundant and rare sub-communities,
respectively (Figure 5).

Discussion

Differential distribution and
environment preference of abundant
and rare fungi

Understanding species distribution patterns and ecological
preferences is critical for predicting how species respond
to ongoing environmental changes (Maharjan et al,, 2021).

Frontiers in Microbiology

Consistent with the findings reported for the whole fungal
community (Li et al, 2021), robust DDRs were found for
abundant and rare fungi. But the steeper distance-decay slope
of abundant fungi indicated that the turnover rate of abundant
fungi was considerably faster than that of rare fungi (Figure 3A).
The divergence in distribution patterns of abundant and rare
fungi may be attributed to differences in dispersal potential
and tolerance capability. We also found narrower habitat niche
breadth and less ubiquity for rare fungi than abundant fungi
(Figure 1B and Figure 2), indicating that rare taxa have lower
tolerance and adaptability to harsh environments than abundant
taxa (Delgado-Baquerizo et al., 2018). This phenomenon may
reflect that rare taxa are ill-suited to most desert habitats
(Brown, 1984) and therefore are limited by habitat specificity
(Barberan et al, 2014; Jousset et al,, 2017). Taken together,
these findings reveal differential distribution patterns of rare and
abundant fungi in dryland montane forests.
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Dominant role of dispersal limitation in
abundant and rare fungal assembly

Disentangling the relative contributions of deterministic
and stochastic processes to microbial soil assembly can
help better infer microbially driven ecosystem processes and
functions (Nemergut et al,, 2013). In this study, the neutral
model analysis indicated that abundant sub-communities were
more affected by neutral processes (Table 1). Both the null
model and VPA analysis further demonstrated that dispersal
limitation and environmental selection work together to govern
both soil abundant and rare fungal assembly, whereas dispersal
limitation showed a dominating effect on both abundant
and rare fungal assembly (Figure 4). Meanwhile, our results
also revealed that dispersal limitation has a greater relative
contribution in abundant fungal assembly than in the rare,
which supports prior reports that abundant sub-communities
are more limited by dispersion than rare sub-communities (Wu
et al,, 2017; Jiao and Lu, 2020a). Most abundant species are
more prone to dispersal limitation because more individuals
can potentially be involved in a dispersal event (Liu et al,
2015). Moreover, it is noteworthy that a large proportion
of the variation in fungal B-deviations remained unexplained
by selected environmental and spatial factors (Supplementary
Table 2). This result was consistent with the findings of previous
studies, which may reflect the influence of other unidentified
biotic factors (i.e., plant litter or plant traits; Yang et al., 2019;
Guo et al, 2020; Wang et al.,, 2022). Together, these results
implied that dispersal limitation played a greater role than
environmental selection in shaping the community assembly of
abundant and rare fungi.

More importantly, our results indicated that environmental
selection had a stronger influence on a rare fungal assembly
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TABLE 1 Fit of the neutral model in abundant and rare fungal
sub-communities in dryland montane forest soil.

Abundant Rare

0.29 0.87 0.86 0.59

than the abundant. It is widely believed that abundant species
occupy diverse niches and have higher resource competitiveness
and greater tolerance and adaptability to environmental changes
than rare species (Kraft and Ackerly, 2010; Delgado-Baquerizo
et al,, 2018). Hence, a rare fungal assembly is more easily
influenced by environmental selection than an abundant one.
Additionally, our results are also inconsistent with previous
reports that environmental selection dominates in rare fungal
sub-communities in agricultural and apple orchard soil (Jiao and
Lu, 2020a; Zheng et al,, 2021), probably due to the difference
in environmental regime and geography among studies (Chase,
2010; Zhou et al, 2014). Taken together, our findings reveal
dominant roles for stochastic processes in abundant and rare
fungal assembly.

Soil pH and phosphorus drove the
variation in the assembly process of
abundant and rare fungi in dryland

montane forests
Uncovering drivers mediating the balance between
deterministic and stochastic processes in soil microbial

communities is vital to gaining an advanced mechanistic
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TABLE 2 Mantel test results showing internal links of $-deviation and
environmental and spatial distances.

