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Biogeography (body site) is known to be one of the main factors
influencing the composition of the skin microbial community. However,
site-associated microbial variability at a fine-scale level was not well-
characterized since there was a lack of high-resolution recognition of
facial microbiota across kingdoms by shotgun metagenomic sequencing.
To investigate the explicit microbial variance in the human face, 822
shotgun metagenomic sequencing data from Han Chinese recently published
by our group, in combination with 97 North American samples from
NIH Human Microbiome Project (HMP), were reassessed. Metagenomic
profiling of bacteria, fungi, and bacteriophages, as well as enriched function
modules from three facial sites (forehead, cheek, and the back of the
nose), was analyzed. The results revealed that skin microbial features
were more alike in the forehead and cheek while varied from the back
of the nose in terms of taxonomy and functionality. Analysis based on
biogeographic theories suggested that neutral drift with niche selection from
the host could possibly give rise to the variations. Of note, the abundance
of porphyrin-producing species, i.e., Cutibacterium acnes, Cutibacterium
avidum, Cutibacterium granulosum, and Cutibacterium namnetense, was all
the highest in the back of the nose compared with the forehead/cheek, which
was consistent with the highest porphyrin level on the nose in our population.
Sequentially, the site-associated microbiome variance was confirmed in
American populations; however, it was not entirely consistent. Furthermore,
our data revealed correlation patterns between Propionibacterium acnes
bacteriophages with genus Cutibacterium at different facial sites in both
populations; however, C. acnes exhibited a distinct correlation with P. acnes
bacteriophages in Americans/Chinese. Taken together, in this study, we
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explored the fine-scale facial site-associated changes in the skin microbiome

and provided

insight
microbial variations.

into the ecological processes underlying facial

shotgun metagenomic sequencing, facial skin microbiome, Chinese, Cutibacterium
acnes (C. acnes), Propionibacterium acnes bacteriophage, fine-scale, biogeography

Introduction

The human skin is considered a complex ecosystem
colonized with various microorganisms, including bacteria,
fungi, and viruses, collectively termed “skin microbiota”
(Grice and Segre, 2011). Balanced microbial community
composition is essential for maintaining skin health (Byrd
et al., 2018). However, this ecosystem turned out to be highly
variable between individuals (Schommer and Gallo, 2013) and
the factors responsible for the unique variability included
endogenous host factors (host genetics, gender, and age) and
exogenous environmental factors (lifestyle, hygiene routine,
cosmetics, climate, and seasonality) (Grice and Segre, 2011;
Boxberger et al., 2021).

Biogeography (body site) has been suggested as a major
factor influencing the composition of the skin microbial
community (Grice et al,, 2009; Perez Perez et al., 2016; Wang
et al., 2021). Characterization of spatiotemporal patterns in
species distribution is a key task in biogeography and is
also fundamental to explore the ecological and evolutionary
processes shaping communities (Bahram et al, 2015). For
skin microbiome, many studies favored to divide skin into
four microenvironments (i.e., sebaceous, moist, dry, and foot)
according to the physical and chemical properties of the
anatomical sites (Oh et al,, 2014). Although this classification
was not delicate enough, some prominent features of microbial
distribution pattern were well-characterized, for example, genus
Cutibacterium and Malassezia favored oily (sebaceous) areas;
genus Staphylococcus and Corynebacterium were predominant
in moist areas while Gram-negative microorganisms favored
dry areas (Grice et al., 2009; Chen and Tsao, 2013; Oh et al,,
2014, 2016). However, microbial variance from anatomic sites
at a more fine-scale level, for example, different sites from
ones face, was only partially understood (Lee et al., 2021).
This is not trivial. Many facial conditions, exerting substantial
adverse psychological and social influences, exhibited a clear
and consistent site preference on the face, such as acne vulgaris
and seborrheic dermatitis, prone to occur in oily areas with
a rich supply of sebaceous glands (Williams et al., 2012; Tan
and Bhate, 2015; Sparber et al., 2019), and rosacea often occurs
in the central face such as the nose (Van Zuuren et al.,, 2011;
Yigider et al., 2016). Therefore, it is valuable to learn about the
microbial variance caused by this delicate body location, which
may underlie the predisposition of skin dysbiosis conditions
with site preference (Flowers and Grice, 2020).
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Due to low microbial biomass from the skin (Chen et al.,
2018), most studies deployed 16S rRNA sequencing and assessed
only the bacterial community, leaving the fungal and viral
communities largely unknown, particularly in the facial sites.
To address this issue, we leveraged our shotgun metagenomic
sequencing dataset generated from 822 Chinese samples (Li
et al., 2021) and reassessed the data intensively, which allowed
for more precise recognition of facial skin microbiota (forehead,
cheek, and the back of the nose) across all kingdoms (bacteria,
fungi, and viruses), in terms of microbial taxonomy and
functionality. Sequentially, we reassessed 97 North-American
metagenomic sequencing data from the Human Microbiome
Project (HMP) (Oh et al, 2014) and compared the main
features of the two populations. In particular, a series of
Propionibacterium acnes bacteriophages, viral members which
were considered important in regulating the balance of the
microbiome, were assessed and highlighted.

