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Pseudomonas protegens Pf-5 is an effective biocontrol agent that protects 

many crops against pathogens, including the fungal pathogen Botrytis 

cinerea causing gray mold disease in Cannabis sativa crops. Previous studies 

have demonstrated the important role of antibiotics pyoluteorin (PLT) and 

2,4-diacetylphloroglucinol (DAPG) in Pf-5-mediated biocontrol. To assess 

the potential involvement of PLT and DAPG in the biocontrol exerted by Pf-5 

against B. cinerea in the phyllosphere of C. sativa, two knockout Pf-5 mutants 

were generated by in-frame deletion of genes pltD or phlA, required for the 

synthesis of PLT or DAPG respectively, using a two-step allelic exchange 

method. Additionally, two complemented mutants were constructed by 

introducing a multicopy plasmid carrying the deleted gene into each deletion 

mutant. In vitro confrontation assays revealed that deletion mutant ∆pltD 

inhibited B. cinerea growth significantly less than wild-type Pf-5, supporting 

antifungal activity of PLT. However, deletion mutant ∆phlA inhibited mycelial 

growth significantly more than the wild-type, hypothetically due to a co-

regulation of PLT and DAPG biosynthesis pathways. Both complemented 

mutants recovered in vitro inhibition levels similar to that of the wild-type. In 

subsequent growth chamber inoculation trials, characterization of gray mold 

disease symptoms on infected cannabis plants revealed that both ∆pltD and 

∆phlA significantly lost a part of their biocontrol capabilities, achieving only 

10 and 19% disease reduction respectively, compared to 40% achieved by 

inoculation with the wild-type. Finally, both complemented mutants recovered 

biocontrol capabilities in planta similar to that of the wild-type. These results 

indicate that intact biosynthesis pathways for production of PLT and DAPG are 

required for the optimal antagonistic activity of P. protegens Pf-5 against B. 

cinerea in the cannabis phyllosphere.
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Introduction

Pseudomonas is a large genus of ubiquitous 
Gammaproteobacteria that has received much attention for the 
development of biocontrol agents over the years. These versatile 
bacteria are indeed well-known for their great metabolic flexibility 
and lifestyle adaptability, allowing them to colonize a wide range 
of environmental niches, including plant roots and their associated 
soil (rhizosphere), and plant aerial surfaces (phyllosphere; Gross 
and Loper, 2009). The model strain Pseudomonas protegens Pf-5 
was first isolated from cotton seedling rhizosphere in Texas, 
United States (Howell and Stipanovic, 1979) and has since been 
used to control the growth and/or development of various plant 
pathogens in cotton, cucumber, pea, maize, wheat, turfgrass, 
tomato, and potato crops (Loper et al., 2007). The primary mode 
of action of this successful antagonistic strain relies on the 
production of antimicrobial metabolites with wide-spectrum 
antifungal activities, including hydrogen cyanide (HCN), 
pyrrolnitrin (PRN), pyoluteorin (PLT), 2,4-diacetylphloroglucinol 
(DAPG), orfamides, and rhizoxins (Fernando et al., 2005; Gross 
and Loper, 2009).

