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Microorganisms play a key role in ruminal digestion, some of which can

be used as probiotics to promote growth in ruminants. However, which

potential bacteria are responsible for ruminant growth and how they

potentiate the basic mechanism is unclear. In this study, three bacterial

strains, Bacillus pumilus (SN-3), Bacillus paralicheniformis (SN-6), and Bacillus

altitudinis (SN-20) with multiple digestive enzymes were isolated from

the rumen of healthy buffaloes. Among these strains, SN-6 secreted

cellulase, laccase, and amylase, and significantly inhibited Staphylococcus

aureus ATCC25923 and Escherichia coli K99 in vitro. In addition, SN-6

exhibited strong tolerance to artificial gastric juice, intestinal juice, and

high temperature. Antibiotic resistance test, virulence gene test, and mouse

toxicity test confirmed the safety of SN-6. Further, SN-6 significantly

increased the body weight (p < 0.01), affects the intestinal microbiota

structure, and alters the metabolomic patterns of Simmental. There was a

remarkable difference in the β diversity of fecal microflora between SN-6

and control groups (p < 0.05). Furthermore, SN-6 significantly increased

the abundance of Clostridium_sensu_stricto_1, Bifidobacterium, Blautia,

and Cellulolyticum, decreased the relative abundance of Monoglobus and

norank_f_Ruminococcacea. Moreover, SN-6 feeding significantly enriched

intestinal metabolites (i.e., 3-indoleacrylic acid, kynurenic acid) to maintain

intestinal homeostasis. Finally, the microbial and metabolic functional
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analysis indicated that SN-6 could enhance amino acid metabolism (mainly

tryptophan metabolism) and lipid metabolism pathways. Overall, these

findings indicated that SN-6 could be used as a probiotic in ruminants.

KEYWORDS

Bacillus, fiber decomposition, production performance, fecal microbiota,
metabolomic

Introduction

Ruminants play a significant role in our society because
they were domesticated more than 10,000 years ago. They
uniquely use a variety of digestive enzymes and digest the
most complex polysaccharides, which are undigestible by the
human digestive tract (Mizrahi et al., 2021). Such enzymes
are predominantly produced by microbes of ruminants and
are responsible for breaking down plant fibers (Russell and
Rychlik, 2001; Jose et al., 2017). It is interesting to note that
the microbiota in the gut of ruminants is diverse and abundant.
That is why, the rumen, an important foregut fermenter with
a strong capacity to digest plant feed, is strictly dependent
on a complex array of gut microbes for its physiological and
biochemical responses. These complex rumen microorganisms
degrade plant fibers in ruminant roughage by expressing and
secreting various digestive enzymes, i.e., cellulase, protease,
amylase, etc. (Weimer, 1996). To promote host growth, these
bacteria release energy stored in complex plant carbohydrates
(Flint and Bayer, 2008), by converting them into short-chain
fatty acids, vitamins, and other compounds. Meanwhile, the
bacterial-released protein is also an important protein source
for ruminants (Flint, 1997; Mizrahi et al., 2013). In addition,
microorganisms secrete a large number of antagonistic factors
(e.g., hydrogen peroxide, bacteriocins, diacetyl, etc.) that have
a significant inhibitory effect on a wide range of bacteria
(Cox and Dalloul, 2015). These antagonistic factors protect
the organisms from various pathogenic bacteria and also
reduce the colonization of potentially pathogenic bacteria.
Subsequently, they help to maintain host health and normal
physiological functions throughout the life cycle. Therefore, the
development of beneficial rumen-derived microorganisms is of
great significance to promote the development of the ruminant
industry.

The ruminant gut microbiota is rich in microorganisms
and the interactions between these microorganisms are
complex and crucial to the host’s health. A growing body
of research has highlighted that the gut microbiota and its
metabolic activities with the host are essential in understanding
nutrition and metabolism (Del Chierico et al., 2018; Valdes
et al., 2018), of which the role of probiotics has, indeed, been
emphasized. Additionally, it has been discovered that gut
microbiota’s metabolic reactions help the body in nutrient

absorption from the diet and transform them into a range of
secondary metabolites to maintain gut health. The beneficial
microorganisms ultimately cause widespread changes in
intestinal metabolites, which in turn maintain the equilibrium
in the intestinal metabolic microenvironment by carrying out
a variety of metabolic functions in the gut. Additionally, these
metabolites could also be utilized by the microorganisms for
their proliferation (Foroutan et al., 2020). Host physiological
activity supports intestinal homeostasis by lowering the amount
of tryptophan and promoting indole derivatives that activate
aryl hydrocarbon receptors (Williams et al., 2014). Conversely,
toxins produced by intestinal microbes could potentially impact
intestinal epithelial cells and result in intestinal injury (Kim
et al., 2014).

Numerous studies found that microorganisms have been
increasingly used as feed additives in ruminants. They achieve
this by stimulating a shift in the harmful gut microbiota toward
a healthier microbiota, improving feed utilization and daily
weight gain (Marsalková et al., 2004; Sun et al., 2010). They
promote in vitro fermentation and fiber degradation microbiota
(Izuddin et al., 2018), affect body metabolism (Liu et al., 2017;
Kim et al., 2018), and help to build better immune status.
Moreover, they improve intestinal health (Izuddin et al., 2019)
and even prevent diseases (Larsen et al., 2014). Hence, we
hypothesized that ruminant probiotics achieve weight gain via
strengthening intestinal microbiota/metabolites and based on
intestinal microecology.