Materials and methods

Study population

Ninety-seven North American samples from HMP (Oh
et al,, 2014) and 822 Han Chinese samples (Li et al., 2021) were
selected. The datasets were downloaded from the integrated
Human Skin Microbial Gene Catalog (iHSMGC). Detailed
information about sampling, DNA preparation, and shotgun
metagenomic sequencing can be obtained according to our
previous study (Li et al., 2021).

Statistical analysis

The Shannon index was used to represent the alpha diversity
of the microbiome. Kruskal-Wallis test and Wilcoxon rank-sum
test were used to assess the significance of the difference in three
anatomical sites. Probability (P) values < 0.05 were considered
to indicate statistically significant differences. P-values were
adjusted using the false discovery rate (FDR) correction.

Beta diversity (principal coordinate analysis (PCoA) based
on Bray-Curtis distances) was to characterize the microbial
profile in different sites. The permutational multivariate analysis
of variance (PERMANOVA) was used to assess the effect of
different anatomical sites. We performed the analysis using the
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method implemented in the R package (vegan) and 1,000 times
permutations to obtain the permuted P-value.

Linear discriminant analysis (LDA) effect size (LEfSe)
was used to identify taxonomic differences between different
anatomical sites. The threshold on the LDA score was set to 3.0.

Spearman correlation was carried out to investigate the
existence of a correlation between P. acnes bacteriophages and
four species that belong to the genus Cutibacterium, and the
significance levels are *P < 0.05; **P < 0.01; ***P < 0.001.
P-values were adjusted using the FDR correction.

The LEfSe was completed using the Wekemo Bioincloud®.
Another analysis was conducted using R (version 4.1.2).

Neutral community model analysis was used to explore
ecological processes underlying microbial variations. Bray-
Curtis distance of each site (FH forehead, CK cheek, NS nose)
from the center was assessed using a classic model inferring
genetic distance in molecular evolution (Li, 1997). Specifically,
the distance to FH = [Distance (FH-NS) + Distance (FH-
CK) - Distance (CK-NS)]/2; the distance to CK = [Distance
(CK-NS) + Distance (FH-CK) - Distance (FH-NS)]/2; and the
distance to NS = [Distance (FH-NS) + Distance (CK-NS) -
Distance (FH-CK)]/2).

DNs—ry + Dck—ra — Dck—Ns

d =
FH 5
Dck-nNs + Drg—cx — DrH-Ns
dcx =
2
d Dry—Ns + Dck—-Ns — Dra—ck
NS =
2
Results

The back of the nose exhibited distinct
microbial community composition
from the forehead and cheek in the
Chinese

We first investigated skin microbiome in three facial sites
(forehead, cheek, and the back of the nose) from our population,
in terms of the alpha diversity, microbial composition, and
potential functionality.

The overall alpha diversity, indicated by the Shannon index,
was higher in the forehead and the cheek than in the nose,
while the difference was not significant between the forehead
and the cheek (Figure 1A). Furthermore, the Shannon index
of each kingdom (bacteria, fungi, and viruses) from the three
sites was also assessed. The results demonstrated that the back
of the nose presented different microbial diversities from the
other two sites, in regard to all kingdoms. However, in contrast
to lower diversity in the bacterial community, the nose exhibited

1 https://www.bioincloud.tech
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higher diversity in the fungal and viral community than that of
the forehead and the cheek (Figure 1B). PCoA based on Bray-
Curtis distance also confirmed a shift of nose microbiome from
the other two sites, while the microbiome from the forehead
and the cheek was more similar (PERMANOVA test, R? = 0.04,
P <0.001) (Figure 1C).