The polyketide DAPG is a phenolic compound synthesized by 
acetylation of its precursor monoacetylphloroglucinol (MAPG), 
itself produced via a phloroglucinol intermediate formed by 
condensation of three malonyl-CoA molecules. The genes 
required for DAPG biosynthesis are located within a highly 
conserved 6.5-kb genomic DNA fragment comprising nine open 
reading frames (phlACBDEFGHI) grouped together in a 
biosynthetic gene cluster. Four of these genes (phlACBD) 
constitute the operon directly involved in the biosynthesis, while 
the others (phlEFGHI) code for efflux, degradation, and regulatory 
proteins (Gross and Loper, 2009; Biessy and Filion, 2021). Notably, 
phlA, phlC, and phlB encode the subunits of a multimeric enzyme 
that catalyzes the conversion of phloroglucinol to MAPG, and of 
MAPG to DAPG (Pavkov-Keller et  al., 2019). The antibiotic 
DAPG, produced by strain Pf-5 and other related Pseudomonas 
strains, has been found effective against fungal pathogens such as 
Rhizoctonia solani (Nowak-Thompson et  al., 1994), 
Gaeumannomyces tritici, Thielaviopsis basicola (Vincent et  al., 
1991; Keel et al., 1992; Kwak et al., 2009), Fusarium verticillioides, 
Fusarium oxysporum (Sharifi-Tehrani et al., 1998; Quecine et al., 
2016), Monilinia fructicola, and Botrytis cinerea (Zhang et  al., 
2020), as well as against the oomycetes Pythium ultimum (Fenton 
et al., 1992; Shanahan et al., 1992; Nowak-Thompson et al., 1994; 
Sharifi-Tehrani et al., 1998; de Souza et al., 2003), Plasmopara 
viticola and Aphanomyces cochlioides (Islam and von Tiedemann, 
2011), and against various phytopathogenic bacteria (Nowak-
Thompson et  al., 1994; Cronin et  al., 1997a) and nematodes 
(Cronin et  al., 1997b; Meyer et  al., 2009). Impairment of 
mitochondrial functions and calcium homeostasis are the primary 
mechanisms responsible for the direct toxicity of DAPG against 
filamentous fungi (Troppens et  al., 2013), while induction of 
systemic immune responses in Arabidopsis thaliana has also been 
reported (Iavicoli et al., 2003; Weller et al., 2012; Chae et al., 2020).

On the other hand, the antibiotic PLT is composed of a 
dichlorinated pyrrole moiety and a resorcinol ring that are 
synthesized by a polyketide synthase-non-ribosomal peptide 
synthetase hybrid pathway. The biosynthetic gene cluster 
encompasses 17 genes involved in PLT production 
(pltABCDEFGLM), regulation (pltZ and pltR), and efflux 
(pltIJKNOP), spanning ~30 kb of DNA in the genome of P. protegens 
Pf-5 (Gross and Loper, 2009). Notably, pltD is part of the main 
structural operon and encodes a putative halogenase which plays 
an essential and rate-limiting role in the production of PLT, even 
though its exact function remains unclear (Nowak-Thompson 
et al., 1999; Li et al., 2012b; Zhang et al., 2020). While numerous 
antifungal and antibacterial effects have been reported, PLT 
produced by strain Pf-5 is best known for its inhibitory activity 
against the oomycete P. ultimum (Howell and Stipanovic, 1980; 
Maurhofer et al., 1994; Gross and Loper, 2009; Clifford et al., 2016).

Cannabis plants (Cannabis sativa) have been cultivated 
worldwide for centuries to produce fiber and oilseeds (commonly 
referred to as hemp crops), as well as medicinal and recreational 
compounds (commonly referred to as marijuana crops). With the 
ongoing easing of cannabis prohibition laws in several countries like 
Canada, a renewed interest in large-scale cultivation is accompanied 
by the emergence of plant pathogens impacting cannabis yield and 
harvest quality (Punja, 2021). Among the pathogens of greatest 
concern for both hemp and marijuana crops is B. cinerea, the causal 
agent of bud rot and gray mold disease which are responsible for 
devastating damages in outdoor and indoor cannabis cropping 
systems (McPartland et  al., 2000; Punja and Ni, 2021). Recent 
reviews exploring the potential benefits of biocontrol agents for 
cannabis crops have highlighted clear opportunities regarding the 
inoculation of beneficial Pseudomonas spp. to control B. cinerea in 
cannabis crops, including P. protegens Pf-5 (Lyu et  al., 2019; 
Taghinasab and Jabaji, 2020; Balthazar et al., 2022a,b), even though 
supporting validation studies providing mechanistic insights are 
still largely lacking. Therefore, the aim of this study was to 
investigate the contribution of the antibiotics PLT and DAPG in the 
biocontrol exerted by P. protegens Pf-5 against the fungal pathogen 
B. cinerea infecting C. sativa plants. It was previously shown that 
P. protegens Pf-5 was able to significantly reduce gray mold 
symptom severity on C. sativa leaves when applied before pathogen 
infection (Balthazar et  al., 2022b). Here, we  report that this 
biocontrol protection is significantly impaired in Pf-5 isogenic 
knockout mutants where genes required for PLT or DAPG 
biosynthesis have been deleted. Antibiotics PLT and DAPG are thus 
proposed as key determinants of P. protegens Pf-5 biocontrol success 
against B. cinerea within the cannabis phyllosphere.