Until now, many swine and poultry studies have
demonstrated that probiotics help to develop healthy microflora
(mainly probiotics), which prevent pathogen adhesion and
invasion of intestinal epithelial cells, induce the production of
antibacterial compounds, maintain epithelial barrier integrity,
and regulate metabolism and immune system (Wang et al.,
2019; Šikić Pogačar et al., 2020; Chance et al., 2021). However,
there is little evidence that ruminant-derived probiotics regulate
gut microbial composition and thus affect metabolism to
promote beef cattle body weight. Furthermore, most previous
studies used a combination of strains (some not ruminant-
derived) and primarily focused on the synergy of strains
rather than the mechanism of a specific strain. This study
aimed to isolate strains with fiber degradation potential and
antibacterial ability from the buffalo rumen, evaluate their
growth-promoting effects, investigate their influence on fecal
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flora and host metabolism, and analyze the impact of changes
in intestinal flora on host metabolism. The gut microbiota,
microbial metabolism, and potential probiotic effects were
also investigated with possible mechanisms. In this study, the
addition of a single probiotic seems a precise intervention,
providing a meaningful reference for probiotic development in
ruminants.

Materials and methods

Isolation and screening of cellulolytic
bacteria

The modified cellulase identification medium (CMC-Na
medium) was used as an isolation medium (Supplementary
Table 1). The rumen fluid was obtained from the rumen of
healthy buffaloes with rumen fistulas and filtered by four layers
of sterilized gauze. The rumen fluid was diluted with sterilized
double-distilled water, evenly coated on a CMC-Na medium,
and then cultured in an anaerobic container at 39◦C for 3 days.
After that, the single colonies were selected and cultured on
the CMC-Na medium. The culture mediums were dyed with
0.1% Congo red (Solarbio, China) staining solution to observe
whether there were light yellow hydrolysis circles around the
coating (Teather and Wood, 1982). The strains producing
hydrolytic circles were selected for purification and subculture.

Identification of cellulolytic bacteria

The isolated strains were confirmed and identified by genetic
analysis using PCR and 16S rRNA sequencing for further
verification. The genomic DNA was extracted with the bacterial
genome DNA fast extraction kit (Aidlab Biotech Co., Ltd.,
China) according to the manufacturer’s protocol. Universal
PCR primers 27F (5′-AGAGTTTTGATCCTGGCTCAG-3′)
and 1492R (5′-GGTTACCTTGTTACGCACTT-3′) were used to
amplify the 16S rRNA gene. PCR products were sequenced by
Sangon Biotech Co., Ltd. (Shanghai, China). The sequencing
results were analyzed using Basic Local Alignment Search
Tool (BLAST) on the NCBI website. The phylogenetic tree
of bacteria was constructed by the neighbor-joining method
using MEGA7.0 software. The phylogenetic tree was statistically
evaluated using 1,000 bootstrap replicates.

Enzyme assay

Potato dextrose agar (PDA) medium-guaiacol (0.04%
guaiacol), PDA-aniline blue medium (0.1 g/L aniline blue),
Luria–Bertani (LB) plate (1% soluble starch), and an LB plate
(1% skimmed milk) were, respectively, used to detect the laccase

(Lac), manganese peroxidase (Mnp), lignin peroxidase (Lip),
amylase, and protease in the strains.

In vitro antibacterial test

The antibacterial activity of the isolates was determined by
the Oxford cup method (Bian et al., 2016). Escherichia coli O157,
O139, K88, K99, Salmonella C78-1, and Staphylococcus aureus
ATCC25923 were used as an indicator at 1.0 × 107 CFU/ml.
These indicator bacteria were obtained from the State
Key Laboratory of Agriculture Microbiology of Huazhong
Agricultural University. In a super clean bench, the bacterial
solution of the indicator bacteria (Escherichia coli O157,
O139, K88, K99, Salmonella C78-1, and Staphylococcus
aureus ATCC25923) was evenly coated onto solid LB plates,
respectively. Sterilized Oxford cups (small round tubes with
an inner diameter of 6 nm, an outer diameter of 8 nm, and a
height of 10 nm) were then placed in the LB plates so that they
were in contact with the LB plates without gaps. A 200 µL of
SN-6 bacterial solution was added to the Oxford cup. The size
of the inhibition zone was measured with a vernier caliper after
overnight incubation.

Tolerance test of heat, gastric juice,
and intestinal fluid

The bacterial liquid (2.4 × 109 CFU/ml) in the logarithmic
growth phase was placed in a water bath at 70 and 90◦C,
respectively. Samples were taken at 3 and 10 min time points
to count the viable bacteria in the samples.