Variables Abundant Rare
Mantel R p Mantel R 14

Space 0.336 <0.001 0.480 <0.001
SM 0.052 >0.05 —0.031 >0.05
TSN 0.187 <0.05 0.029 >0.05
TSP 0.191 <0.05 0.323 <0.001
CN 0.232 <0.05 0.178 <0.01
AN —0.141 >0.05 0.046 >0.05
pH 0.319 <0.001 0.201 <0.01
MAT 0.258 <0.01 0.192 <0.05
Al —0.018 >0.05 0.209 <0.01
Altitude 0.107 >0.05 0.177 <0.01

Values in bold indicate relative stronger correlation (Mantel R) in abundant and rare
fungal subcommunities.

understanding of microbial ecology (Feng et al., 2018; Tripathi
et al.,, 2018). Previous studies have reported that community
assembly processes of soil microbes are regulated by a wide
range of environmental factors, such as soil pH, salinity,
nutrients, and temperature (Shen et al., 2019; Zhang et al., 2019;
Jiao and Lu, 2020a,b; Ni et al., 2021). In this study, we found
both the difference in soil pH, nutrients, MAT, and AI were
significantly related to the variation in the balance between
different assembly processes of abundant and rare fungi.
However, the assembly process of abundant and rare fungi was
more affected by soil pH and phosphorus (STP). Increasing
differences in soil pH and STP resulted in increased stochasticity
for abundant and rare sub-communities, respectively (Figure 5).

Soil pH and nutrients are the key determinants of ecosystem
structure and processes at multiple scales (Forstner, 1994; Xu
et al.,, 2018; Neina, 2019; Qin et al., 2020). We further found

Frontiers in Microbiology

that the relative frequency of abundant fungal B-deviation in
high-pH sites (pH 6.7-7.5) was higher than in low-pH sites (pH
4.3-6.3) (Figure 6), which indicated that the relative importance
of dispersal limitation on abundant fungi was higher in neutral
soil than weakly acid soils. Neutral soils were suitable for most
soil microbes due to their weakened environmental stress and
selection strength in them (Tripathi et al, 2018), which may
induce the increased role of dispersal limitation in high-pH
sites (neutral soil). Furthermore, we observed that the relative
frequency of rare fungal p-deviation in high-TSP sites (TSP
0.71-1.04) was higher than in low-TSP sites (TSP 0.36-0.70)
(Figure 6), which demonstrated that dispersal limitation on
rare fungi was more important in high-TSP sites. The increased
role of dispersal limitation in high-STP sites may be owing to
higher nutrient availability that could enhance the ability of
rare fungi to disperse, which is inconsistent with the resource
supply-stochasticity relationships (Dini-Andreote et al., 2015).
Together, these findings revealed that the relative influence of
environmental selection and dispersal limitation on abundant
and rare fungi in dryland montane forests was driven by
variations in pH and STP, respectively.

Conclusion

This study compared abundant and rare fungi distribution
patterns and assembly mechanisms in dryland montane forests
along wide environmental gradients. Abundant and rare fungal
community similarities showed different relationships with
geographic distance. Abundant fungi exhibited greater presence
and wider habitat niche breadth than rare fungi. Dispersal
limitations of stochastic processes dominated abundant and
rare fungal sub-communities, whereas they exerted relatively
greater effects on abundant fungal sub-communities. Soil pH
and phosphorus played critical roles in mediating the assembly
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The relationships between abundant (A) and rare (B) fungal B-deviation and difference in pH and TSP.

(Jiao et al,, 2021).
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processes of abundant and rare fungi, respectively. Our study
highlights the distinct distribution patterns and assembly
mechanisms of abundant and rare fungal sub-communities
and reveals that the assembly processes of abundant and rare
fungi are determined by diverse ecological drivers in dryland
montane forest soils.
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