Materials and methods

Bacterial growth conditions

Escherichia coli and Pseudomonas protegens strains (Table 1) 
were routinely grown at 37 and 25°C, respectively, in Lennox’s 
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lysogeny broth (LB; 10 g L−1 peptone or tryptone, 5 g L−1 yeast 
extract, and 5 g L−1 NaCl) and on Lennox’s LB agar (Lennox’s LB 
supplemented with 12 g L−1 agar; modified from Lennox, 1955). 
When appropriate, the medium was supplemented with 
antibiotics: 100 μg ml−1 ampicillin sodium salt, 25 μg ml−1 
chloramphenicol, 15 μg ml−1 (E. coli), or 30 μg ml−1 (P. protegens) 
gentamicin sulfate. All plate cultures were prepared in 
100-mm-diameter Petri dishes.

DNA extractions

Pseudomonas protegens genomic DNA was isolated from 
24-h-old broth-grown cells using the DNeasy UltraClean 
Microbial kit (Qiagen, Toronto, ON, Canada). The manufacturer’s 
protocol was followed, with the exception that cell lysis was 
carried out using a FastPrep-24 (MP Biomedicals, Solon, OH, 
United States; 4 m s−1 for 30 s) instead of a vortex. Plasmid DNA 
was extracted from 18-to 20-h-old broth-grown E. coli cells using 
standard procedures (Sambrook and Russell, 2001). DNA was 
quantified by spectrophotometry, and its integrity was confirmed 
by agarose gel electrophoresis.

Construction of allelic exchange vectors

Genes phlA (+4 to +1,080) and pltD (+4 to +1,620; numbering 
relative to the gene’s start codon) were deleted in-frame from the 

P. protegens Pf-5 genome (GenBank accession no. CP000076; 
Paulsen et al., 2005) using a two-step allelic exchange strategy 
based on (Hmelo et al., 2015; Figure 1). To avoid polar effects, the 
target gene’s start and stop codons were not deleted, and care was 
taken to retain the downstream encoded gene’s putative ribosome-
binding site and start codon, particularly when translational 
coupling was suspected (Supplementary Figures S1, S2).

For each gene to be  deleted, a gene knockout cassette, 
comprising a mutant allele bordered on either side by DNA 
sequences flanking the region of the P. protegens chromosome to 
be deleted, was synthesized and assembled into an allelic exchange 
vector, as follows. To construct each knockout cassette, DNA 
sequences located immediately upstream and downstream of the 
gene to be deleted (hereafter called the upstream and downstream 
flanks) were individually PCR-amplified from P. protegens Pf-5 
genomic DNA using Phusion High-Fidelity DNA Polymerase 
(New England Biolabs, Whitby, ON, Canada) with primer pairs 
GA-UPF/GA-UPR (for amplification of the upstream flank) and 
GA-DWNF/GA-DWNR (for amplification of the downstream 
flank). Each primer comprised a 3′ sequence-specific priming 
sequence, designed using Primer-BLAST (Ye et al., 2012; Available 
at https://www.ncbi.nlm.nih.gov/tools/primer-blast/). To 
introduce regions of overlap between the upstream and 
downstream flank amplicons, and promote their annealing during 
cassette assembly, a 10-nt extension, designed using the NEBuilder 
Assembly Tool version 2.5.3 (New England Biolabs; Available at 
https://nebuilder.neb.com/#!/), was added to the 5′ end of the 
GA-UPR and GA-DWNF primers. A 20-nt extension was also 

TABLE 1 Bacterial strains and plasmids.