Artificial gastric juice and intestinal juice (Yuanye
Biotechnology Co., Ltd., Shanghai, China) were prepared
according to the Chinese Pharmacopeia (D’Aldebert et al.,
2009). The bacterial liquid (2.4 × 109 CFU/ml) in the
logarithmic growth phase was inoculated into artificial gastric
juice (pH = 3.0) and artificial intestinal fluid (pH = 7.0) with
1% inoculation amount. Samples were taken at 3 and 4 h,
respectively. Finally, the viable bacteria in the samples were
counted.

The survival rate was calculated as follows: survival
rate = [C/C0] × 100%. Here, C and C0 represented the number
of colonies in the experimental and control groups, respectively.

Antibiotic susceptibility assay

The drug sensitivity of isolated strains was tested with the
disk diffusion method (Ghosh et al., 2015). Fifteen drug tablets
(Hangzhou microbial Reagent Co., Ltd., China) were selected.
The drug sensitivity detection was performed according to the
latest version of the CLSI standard (Institute and Laboratory)
(CLSI, 2018).
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Polymerase chain reaction
amplification of virulence genes

Bacillus cereus, which contains nheA, nheB, nheC, and
entFM genes was used as the positive control strain. The specific
synthesized primers of virulence genes were obtained from
Sangon Biotech Co., Ltd. (Shanghai, China). The amplification
program was as follows: pre-denaturation at 94◦C for 3 min; 35
cycles (95◦C 3 min, 58◦C 30 s, 72◦C 33 s); and extended for
10 min at 72◦C (Rowan et al., 2003).

Animal toxicity test

All animal experiments were approved and reviewed by
the animal welfare and research department, ethics committee,
Huazhong Agricultural University, Wuhan, China (Approval
number: HZAUMO-2019-047).

Twenty-three-week-old KM (Kun Ming) mice (an equal
number of male and female subjects) were randomly divided
into the experimental group and control group (n = 10). The
mice in the experimental group were given SN-6 by gavage
at 2.0 × 108 CFU/day for 2 weeks, while mice in the control
group were given the same volume of saline. Behaviors, hair
loss, mental state, and general health of the reared mice were
observed throughout 2 weeks. After 2 weeks, the mice were
sacrificed using chloral hydrate as anesthesia, and the heart,
spleen, liver, lung, and kidney were collected to detect organ
index. T-test was used to analyze the data. p < 0.05 was
considered statistically significant.

Simmental growth-promoting test

Five-six-month-old healthy Simmental beef cattle (female)
with the same genetic background and similar initial weight
from Hubei Liangyou Jinniu animal husbandry technology
Co., Ltd. (China, Hubei) were selected. The initial weights
of Simmental are shown in Supplementary Table 2. Cattle
(n = 66) were randomly divided into control group (n = 33)
and experimental group (n = 33). There was no significant
difference in the initial weight of Simmental between the two
groups (p > 0.05). The feeding lasted for 33 days. To assess
the long-term sustained effects of SN-6, we fed Simmental beef
cattle with SN-6 for an additional 28 days. Both the control
cattle and experimental cattle were fed with the basic diet
(Supplementary Table 3) ad libitum during the experiment.
The control cattle were given normal water, whereas, the
experimental cattle were given water that contained SN-6 at
1.0 × 1010 CFU/day/individual. Before and at the end of
the experiment, the cows were weighed at fasting. Data are
expressed with mean ± SD, analyzed by one-way analysis of
variance using SPSS 21.0 software, and p < 0.05 was considered
statistically significant. Fresh fecal samples were collected from

the rectum with sterile gloves at the end of the experiment
and immediately stored in sterile centrifuge tubes. All samples
were immediately frozen on dry ice and stored at –80◦C for
further analysis.

Fecal microbiota analysis

Total DNA was extracted from fecal samples using
an E.Z.N.A. R© soil Kit (Omega Bio-Tek, Norcross, GA,
United States). The extracted DNA was qualitatively and
quantitatively detected by 1% agarose gel electrophoresis
and NanoDrop 2000 UV-vis spectrophotometer (Thermo
Scientific, Wilmington, NC, USA). The V3–V4 region of
16S rRNA was amplified by PCR with specific primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACHTACHVGGGTWTCTAAT-3′) (PCR instrument:
GeneAmp 9700, ABI, USA). The PCR products were
recovered by 2% agarose gel and purified by AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, Union City, CA, USA).
QuantiFluorTM-ST (Promega, USA) was used for quantitative
analysis. The fecal microbial DNA fragments were sequenced by
the Illumina Miseq platform (Illumina, San Diego, CA, USA).
The quality control and splicing of the original data were carried
out by using Trimmomatic and Flash software. After quality
control, the sequences and fuzzy bases less than 50 bp were
removed. UPARSE software (version 7.11) was used to cluster
the optimized sequences according to 97% similarity; UCHIME
software was used to remove chimeras. The taxonomy of each
16S rRNA gene sequence was analyzed by the RDP Classifier
algorithm2 against the Silva (SSU123) 16S rRNA database using
a confidence threshold of 70%. Chao1, ACE, Shannon, and
Simpson indices were used to reflect α diversity. The core fecal
microbiota of each group was shown by the Venn diagram.
In β diversity analysis, principal coordinate analysis (PCoA)
was used to determine the difference in species composition
among samples. According to the composition and sequence
distribution of samples at each taxonomic level, the differences
in species abundance between groups were compared and
tested by the Student t-test. The p < 0.05 was considered to
be statistically significant. Microbial biomarkers associated
with particular interventions were identified through linear
discriminant analysis (LDA) effect size (LEfSe), with an effect
size threshold of 3.