To specify the differential species, LEfSe analysis was further
carried out. The result revealed 17 site-associated dominant
species across kingdoms in different facial sites: Cutibacterium
acnes, Cutibacterium granulosum, Staphylococcus epidermidis,
and Propionibacterium phage PHL132N00 were more abundant
in the back of the nose; Mycobacterium sp. QIA-37, Ralstonia
solanacearum, Mycobacteroides chelonae, Propionibacterium sp.
oral taxon 193, Malassezia globosa, Komagataella phaffii, and
Acinetobacter junii were more enriched in the forehead; and
Moraxella osloensis, Streptococcus pneumoniae, Acinetobacter
guillouiae, Streptococcus oralis, Neisseria sicca, and Acinetobacter
haemolyticus were more abundant in the cheek (Figure 1D).
The relative abundance of these 17 differential species varied
significantly, especially between the nose and the other two sites
(Figure 1D). Of note, the nose harbored clear higher amount of
C. acnes and lower amount of M. osloensis. These two species
were proven to be distinctive in nutrient demand: whereas
C. acnes was high nutrient demanding and prone to the sebum-
rich area, and M. osloensis was a non-fastidious bacterium that
was able to grow in a mineral medium supplemented with a
single organic carbon source (Juni, 1974, 2015). Correlation
analysis further confirms this negative association between the
two species. In addition, we found that a series of site-differential
species were internally positive-correlated, whereas mostly
negatively correlated with other site-prone species (Figure 1E).
To further explore the possible mechanisms shaping the
microbial biogeography, we conducted an analysis based on
a neutral community model (Li, 1997), which is commonly
applied to predict the assembly pattern of the communities
and is favorable for the relative simplicity. By measuring the
Bray-Curtis distance from the center of three sites, we found
that the nose is much further from the center than the other
two sites, whereas the distances for the other two are only
marginally different (Figure 1F). A strict neutral drift would
predict similar distances among all three lineages, indicating
that selective forces (e.g., host selection) may exist in shaping
the microbial variability, especially in the nose area.

Shotgun metagenomic sequencing
revealed that certain functionality
underlies the site-associated
microbiome variance in the Chinese
population

As shotgun metagenomic sequencing provided gene

abundance information, we further assessed the functionality
potentials of the microbiota located in these three anatomical
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Comparative characterization of the skin microbiome present in three anatomical sites in Chinese samples. Boxplots comparing Shannon index
of (A) overall skin microbiome and (B) bacteria, fungi, and virus microbiome of three anatomical sites in Chinese samples. (C) Principal
coordinate analysis (PCoA) plot illustrating the comparison of the overall composition of skin microbiome between three sites in the Chinese
population. The PERMANOVA test is used to determine significance. Boxplots indicate the distribution of samples along the PC1 and PC2. (D)
Stack plot of the 17 differential species ranked by relative abundance. Linear discriminant analysis (LDA) effect size (LEfSe) histograms on the
right showed the microbial comparisons of three anatomical sites, with an LDA threshold of 3.0. (E) Heat map of the Spearman'’s correlation
between differential species. (F) The distance distribution lines on the left showed the Bray-Curtis distance from the center of three facial sites
to the forehead, to the cheek, and to the back of the nose, respectively. The boxplot on the right quantified and compared the difference. FH,
the forehead; CK, the cheek; NS, the back of the nose. P-values were adjusted using the false discovery rate (FDR) correction. The significance
levels are: ns, not significant, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
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sites. Overall, PCoA confirmed the variance in terms of gene
features at the three sites (PERMANOVA test, R2 = 0.02,
P < 0.001) (Figure 2A). The PCl indicator of the PCoA
showed a minor but significant difference between the back
of the nose and the forehead/cheek. Furthermore, the heat
map showed the relative abundance of 24 functional modules
(Kyoto Encyclopedia of Genes and Genomes (KEGG) level
C) enriched in the forehead and cheek while different from
the back of the nose (Kruskal Wallis test, P-adjust < 0.05)
(Figure 2B and Supplementary Table 1). Specifically, seven
microbial functions of high gene abundance were all enriched
in the nose, i.e., cofactor and vitamin metabolism, central
carbohydrate metabolism, other carbohydrate metabolism,
ATP synthesis, branched-chain amino acid metabolism,
and histidine

functions, many of which also related to metabolism, were

purine metabolism, metabolism. Other
more enriched in the forehead/cheek, such as serine and
threonine metabolism, aromatic amino acid metabolism,
lipopolysaccharide metabolism, and drug resistance.