Strain/plasmid Genotype, properties, and/or usesa Source

  P. protegens strains

Pf-5 Biocontrol strain; cotton seedling rhizosphere isolate producing 2,4-diacetylphloroglucinol and pyoluteorin; AmpR 

ChlR SptR StrR TetR
Howell and Stipanovic, 1979

Pf-5∆phlA Pf-5∆phlA (∆PFL_5954; markerless deletion of +4 to +1,080) This study

Pf-5∆pltD Pf-5∆pltD (∆PFL_2790; markerless deletion of +4 to +1,620) This study

  E. coli strains

DH5α Plasmid construction and storage strain; F-ϕ80dlacZ∆M15 ∆(lacIZYA-argF)U169 recA1 endA1 hsdR17(rK−, mK+) 

deoR supE44 thi-1 gyrA96 relA1; NalR

BioPioneer

Plasmids

pEX18Gm Mobilizable (but not self-transmissible) suicide vector; ori (pMB1, high-copy mutant) oriT sacB lacZα; GenR Hoang et al., 1998

pEX18Gm-∆phlA Allelic exchange vector; phlA (PFL_5954) upstream flanking DNA (−2,343 to +3) fused to phlA downstream 

flanking DNA (+1,081 to +3,459), directionally cloned in the HindIII-KpnI site of pEX18Gm

This study

pEX18Gm-∆pltD Allelic exchange vector; pltD (PFL_2790) upstream flanking DNA (−2,330 to +3) fused to pltD downstream 

flanking DNA (+1,621 to +3,876), directionally cloned in the HindIII-KpnI site of pEX18Gm

This study

pRK600 Self-transmissible helper plasmid; ori (ColE1) oriT tra; ChlR Finan et al., 1986

pUCP22 E. coli-Pseudomonas shuttle vector; ori (pMB1, high-copy mutant) ori (pRO1600) rep lacZα; AmpR GenR West et al., 1994

pUCP22-phlA Mutant complementation vector; phlA (PFL_5954) (−60 to +1,099), directionally cloned in the BamHI-KpnI site 

under the transcriptional control of Plac

This study

pUCP22-pltD Mutant complementation vector; pltD (PFL_2790) (−69 to +1,642) with an additional stop codon inserted at its 3′ 

end, directionally cloned in the BamHI-KpnI site under the transcriptional control of Plac

This study

aBase numbering is relative to the start codon. 
AmpR, ampicillin-resistant; ChlR, chloramphenicol-resistant; GenR, gentamicin-resistant; NalR, nalidixic acid-resistant; SptR, spectinomycin-resistant; StrR, streptomycin-resistant; TetR, 
tetracycline-resistant; and Plac, lac promoter.
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FIGURE 1