Fecal metabolomics analysis

The effects of SN-6 on the fecal metabolism in Simmental
were assayed by LC-MS-based untargeted metabolomics. Fecal
samples (50 mg) were accurately weighed, and the metabolites

1 http://drive5.com/uparse/

2 http://rdp.cme.msu.edu/
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were extracted using a 400 µL of methanol: water (4:1, v/v)
solution. The mixture was allowed to settle at –20◦C and treated
with high throughput tissue crusher Wonbio-96c (Shanghai
Wanbo Biotechnology Co., Ltd.) at 50 Hz for 6 min, followed
by vortexing for 30 s and ultrasound treatment at 40 kHz for
30 min at 5◦C. The samples were placed at –20◦C for 30 min
to precipitate proteins. After centrifugation at 13,000 g at 4◦C
for 15 min, the supernatants were transferred to sample vials for
LC-MS/MS analysis.

Ultra high performance liquid chromatography-mass
spectrum (UHPLC-MS) analyses were performed using a
Vanquish UHPLC system (Thermo Fisher, Germany) coupled
with an Orbitrap Q ExactiveTMHF-X mass spectrometer
(Thermo Fisher, Germany). Samples were injected onto a
Hypesil Gold C18 column (100 mm× 2.1 mm, 1.9 µm; Thermo
Fisher, Germany) using a 17-min linear gradient at a flow rate
of 0.2 ml/min, and the column temperature was maintained at
40◦C. The eluents for the positive polarity mode were eluent
A (0.1% formic acid in water) and eluent B (Methanol). The
eluents for the negative polarity mode were eluent A (5 mM
ammonium acetate, pH 9.0) and eluent B (Methanol). The
solvent gradient was set as follows: 2% B, 1.5 min; 2–100%
B, 12.0 min; 100% B, 14.0 min; 100–2% B, 14.1 min; 2% B,
17 min. Q ExactiveTMHF-X mass spectrometer via electrospray
ionization (ESI) interface was operated in positive/negative
polarity mode with a spray voltage of 3.2 kV and capillary
temperature of 320◦C, sheath gas flow rate of 40 arb, and aux
gas flow rate of 10 arb.

Statistical analysis

All results were presented as mean ± standard deviation
(SD). A multivariate statistical analysis was performed
using ropls (Version 1.6.23) R package from Bioconductor
on Majorbio Cloud Platform.4 To obtain an overview of
the metabolic data, an unsupervised method of principle
component analysis (PCA) was used, and general clustering,
trends, or outliers were visualized. Orthogonal partial least
squares discriminate analysis (OPLS-DA) was used for
statistical analysis to determine global metabolic changes
between comparable groups. Variable importance in the
projection (VIP) was calculated in the OPLS-DA model. The
p-values were estimated with paired Student’s t-test on single-
dimensional statistical analysis. The correlations between the
key fecal microbiota and fecal metabolites were assessed by
the Spearman’s correlation coefficient and were visualized on
a heat map generated by the Python software (Version1.0.0).
To clarify the changes in metabolic pathways caused by SN-6

3 http://bioconductor.org/packages/release/bioc/html/ropls.html

4 https://cloud.majorbio.com

interventions, we characterized potential pathway enrichment
analysis using the KEGG pathway.5

Results

Cellulolytic bacteria were isolated and
identified

Based on the light yellow hydrolysis circle given on the
CMC-Na agar plate, three strains named SN-3, SN-6, and SN-20
were isolated (Figure 1A), and all of them were gram-positive
bacteria (Figure 1B). According to the enzyme activity (EA)
value (Table 1), the degradation capacity of fiber was SN-3 = SN-
20 > SN-6. The 16S rDNA sequence analysis indicated that SN-3
had 99.79% homology to Bacillus pumilus, SN-6 had 99.65%
homology to Bacillus paralicheniformis, and SN-20 had 99.79%
homology to Bacillus altitudinis. These results demonstrated
that SN-3, SN-6, and SN-20 were Bacillus pumilus, Bacillus
paralicheniformis, and Bacillus altitudinis, respectively.

Characteristics of enzyme production
and antibacterial activity in vitro

All three strains could produce amylase, among which
SN-6 is the best amylase producer. Both SN-3 and SN-20

5 https://www.genome.jp/kegg/pathway.html

FIGURE 1

Isolation and identification of cellulolytic bacteria. (A) Diameter
of hydrolysis circle. 1 and 2 represent the same strain. (B) Gram
staining of strains (1,000×).

TABLE 1 Enzyme activity (EA) index of SN-3, SN-6, and SN-20.

Strain Diameter of
hydrolysis

circle (D, mm)

Diameter
of lawn
(d, mm)

Enzyme activity
index (D/d)

SN-3 33.25 10.75 3.10

SN-6 24.80 10.16 2.44

SN-20 24.56 7.87 3.12
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TABLE 2 Amylase/protease activity of strains.