More intensively, we identified 641 differential genes (out of
863 genes with relative abundance > 0.1%) (Kruskal Wallis test,
P-adjust < 0.05). Notably, 554 of them (86.4%, Supplementary
Table 2) showed a clear difference between the back of
the nose and the forehead/cheek (Figure 2C), including 331
enzymes, 95 transporters, and other genes (Figure 2D and
Supplementary Table 3). While 219 genes were more enriched
in the forehead/cheek, 335 genes were more enriched in the
nose. Interestingly, we found that there were seven differential
genes, essential for the porphyrin metabolism, and six genes
were more enriched in the back of the nose (Figure 2E). In
fact, we observed that porphyrin levels, assessed with VISIA-
CR pictures (Canfield Scientific Inc., Fairfield, NJ, USA), were
the highest in the back of nose compared with the other two
sites in our cohort (Figure 2F). Furthermore, it is known
that several skin commensals were able to produce porphyrin,
and while predominant from C. acnes (Shu et al, 2013;
Spittaels et al,, 2021), other Propionibacterium strains, such
as C. granulosum, Cutibacterium avidum, and Cutibacterium
modestum (previously, “Propionibacterium humerusii”) were
also able to produce certain levels of porphyrin (Barnard
et al., 2020). In consistent, our data revealed that the relative
abundance of these porphyrin-producing species, i.e., C. acnes,
C. avidum, C. granulosum, and Cutibacterium namnetense, were
all the highest in the back of the nose compared with the
forehead/cheek (Figure 2G).

Facial site-associated microbiome
variation is different between the
Chinese and North American
populations

Sequentially, we assessed the site-associated microbiome
variance in the North American population. Overall, the
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Comparative characterization of the skin microbiome present in three anatomical sites in American samples. (A) PCoA plot illustrating the
comparison of the overall composition of skin microbiome between three sites in the American population. The PERMANOVA test is used to
determine significance. Boxplots indicate the distribution of samples along the PC1 and PC2. (B) LEfSe histograms for the microbial
comparisons of three anatomical sites, with an LDA threshold of 3.0. (C) PCoA plot illustrating the gene composition of skin microbiome
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microbiome in three sites of American samples. The heat map represents the relative abundance of function in three sites. (E) The heat map
represents the relative abundance of 131 differential genes in three sites. FH, the forehead; CK, the cheek; NS, the back of the nose. P-values
were adjusted using the FDR correction. The significance levels are: ns, not significant, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
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PCoA suggested a microbiome variance existed among three
facial sites (PERMANOVA test, R = 0.13, P < 0.001) and
the back of the nose was different from the forehead/cheek
(Figure 3A), consistent with the conclusion drawn from the
Chinese population. Furthermore, LEfSe analysis revealed site-
associated dominant species across the kingdoms.

In consistent, M. osloensis, S. pneumoniae, S. oralis,
Propionibacterium sp. oral taxon 193, and M. globosa were more
enriched in the forehead/cheek, whereas C. granulosum and a
large series of P. acnes bacteriophages were enriched in the
back of the nose in both populations (Figure 3B). Of note,
C. acnes was more enriched in the forehead in Americans, which
contrasted with the highest abundance in the back of the nose in
Chinese. S. epidermidis showed more enrichment in the back of
the nose in Chinese, but no site difference in Americans.

Based on the gene abundance, the PCoA also showed
that the forehead and the cheek were much more similar but
both different from the back of the nose (PERMANOVA test,
R? = 0.06, P < 0.001) (Figure 3C). Of note, 19 microbial
functions (KEGG level C) were found to be significantly
different in three sites (Kruskal Wallis test, P-adjust < 0.05)
(Figure 3D and Supplementary Table 4). The heat map showed
the relative abundance of differential functions from the three
facial sites. Specifically, several microbial functions, such as
cysteine and methionine metabolism, aromatic amino acid
metabolism, lipopolysaccharide metabolism, drug resistance,
sulfur metabolism, polyamine biosynthesis, and polyketide
sugar unit biosynthesis were also higher in the forehead/cheek
in the Chinese samples.