Generation of Pseudomonas protegens Pf-5 knockout mutants and complemented mutants by two-step allelic exchange and plasmid-based 
complementation. (A) Construction of the allelic exchange vector for in-frame deletion of phlA or pltD (yellow) in the bacterial wild-type genome. 
The gene knockout cassette comprises the DNA sequences immediately upstream and downstream of the gene to be deleted (Up and Down 
flanks, red and orange) and is assembled into the suicide vector pEX18Gm (green) carrying the gentamicin resistance (GenR, light blue) and sucrose 
sensitivity (sacB, dark blue) genes. Integration of the allelic exchange vector in Pf-5 chromosome occurs by homologous recombination (first 
crossover) after bacterial conjugation, and merodiploids are selected on gentamicin-amended media. Subsequent homologous recombination 
(second crossover) results in the loss of the allelic exchange vector backbone, which is selected with sucrose-amended media. Depending on the 
second crossover locus, vector excision either restores the wild-type allele or deletes the gene in the bacterial chromosome. Clones with the 
correct genotype (gene deleted) are discriminated from reverted clones by diagnostic PCRs. (B) Construction of the complementation vector for 
electroporation into complemented mutants, resulting in plasmid-based complementation of phlA or pltD (yellow). The gene (yellow) is 
assembled into the multicopy shuttle vector pUCP22 (pink), under transcriptional control of a constitutive lac promoter (black), which carries the 
gentamicin resistance (GenR, light blue) and ampicillin resistance (AmpR, gray) genes. (C) The empty complementation vector (pink plasmid) is 
introduced into the wild-type bacteria (undisturbed chromosome in black with target gene in yellow) and the deletion mutants (knockout 
chromosome in black missing target gene), while the recombinant complementation vector (pink plasmid carrying target gene in yellow) is 
introduced into the complemented mutants (knockout chromosome in black missing target gene). Combined steps thus result in unscarred 
mutants that differ from the wild-type strain only in the presence or absence of the targeted gene (yellow). Primers used to monitor each key step 
are indicated in the corresponding legends. Drawings are not to scale.

incorporated into the 5′ end of the GA-UPF and GA-DWNR 
primers for subsequent assembly of the cassette with the suicide 
vector pEX18Gm (GenBank accession no. AF047518; Hoang 
et al., 1998; Table 1) to generate the allelic exchange vector. Primer 
pairs used, primer sequences, amplification conditions, and 
product lengths are provided in Supplementary Tables S1, S2. PCR 
products were then column-purified using the PureLink PCR 
Purification kit (Invitrogen, Waltham, MA, United States) with the 
Binding Buffer B2.

The upstream flank, the downstream flank, and linearized 
pEX18Gm were then assembled together to form the allelic 
exchange vector. To generate a linearized vector for DNA assembly, 
plasmid pEX18Gm was digested with FastDigest KpnI (Thermo 
Scientific, Waltham, MA, United States), column-purified, and then 
digested with FastDigest HindIII (Thermo Scientific). The digested 
plasmid was column-purified, dephosphorylated for 2 h using 
Quick CIP (New England Biolabs) with approximately twice the 
recommended mass of DNA, and column-purified again. Then, 
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13.6 fmol upstream flank, 13.6 fmol downstream flank, and 7.0 fmol 
dephosphorylated, digested pEX18Gm were assembled together at 
50°C for 1 h in 1 × NEBuilder HiFi DNA Assembly Master Mix 
(New England Biolabs).

The DNA assembly reaction mixture, containing the newly 
assembled allelic exchange vector, was electroporated into E. coli 
DH5α, as described below. Gentamicin-resistant electrotransformants 
were then screened for the acquisition of a correctly assembled allelic 
exchange vector by PCR-amplifying the gene knockout cassette using 
the DreamTaq Hot Start Green PCR Master Mix (Thermo Scientific) 
with the CKF/CKR primer pair and crude cell lysates as template 
(Supplementary Tables S1, S2).

Triparental mating, and selection of 
merodiploids and deletion mutants

Each recombinant pEX18Gm plasmid (Table  1) was 
transferred to P. protegens Pf-5 using triparental mating. Briefly, 
20–24-h-old starter cultures of the donor (E. coli DH5α 
carrying an allelic exchange vector), helper (E. coli DH5α/
pRK600), and recipient (P. protegens Pf-5) strains (Table 1) were 
each diluted 50–100-fold in 50 ml Lennox’s LB in a 250-ml 
Erlenmeyer flask. The medium was supplemented, as needed, 
with an antibiotic to maintain plasmid selection. Cultures were 
grown at 37°C (E. coli) or 25°C (P. protegens) with constant 
shaking at 250–300 rpm until they reached an optical density of 
0.4–0.7 at 600 nm, and cells were collected and washed with 
glycerol (10% v/v) as described below for the preparation of 
electrocompetent cells. The final washed cell pellet was then 
resuspended in 300 μl ice-cold Lennox’s LB, and 100 μl each 
donor, helper and recipient cell suspension were mixed together 
and spread-plated on 30 ml Lennox’s LB agar supplemented 
with 10 mM MgSO4. The plate culture was incubated at 28°C 
for 20 h.