Strain Diameter of fading
circle (mm)

Diameter of clear
zone (mm)

SN-3 10.0 21.7

SN-6 24.0 0.0

SN-20 10.0 15.0

TABLE 3 Antibiotic susceptibility test for SN-6.

Antibiotics Bacteriostatic
zone (mm)

Bacteriostatic
effect

Penicillin 22.51 S

Ampicillin 13.24 M

Piperacillin 34.17 S

Oxacillin 0 R

Cephalosporin 37.84 S

Ceftazidime 0 R

Ceftriaxone 14.89 M

Ciprofloxacin. 26.16 S

Ofloxacin. 31.87 S

Norfloxacin. 22.66 S

Kanamycin. 25.34 S

Gentamicin. 24.81 S

Tetracycline. 25.76 S

Compound
sulfamet-hoxazole (SMZ)

37.77 S

Clindamycin 18.94 S

could produce protease, and SN-3 was comparatively better
than SN-20 (Table 2). Only SN-6 exhibited a reddish-brown
oxidation circle on the PDA-guaiacol plate (Supplementary
Figure 1), which indicated that SN-6 secreted laccase. None of
the three strains could discolor PDA-aniline blue, suggesting
that none of them produced Mnp and Lip (data not shown).
SN-6 robustly inhibited K99 and S. aureus growth. The
inhibition zone diameter was 22.0 mm for E. coli K99 and
24.0 mm for S. aureus. Moreover, SN-3 and SN-20 did
not obviously inhibit six indicator bacteria (Supplementary
Figure 2).

Tolerance properties of SN-6 at
different conditions

A probiotic with a higher tolerance capability and a good
survival rate is often preferred. We found that the survival rate
of SN-6 was 91.7% at 70◦C for 3 min, and 58.3% at 90◦C for
10 min. After culturing SN-6 in simulated gastric juice (pH 3.0)
or in neutral simulated intestinal fluid for 4 h, its survival rate
was 36.36 and 54.29%, respectively. These results indicated the
good survivability of SN-6 in harsh environments.

Safety assessment of SN-6

SN-6 was sensitive to antibiotics used in this study
except for oxacillin and ceftazidime (Table 3). Enterotoxin-
related virulence genes nheA, nheB, nheC, and entFM were
amplified in the positive strain (Supplementary Figure 3),
while no enterotoxin-related virulence gene was detected in
SN-6 (Supplementary Figure 4). It was also observed that
the mice, both in the control group and the experimental
group, were normal. There was no significant difference in body
weight (Figure 2A) and organ index between the two groups
(Figure 2B).

Growth promoting performance

After 33 days of feeding, Simmental cattle’s body weight
in the control and experimental groups was 292.53 and
295.86 kg, respectively. After 61 days of feeding, the body
weight of Simmental cattle in the control and experimental
groups was 329.48 and 335.62 kg, respectively. It was noted
that the SN-6 feeding increased body weight by approximately
3.33 kg/individual (33 days), and 6.14 kg/individual (61 days)
compared with the control (p < 0.01) (Figure 3).

The regulation of SN-6 on fecal
microbiota

A total of 475,965 optimized sequences of 16S rRNA of
bacteria in 12 fecal samples (six in each group) were obtained.
According to 97% sequence similarity, the optimized sequences
were clustered by operational taxonomic units (OTU) and
1,338 OTU sequences were obtained. There was no significant
difference in the α diversity index between the SN-6 group
and the control group (p > 0.05), indicating that SN-6
feeding did not change the fecal flora richness and diversity
(Supplementary Figure 5).

Likewise, the beta diversity was assessed by principal
coordinate analysis (PCoA) based on the Bray–Curtis distance,
which was used to study the similarity or differences in
sample community composition. As shown in Figure 4A, SN-
6 significantly changed the overall community composition
of fecal flora compared with the control (p < 0.05), which
indicated that the microorganisms in the SN-6 group had
distinct clustering.

At the phylum level, the fecal microbiota composition
of each group is shown in Figure 4B. Firmicutes and
Bacteroidetes are the core bacteria with high abundance in
ruminants both in the SN-6 group and control group. However,
SN-6 feeding increases the abundance of Actinobacteria,
which might be due to the increase of Bifidobacterium.
At the genus level, significantly increased abundances of
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FIGURE 2

Body weight and organ index of mice in the control and SN-6 treated groups. The values are presented as the mean ± SD (n = 10). (A) Body
weight and (B) organ index.

FIGURE 3

Body weight of Simmental in the control and SN-6 treated groups. (A) Feeding for 33 days. (B) Feeding for 61 days. The values are presented as
the mean ± SD (n = 33). **p < 0.01 as statistically significant.

Clostridium_sensu_stricto_1, Bifidobacterium, Blautia, and
Cellulolyticum were observed in the SN-6 group (∗p < 0.05,
∗∗∗p < 0.001, respectively), while significantly decreased
abundances of Monoglobus, norank_f_Ruminococcacea
(∗p < 0.05) (Figure 4C) were observed. Using LDA and LEfSe
analyses for microbial biomarker discovery in two groups,
Clostridiaceae, Bifidobacteriaceae, and Lachnospiracese were
found enriched in the SN-6 group, while Stackebrandtia and
Monoglobus were enriched in the control group (Figure 4D).