In Americans, there were 145 site-associated differential
genes (Kruskal Wallis test, P-adjust < 0.05), and 131 of
them (90.3%) showed similar abundance between the forehead
and cheek but significantly different from the back of the
nose. Among these 131 genes, only K17316 (glucose/mannose
transport system permease protein) was more enriched in the
back of the nose, while the rests were more enriched in the
forehead/cheek (Figure 3E and Supplementary Table 5).

A distinct correlation between
Propionibacterium acnes
bacteriophages and Cutibacterium
acnes was observed in the two
populations

Propionibacterium acnes bacteriophages, members of the
viral community, are dominant bacteriophages that existed
in the skin microbiota, especially in the pilosebaceous unit
(Liu et al., 2015). These bacteriophages were able to play an
important role in maintaining the balance of the microbial
community (Liu et al, 2015). However, the association
between these bacteriophages with other skin microbiota
was rarely studied.
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In this study, we assessed the correlation between P. acnes
bacteriophages and all detectable species from the genus
Cutibacterium (Dekio et al, 2021), in three sites of two
populations. In general, the Chinese showed more correlations
in three sites compared with the Americans (Figure 4).
For Chinese populations, the forehead and the cheek
presented mostly consistent positive correlation between
genus Cutibacterium, particular C. acnes, C. granulosum, and
C. avidum with most detected P. acnes bacteriophages;
while in the back of the nose, C. acnes and P. acnes
bacteriophages showed no significant correlation, but the
correlations between C. namnetense and bacteriophages were
significant (Figure 4A). In contrast, most correlations in the
forehead/cheek showed similar trends but not significant in
Americans. In particular, P. acnes bacteriophages exhibited
a consistent positive correlation with C. granulosum, but a
significant negative correlation with C. acnes in the back of the
nose in Americans (Figure 4B).

Discussion

In this study, we centered on addressing site-associated
microbiome variance in Chinese facial skin, by intensively
reassessing our shotgun metagenomic dataset generated from
822 Chinese samples (Li et al., 2021). Overall, our data revealed
that microbial features in the back of the nose were distinctive
from the forehead and cheek in Chinese. Furthermore, we
confirmed a similar site-associated microbial pattern in the
North American population, although varied in detail.

It is long known that biogeography (body site) is a
major factor influencing the composition of the skin microbial
community (Grice et al., 2009; Perez Perez et al., 2016; Wang
et al,, 2021). However, there was very limited understanding
of the mechanisms shaping microbial biogeography as it is
often rather difficult to determine the relative importance of
drift, dispersal, speciation, and selection, the four processes
(mechanisms) determining the patterns of biogeography and
community dynamics (Ma, 2021). Nevertheless, there were
several studies worked on the relative significance of stochastic
neutral forces and deterministic niche selection and brought us
new insights into the mechanisms, shaping the biogeography
of the human microbiome (Ma et al, 2018; Tong et al,
2019; Ma, 2021). For example, an analysis of a multi-site
microbiome, covering five major habitats (ie., airway, oral,
gut, skin, and urogenital) suggested the relative significance of
stochastic neutral forces and deterministic niche selection in
shaping the biogeography of the human microbiome (Ma et al.,
2018). Another study also suggested that while skin mycobiome
assembly is a predominantly neutral process, taxa that could be
under the influence of selective forces (e.g., host selection) are
potentially key to the structure of a community network (Tong
et al,, 2019). In this study, we observed a similar pattern that
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fit to a “nutrient-drive” model by explaining the site-associated
microbial disparity.

