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Editorial on the Research Topic

Influence of Protein-Protein Interactions (PPIs) on the Outcome of Viral Infections

In the last two decades, the (re)emergence of zoonotic viruses [e.g., Severe acute respiratory
syndrome coronavirus (SARS-CoV), Middle-Eastern respiratory syndrome coronavirus (MERS-
CoV), SARS-CoV-2, H1N1 and H5N1 influenza viruses, Ebola virus, and Zika virus] has resulted
in devastating consequences from a health, economic, and social perspective. Changes in ecological
and environmental factors, demographics, and socio-economic behavior have increased the risk
of spillover events and of (re)emergence of zoonotic viruses (Ahmed et al., 2019; Gibb et al.,
2020; Johnson et al., 2020; Carlson et al., 2022). It is therefore imperative to establish preventive
and therapeutic measures, as well as epidemiological surveillance to mitigate the effect of future
outbreaks (Abubakar et al., 2012; Watsa, 2020).

Viruses are genetic parasites that exploit the host’s molecular machinery by employing specific
virus-host protein-protein interactions (PPIs) that mediate critical steps in virus replication
and immune evasion. Thus, PPIs are prime targets for the development of therapeutics and
vaccines. However, their characterization is an urgent albeit challenging task that benefits
drastically from the integration of computational and experimental approaches. This Research
Topic brings together nine articles (including original research and review articles) that collectively
leverage experimentally and computationally derived information to describe important biological
processes mediated by virus-host PPIs.

Opening this Research Topic, four review articles present an overview of virus-host PPIs
and their biological role by focusing on specific host proteins, virus family or providing a
more holistic view. Chung and Song summarize interactions of proteins expressed by oncogenic
gammaherpesviruses [e.g., Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus
(KSHV), and murine gammaherpesvirus 68 (MHV-68)] with host poly (ADP-Ribose) polymerase
1 (PARP1), a nuclear enzyme that regulates diverse cellular pathways. PARP1’s interaction with
several viral proteins supports establishment of viral latency by down-regulating viral DNA
replication, and reducing virus production to prevent reactivation. Simultaneously, these viruses
also employ multiple mechanisms to down-regulate PARP1 expression to then promote their
own replication. Fishburn et al. systematically review virus-host PPIs that mediate virus entry
and replication of various flaviviruses, including dengue virus (DENV), Zika virus (ZIKV),
West Nile virus (WNV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV). The
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authors also summarize the role of virus-host and intra-host
PPIs mediated by cellular proteins involved in autophagy,
mitochondrial, and innate immune responses including the
antagonism of host immunity. Experimentally determined virus-
host PPIs are compiled in PPI databases. Saha et al. give a
detailed summary of virus-host PPI repositories and illustrate
how publicly available data can be leveraged to identify shared
and unique strategies employed by four emerging viruses to co-
opt cellular processes. Notably, Saha et al. and Gabriel Valiente
emphasize the poor overlap between the different repositories,
highlighting the need to use meta-databases that combine
different primary resources and inspect annotated PPIs during
dataset assembly.

Experimental characterization of the virus-host protein
interactome is far from complete and only few viruses have
been extensively studied. In order to narrow this knowledge gap,
computational tools can provide a catalog of high-confidence
PPI predictions to be tested experimentally (Lasso et al., 2019).
Recently, structural bioinformatics has experienced a major
breakthrough by the introduction of Deep Learning (DL)
methods to predict protein structure and PPIs from sequence
(Yang et al., 2020; Baek et al., 2021; Jumper et al., 2021;
Kryshtafovych et al., 2021; Bryant et al., 2022; Evans et al.,
2022; Gao et al., 2022). Yang et al. summarize technical details
of DL in the context of viral-host PPI prediction, including
the different types of architecture, dataset preparation, feature
engineering and performance assessment. While we expect
DL-based methods to play a major role in inter-species PPI
prediction in the near future, Yang et al. highlight important
aspects of the technique that require further improvements and
careful examination.

The following research articles illustrate important aspects
of virus-host PPIs, including amino acid variations at protein
interfaces, through a wide range of approaches such as
X-ray crystallography, cryo-electron microscopy (Cryo-EM),
molecular dynamics (MD), protein structure modeling, and
binding affinity assays. Ford et al. combined DL-based protein
structure modeling and protein docking to evaluate the potential
binding between the spike (S) protein of the Omicron variant
of SARS-CoV-2 and four neutralizing monoclonal antibodies
(mAbs) targeting S with known structure. This study highlights
amino acid variations that are predicted to decrease mAb-
binding affinities without completely abrogating interactions
and has important implications in the rapid assessment of
neutralization escape potential of emerging viral strains. Zhu
et al. experimentally studied the interaction between a PDZ-
domain binding motif (PBM) found in SARS-CoV-2 envelope
(E) protein and PDZ-containing cellular proteins, which are

commonly targeted by other viruses (Javier and Rice, 2011). The
authors identified an interaction of E protein with several PDZ
domains of host proteins involved in cellular junctions and cell
polarity, resulting in the sequestration of these host proteins
in the Golgi compartment. Structural studies on PDZ:PBM
complexes highlighted structure and sequence preferences at
the interface. Ongoing studies focus on a point mutation in E
protein localized in proximity to its PBM in the SARS-CoV-
2 variant of concern beta that was shown to influence the
binding affinity of E protein for PDZ domains. Glycans also
play a key role in modulating the interaction with host proteins
(Thompson et al., 2019; Watanabe et al., 2019). However, their
intrinsic flexibility and cell-type specific composition makes
them difficult to study experimentally. Stagnoli et al. combine
Cryo-EM and MD to investigate the composition and dynamics
of the glycan shield in the SARS-CoV-2 S protein. The authors
show that the conformation of the glycans that best fit the
Cryo-EM density map are those in which the movement of the
most external carbohydrates are more geometrically restricted,
providing an understanding of why these glycans are visible by
Cryo-EM. Finally, Sabariegos et al. describe how the interaction
between the cellular kinase Akt and the Hepatitis C virus (HCV)
RNA-dependent RNA polymerase NS5B modulates this viral
protein via phosphorylation of conserved residues. Site-directed
mutagenesis of key NS5B residues to mimic phosphorylation
significantly reduced RNA polymerase activity and prevented
rescue of HCV from infectious clones, thus, describing a
mechanism of viral polymerase inactivation whose biological role
remains to be determined.

In conclusion, this Research Topic provides an overview
of computational and experimental approaches that, when
combined, can significantly accelerate our understanding of
virus-host PPIs and their biological role in viral infectious
diseases. We are grateful for the valuable contributions
of authors, reviewers, and members of the Editorial team
at Frontiers.
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