The effects of SN-6 on fecal
metabolism

To get a holistic view of the host metabolism after SN-6
intervention, we used non-targeted metabolomics to identify
key metabolites and metabolic pathways that might be altered
in the Simmental intestine. A total of 185 metabolites were
identified in feces. The OPLS-DA score scatter plots revealed

a visible separation between the control and SN-6 groups
in positive ion mode (R2Y: 0.982, Q2: 0.635) (Figure 5A).
The results of 200 permutations exhibited no over-fitting
in OPLS-DA models (Figure 5B). Twenty-six metabolites
were found in the fecal sample which met the conditions
of p < 0.05 and variable importance in project (VIP) > 1
between the control and SN-6 groups (Figure 5C). The effect
of SN-6 on the regulation of some differential metabolites
(including 3-indoleacrylic acid, 5-hydroxyindole-3-acetic acid,
methyl indole-3-acetate, N-acetyl-D-tryptophan, oleic acid,
D-mannose, vitamin A, and kynurenic acid) in the feces is
shown in Figure 5D.

Putative metabolic pathways related to
SN-6 interventions

As shown in Figure 6A, differential metabolites
related to different metabolic pathways were mapped. Six
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FIGURE 4

(Continued)
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FIGURE 4

SN-6 alters the fecal microbiota composition of Simmental. (A) PCoA score plot of fecal microbiota based on OTU abundance. (B) Bacterial
taxonomic profiling of fecal microbial community at phylum level. (C) Significant analysis of species difference at the genus level. *p < 0.05,
**p < 0.01, ***p < 0.001. (D) Diversity analysis of LEfSe multistage species. (a) Cladogram. The circles radiating from the inside to the outside
represent the taxonomic level from phylum to genus. Each small circle represents a classification at the same level, and the diameter of the
small circle is positively related to its abundance. The species without significant differences are uniformly colored yellow. The red node
represents the relatively important microbe in the control group, and the blue node represents the relatively important microbe in the SN-6
group. The species name is present on the right. (b) Histogram of LDA value distribution. The species with LDA score greater than 3.0 are
biomarkers with a statistical difference. The length of the histogram represents the influence of the species with a significant difference.
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FIGURE 5

Effects of SN-6 on the fecal metabolism of Simmental. (A) The orthogonal projection to latent structures discriminant analysis (OPLS-DA) score
plot between the control and SN-6 groups. (B) Two hundred times permutations of OPLS-DA plot between the control and SN-6 groups.
(C) Heatmap overview of 26 differential metabolites in feces throughout control and SN-6 groups. (D) Effect of SN-6 on the abundance of
potential metabolites in fecal samples. Data are shown as mean ± SD (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6

Kyoto encyclopedia of genes and genomes (KEGG) functional pathway annotation (A) and enrichment (B) analysis. (A) The ordinate represents
the secondary classification items of the KEGG pathway, and the abscissa represents the number of metabolites annotated to the pathway.
(B) Pathway enrichment analysis of differentially expressed metabolites.

potential metabolic pathways were screened according to
impact value > 0.1 and p < 0.05. Retinol metabolism (0.38),
tryptophan metabolism (0.17), steroid hormone biosynthesis
(0.16), nicotinate and nicotinamide metabolism (0.13),
pyrimidine metabolism (0.11), and steroid degradation
(0.11) are listed in descending order of impact value
(Figure 6B). Among them, tryptophan metabolism covered
the main differential metabolites, indicating that this
pathway might play a vital role in the growth promotion
of SN-6.

Associations between key fecal
microbiota and fecal metabolites

To comprehensively analyze the relations between fecal
metabolites and gut microbiota, weight gain associated
with altered metabolites was explored. Spearman’s
correlation analysis was performed to determine the
association between key fecal microbiota and differential
metabolites. As shown in Figure 7, indole derivatives
(including 3-indoleacrylic acid, methyl indole-3-acetate, 5-
hydroxyindole-3-acetic acid), lipids (including vitamin A,
oleic acid), and amino acids/peptides (including Val–Ser,
L-threonine) were positively correlated with f_Clostridiaceae,
f_Lachnospirceae (except for Roseburia), g_Bifidobacterium,
unclassified_f_Peptostreptococcaceae, g_Barnesiella, and f_Rike
nellaceae, and were negatively correlated with norank_
f_norank_o_Clostridia_vadinBB60_group, norank_f_Ruminoco
ccaceae, and Monoglobus. These relations suggested that
fecal microbiota could affect fecal metabolites in SN-6-fed
Simmental.