In contrast, addressing site-associated microbial variation at
a fine-scale level is important for digging the niche selection
pressure for the skin microbiome. Multiple variables, such as
hygiene routine, cosmetics, climate, and seasonality, which were
known to impact microbial niche conditions (Grice and Segre,
2011; Harris-Tryon and Grice, 2022), were well-controlled in
this adjacent subsite area and thereby substantially facilitate
decoding the microbial variation. Learned from classical
ecology, the selection pressures for the ecosystem include
resource availability (presence of nutrients), environmental
conditions (temperature, geographical access), and biological
factors (predators and pathogens) (Williams, 1996). In this
study, we revealed a series of site-prone species, many of which
were previously proven to be distinct in nutrient requirements,
i.e., C. acnes as high nutrient-demand, and M. osloensis as low
nutrient-demand species able to grow in a mineral medium
supplemented with a single organic carbon source (Juni, 1974;
Juni and Bevre, 2015). Furthermore, we revealed that site-
associated species correlated with each in pattern, suggesting
that specific interactions between species underlie the formation
of networks to compete in the niche occupation. In turn, the
colonization of microbiota in different sites may also reflect
niche conditions. In consistent, C. acnes tends to colonize in
oily areas, and the abundance increases with the sebum level
(Mukherjee et al,, 2016). A study in Korean women revealed
higher sebum secretion in the nose than in the forehead and
cheek (Youn et al., 2005), consistent with the higher abundance
of C. acnes in the nose than in the forehead/cheek in our study.
However, the relative abundance of C. acnes was demonstrated
the highest in the forehead in Americans, which may be due to
the ethnical differences in regard to delicate anatomic structures,
such as the count and size of sebaceous glands and physiological
phenotypes (Rawlings, 2006; Voegeli et al., 2019).

In addition, our data revealed site-associated microbial
features not only in taxonomical composition but also in
functionality. In Chinese, the carbohydrate metabolism of
microbiota was more enriched in the back of the nose, which
is consistent with the fact that C. acnes utilized carbohydrates as
the main carbon source (Li et al., 2021). In contrast, M. osloensis
was incapable of utilizing any carbohydrates or possessing
any saccharolytic activity but strictly depend on other carbon
sources such as acetic or lactic acid (Baumann et al., 1968; Juni,
1974; Moss et al., 1988; Juni and Bovre, 2015).

In our study, M. osloensis was the most abundant
differential species in the cheek, which exhibited the lowest
hydration level (Lee et al, 2013; Machkova et al, 2018)
as well as the sebum level (Youn et al, 2005). In both
populations, some function modules were more enriched in
the forehead/cheek compared with the back of the nose,
including metabolism, and methionine

sulfur cysteine

metabolism, aromatic amino acid metabolism, polyketide
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sugar unit biosynthesis, and drug resistance, which may
imply a more challenged or competitive environment for
microbes to adapt in the forehead/cheek than the nose.
For example, sulfur is an essential nutrient and can be
metabolized into the sulfur-containing amino acids (cysteine
and methionine) in microorganisms, protecting against
oxidative and environmental stresses such as dryness (Ernst,
1998; Yi et al., 2010; Chan et al., 2019).

In this study, some microbial composition-associated skin
feature was validated, i.e., the enrichment of genes in porphyrin
metabolism in the nose was demonstrated to link to the
abundance of porphyrin-producing species, which were further
proven to be positively associated with high porphyrin level on
the nose. It is known that bacterial porphyrins are considered to
be pro-inflammatory and linked to inflammatory skin diseases
(Schaller et al., 2005). Our findings may underlie this site
preference for specific inflammatory skin conditions, such as
acne vulgaris or rosacea.

Furthermore, one of the highlights of this study was
that we were able to explore the composition of other
communities, in addition to bacteria, in these facial sites.
Bacteriophages, viruses that infect corresponding host bacteria,
may play an important regulatory role in human skin
health (Liu et al., 2015). However, the interaction between
bacteriophage with other skin microbiota is rarely known.
In this study, we found that C. granulosum and various
P. acnes Dbacteriophages were enriched in the nose in
both populations. Furthermore, there was an intriguing
correlation pattern between P. acnes bacteriophages with genus
Cutibacterium at different facial sites in both populations.
Of note, C. acnes demonstrated a distinct correlation with
P. acnes bacteriophages in American/Chinese. It is known
that the distribution of P. acnes bacteriophages depends on
their specific host species (Jonczyk-Matysiak et al., 2017) and
recent studies revealed the complexity of different lineages
of C. acnes on the skin (Dekio et al, 2021; Conwill
et al, 2022). These all implied that the significance of
more deep sequencing was needed in the future to address
complicated correlations.
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