To select for P. protegens merodiploids, cells were scraped off 
the plate’s surface using an inoculation loop, resuspended in 1 ml 
phosphate-buffered saline (PBS) solution (1×; Sambrook and 
Russell, 2001), and 5 μl suspension were spread-plated onto 30 ml 
Lennox’s LB agar supplemented with ampicillin sodium salt 
(which selects against the ampicillin-sensitive E. coli donor and 
helper strains) and gentamicin sulfate (which selects for 
P. protegens cells that have incorporated the allelic exchange vector 
into their chromosome by homologous recombination). The plate 
culture was incubated at 25°C for ~2 days.

Pseudomonas protegens clones that have lost the pEX18Gm 
backbone owing to a second crossover event were then isolated 
using sucrose-mediated counterselection. Briefly, gentamicin-
resistant merodiploid colonies were patched onto a fresh plate of 
Lennox’s LB agar supplemented with gentamicin sulfate. After 
~2 days at 25°C, patches were scraped off the plate using an 
inoculation loop, resuspended in 1 ml PBS solution (1×), and 10 μl 
cell suspension were spread-plated onto 30 ml no-salt LB agar 
(10 g L−1 tryptone, 5 g L−1 yeast extract, and 15 g L−1 agar) 

supplemented with 10% w/v sucrose (modified from Hmelo et al., 
2015). Plate cultures were incubated at 28°C for 22 h. Putative 
deletion mutants (gentamicin-sensitive) were identified by 
patching sucrose-resistant clones on 30 ml Lennox’s LB agar 
supplemented with or without gentamicin sulfate (25°C for 22 h).

Sucrose-resistant, gentamicin-sensitive clones were then 
screened for the deletion of the target gene by PCR-amplifying the 
gene knockout cassette using the DreamTaq Hot Start Green PCR 
Master Mix with the CKF/CKR primer pair and crude cell lysates as 
template (Supplementary Tables S1, S2). Genomic DNA was isolated 
from deletion mutants, and successful deletion of the target gene 
was confirmed by a series of diagnostic PCRs targeting the wild-type 
(primer pair CKF/CKInt) and mutant (primer pair CKF/CKR) 
alleles (Supplementary Tables S1, S2). Genotype and phenotype 
confirmation results are provided in Supplementary Figures S1, S2.

Mutant complementation

To complement the mutations, the deleted gene’s coding 
region—with 60–69 bp of upstream sequence encompassing the 
putative ribosome-binding site—was placed under the 
transcriptional control of a constitutive lac promoter and 
reintroduced into the deletion mutant on the multicopy shuttle 
vector pUCP22 (GenBank accession no. U07166; West et al., 1994; 
Table 1). Care was taken to avoid including the downstream gene’s 
ribosome-binding site and start codon. When the inclusion of 
these features was unavoidable, additional codons of the 
downstream gene were included in the complementation 
construct, followed by an in-frame opal stop codon 
(Supplementary Figure S3).

To construct the complementation vectors, phlA (−60 to 
+1,099) and pltD (−69 to +1,642; numbering relative to the start 
codon) were first PCR-amplified from P. protegens Pf-5 genomic 
DNA using Phusion High-Fidelity DNA Polymerase with the 
ComplF/ComplR primer pair (Supplementary Tables S1, S2). 
Different restriction sites were engineered into the 5′ end of each 
primer to enable subsequent restriction cloning of the PCR 
product into pUCP22 (Supplementary Table S1). PCR products 
were column-purified as above.