Discussion

The rumen is the unique digestive organ of ruminants,
and there are about 1010 bacteria per gram of rumen contents.
Among them, cellulolytic bacteria are considered to be the main
cellulose-decomposing agents (Brulc et al., 2009), accounting for
about 10% of rumen microorganisms (Russell et al., 2009). The
digestion and absorption of crude fiber in ruminants feed are
completely dependent on rumen microorganisms, which exhibit
a complex interplay with the host’s functions. Rumen bacteria
significantly contribute to food digestion, thus considered
potent probiotics and transferring these bacteria to other beef
cattle could increase their daily weight gain. That is why, this
study aimed to isolate and identify such kinds of bacteria and
transfer them to the other cattle to investigate the daily weight
gain and their interrelationship with host gut microecology and
metabolic homeostasis. Three bacterial strains (Bacillus pumilus
SN-3, Bacillus paralicheniformis SN-6, and Bacillus altitudinis
SN-20, respectively) were isolated from the rumen of buffaloes.
By evaluating SN-3, SN-6, and SN-20 for their antimicrobial
properties, the ability to produce fiber digesting enzymes and
proliferation, we selected the outstanding SN-6 and focused
its possible effects on the Simmental cattle. Typically, SN-6
secrets laccase, which could degrade lignin in crude fiber and
releases cellulose from the lignin. Most probably, it significantly
contributes to the growth performance of the Simmental.

Previous studies have confirmed that rumen
microorganisms could secrete antibacterial substances,
which could effectively inhibit the growth and multiplication of
various pathogenic bacteria (Ren et al., 2019). It is also described
that SN-6 had strong inhibitory effects on pathogenic S. aureus
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FIGURE 7

Association heatmap of Spearman’s correlations analyses integrating key microbes and metabolome of fecal. The color scale represents the
Spearman’s R-value (red, positive correlation; blue, negative correlation). *p < 0.05, **p < 0.01, and ***p < 0.001.

and E.coli K99. Therefore, it is reasonable to speculate that SN-6
is capable of preventing diseases caused by pathogenic S. aureus
and E. coli K99, such as cow mastitis (Azara et al., 2017), calf
diarrhea (Yadegari et al., 2019), piglet diarrhea (Xia et al., 2018),
and so on. Interestingly, SN-6 strongly inhibited both gram-
negative and gram-positive pathogenic bacteria, suggesting
that SN-6 was a promising alternative for food antibiotics in
livestock. In addition, the number of living bacteria of SN-6
after fermentation was up to 190 billion/g (data not shown),
which demonstrated its tremendous advantage of convenience
in preparation.

It was reported that probiotics contribute to nutrition and
metabolic health (Koh et al., 2016). Cox et al. demonstrated
that probiotics promote a stable intestinal microbiota, stimulate
digestive rates, and improve intestinal nutritional health (Cox
and Dalloul, 2015). Possibly, these probiotics produce a large
number of active enzymes during nutrient metabolism, which

in turn increase intestinal digestive enzyme activity and promote
nutrient absorption (Hu et al., 2018; Gong et al., 2018; Cao et al.,
2020). In addition, numerous studies have shown that probiotics
improve the feeding efficiency of animals by regulating the
intestinal flora, and promoting the growth of dairy cows,
lambs, rabbits, and sows (Sun et al., 2013; Jia et al., 2018;
Liu L. et al., 2019; Zhang et al., 2020). Various nutrients ingested
by the organisms are metabolized by a wide range of gut
microbes to maintain complex life activities, where metabolites
are transported, absorbed, or excreted through highly dynamic
metabolic pathways (Maurice et al., 2013; Lamichhane et al.,
2018). Importantly, the produced intestinal metabolites (i.e.,
tryptophan and short-chain fatty acids) nourish intestinal
epithelial cells (Flint, 2016), improve the intestinal lining [He
et al., 2022 (Microbiome)], and regulate downstream signaling
pathways (Gill et al., 2006; Flint, 2016), acting as a link between
the gastrointestinal tract and host health. The current study
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found that SN-6 could significantly regulate the intestinal flora
and increase the average daily weight gain of Simmental,
which is consistent with the previous studies. However, the
mechanism of promoting growth by probiotics is not completely
understood. Therefore, the effects of SN-6 feeding on fecal
microbiota and metabolism of Simmental were explored in
the present study, and the possible association between fecal
microbiota and metabolism was evaluated.

The intestinal microbiota has irreplaceable importance in
the host’s vital activities and is, therefore, also known as
“another organ of the body” (de Vos et al., 2022). The dynamics
of the microbiota are influenced by diet, the environment,
and other conditions. Probiotic intervention could alter the
abundance and composition of microbiota in the gut, which
in turn could affect host health (Schepper et al., 2019; Wang
et al., 2020). The influences of gut microbiota on the host
are highly correlated with complex interactions involving the
host–microbe axes series (Xie et al., 2013). Studies on the gut
microbiota provide a reference to explore the impact of gut
microbiota interactions on organismal health. In this study,
we also found that SN-6 feeding significantly influenced β

diversity of the host gut microbiota, indicating that SN-6 had
significant effects on microbial community structure in the host
gut. Also, the differences in specific microorganisms further
visualized the intrinsic link between SN-6 addition and gut
microbiota composition. The results of this study revealed
that SN-6 could increase the relative abundance of potentially
beneficial bacteria (i.e., Clostridiaceae, Lachnospirales, and
Bifidobacteriales) (Figure 4E), which most probably played an
important role in promoting nutrient absorption, preventing
diseases, and maintaining host health. Clostridium is a beneficial
bacterium against intestinal bacterial infection (Behnsen, 2017;
Kim et al., 2017). Lachnospira has a considerable ability to utilize
dietary polysaccharides (O Sheridan et al., 2016). Similarly,
members of Bifidobacterium are considered to play a critical
role in maintaining human health (Di Gioia et al., 2014; Kusada
et al., 2017). Meanwhile, the regulation of Bifidobacterium by
SN-6 constituted the main factor underlying the increase in
phylum Actinobacteria. The above results confirm that SN-6
feeding led to the development of a better structure of the
host gut microbiota. In contrast, Monoglobus and Stackbrandtia
were enriched in the control group. Monoglobus is often
seen in an abnormal inflammatory state and tends to be
elevated in the disease groups (Zhang et al., 2021; Miao
and Davies, 2010). There are few studies and reports on the
function of Stackbrandtia, which belongs to the Actinobacteria,
Glycomycetaceae, and is mostly of environmental and soil
origin (Zhang et al., 2016; Liu et al., 2018). Although all
cattle were healthy, health-threatening microorganisms were
still shown to be enriched in the gut of the control group,
and these bacteria are likely to be transformed into pathogenic
bacteria and involved in intestinal bacterial dysbiosis and
disease transmission. Therefore, it is reasonable to speculate

that SN-6 increased beneficial bacteria that promote nutrient
absorption and helped in disease prevention and inhibited the
colonization of potentially harmful bacteria, thus playing a
significant role in increasing daily weight gain in Simmental
by regulating the intestinal flora. Gut microbes perform a
diverse range of metabolic functions including the production
of numerous metabolites (Valdes et al., 2018). Increasingly
recognized metabolites produced by gut microbes are vital
mediators of diet-induced host–microbe interactions. We found
that SN-6 affected the fecal metabolic pathways and metabolite
concentrations of Simmental, amino acid metabolism, lipid
metabolism, and vitamin metabolism were more enriched in
the SN-6 group. Moreover, the contents of certain indole
derivatives, lipids, and amino acids/peptides in the SN-6 group
were significantly higher than those in the control group
(Figure 6A). Amino acids are essential precursors for the
synthesis of proteins and peptides and have been identified
as markers of protein metabolism (Liu C. et al., 2019).
Indole acrylic acid plays an essential role in maintaining
intestinal homeostasis and barrier integrity (Agus et al., 2018).
Kynurenic acid, produced by tryptophan metabolism, might
have anti-inflammatory properties in the gastrointestinal tract
and participate in immune regulation (Kennedy et al., 2017).
In the metabolomic data, we also observed higher oleic acid
and mannose contents in the SN-6 group. Oleic acid has
natural antioxidant and anti-inflammatory properties. Zhang
et al. (2017) found that mannose has an immunomodulatory
function, which could specifically induce the differentiation of
naive T cells into regulatory T cells (Treg). In mouse models,
oral mannose could prevent and inhibit certain autoimmune
diseases (Zhang et al., 2017). These findings indicate that SN-6
might exert a growth-promoting effect by elevating the relative
concentrations of some positive functional metabolites that
promote organismal health and homeostasis.

The composition and metabolic pattern of the host–
gut microbiota gradually change with the intervention of
probiotics (Nealon et al., 2017). In this study, there was a
significant correlation between fecal microbes and metabolites
(Figure 7). Indole derivatives (including 3-indoleacrylic acid,
methyl indole-3-acetate, 5-hydroxyindole-3-acetic acid), lipids
(including vitamin A, oleic acid), and amino acids/peptides
(including Val–Ser, L-threonine) were positively correlated with
f_ Clostridiaceae, f_ Lachnospiraceae (except for Roseburia),
g_Bifidobacterium, unclassified_f_Peptostreptococcaceae, g_Bar
nesiella, f_ Rikenellaceae, and were negatively correlated with
norank_f_norank_o_Clostridia_vadinBB60_group, norank_f_
Ruminococcaceae, and Monoglobus. Many studies have reported
that Clostridiaceae, Bifidobacterium, and Peptostreptococcaceae
could convert tryptophan into indole and indole derivatives
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(Aragozzini et al., 1979; Wikoff et al., 2009; Russell et al.,
2013; Williams et al., 2014; Dodd et al., 2017; Wlodarska et al.,
2017). Studies have shown that tryptophan and its downstream
metabolites could bind to aryl hydrocarbon receptor (AHR); the
resulting complex is transported into the nucleus, where AHR is
activated (Lanis et al., 2017) to regulate intestinal homeostasis,
improve gut barrier function, and activate the immune system
(Roager and Licht, 2018). These findings also confirmed that
SN-6 feeding altered the composition and metabolic pattern of
the intestinal flora and thus contributed to the daily weight gain
of Simmental.

It should be mentioned that additional work is needed to
address some limitations of the present study, e.g., verification
experiments, and some of the work, such as whether SN-
6 modulates gut and rumen microflora metabolism and
influences the immunity of the body, is under investigation in
our research group.
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