Products were then sequentially digested, first with FastDigest 
KpnI, and then with BamHI (Thermo Scientific). Products were 
column-purified after each digestion. Plasmid pUCP22 was 
similarly digested, dephosphorylated and purified as described for 
pEX18Gm, and then ligated with purified digested PCR product 
for 18 h at 16°C using 0.1 U μl−1  T4 DNA Ligase (Invitrogen), 
thereby cloning the PCR product immediately downstream of the 
vector’s lac promoter. After heat-inactivating the enzyme at 65°C 
for 20 min, the ligase reaction mixtures, containing the newly 
constructed complementation plasmids, were electroporated into 
electrocompetent E. coli DH5α as described below.

Gentamicin-resistant E. coli electrotransformants were 
screened for the presence of a recombinant pUCP22 plasmid 
(Table 1) by PCR-amplifying the insert using the DreamTaq Hot 

https://doi.org/10.3389/fmicb.2022.945498
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Balthazar et al. 10.3389/fmicb.2022.945498

Frontiers in Microbiology 06 frontiersin.org

Start Green PCR Master Mix with the ComplF/ComplR primer 
pair and crude cell lysates as template (Supplementary Tables S1, S2). 
Plasmids were then isolated from positive electrotransformants.

Each confirmed recombinant plasmid was then electroporated 
into its corresponding P. protegens deletion mutant as described 
below. The empty plasmid was also electroporated into the wild-
type P. protegens Pf-5 and each deletion mutant. To confirm the 
successful introduction of each complementation construct into 
its corresponding deletion mutant, each plasmid’s insert was 
PCR-amplified using the DreamTaq Hot Start Green PCR Master 
Mix with the appropriate ComplF/ComplR primer pair and crude 
cell lysate as template (Supplementary Tables S1, S2). Genotype 
confirmation results are provided in Supplementary Figure S3.

Electroporation

Electroporations of E. coli and P. protegens were carried 
out following a protocol adapted from (Gust et  al., 2003). 
Electrocompetent cells were first prepared by washing 
exponential-phase cells with glycerol (10% v/v) as follows. An 
18-h-old starter culture of the recipient was diluted 50–100-
fold in 50 ml modified super optimal broth (20 g L−1 tryptone, 
5 g L−1 yeast extract, and 0.5 g L−1 NaCl; adapted from 
Sambrook and Russell, 2001) in a 250-ml Erlenmeyer flask, 
and the culture was incubated at 37°C (E. coli) or 25°C 
(P. protegens) with constant shaking at 250–300 rpm until the 
culture reached an optical density of 0.3–0.5 at 600 nm. Then, 
42–45 ml culture were transferred to a 50-ml centrifuge tube 
and cooled on ice for at least 5 min. Cells were pelleted by 
centrifugation at 3,950 × g for 10 min at 4°C, and the culture 
supernatant was decanted and discarded. The pelleted cells 
were resuspended in 42–45 ml ice-cold glycerol (10% v/v) and 
pelleted once more as above. The supernatant was decanted, 
and cells were washed a second time with 5 ml ice-cold 
glycerol (10% v/v) and pelleted. After decanting the 
supernatant, the pelleted cells were resuspended in the small 
volume of supernatant remaining in the centrifuge tube. Then, 
50 μl washed cells were mixed with either 1 μl DNA assembly 
reaction mixture, 3 μl ligation reaction mixture, or 1 μl plasmid 
extract in a cold 1.5-ml microcentrifuge tube, and the 
suspension was subsequently transferred to a pre-chilled 
2-mm-gapped Gene Pulser Cuvette (Bio-Rad, Mississauga, 
ON, Canada). The electroporation was carried out in a Gene 
Pulser Xcell Electroporation System (Bio-Rad) using an 
exponential decay pulse (25 μF, 2.5 kV, and 200 Ω). Shocked 
cells were immediately resuspended in 1 ml ice-cold Lennox’s 
LB, transferred to a new chilled 1.5-ml microcentrifuge tube, 
and incubated at 37°C for 1 h (E. coli) or 25°C for 2 h 
(P. protegens) with constant shaking at 250–300 rpm. Culture 
aliquots were then spread-plated on 30 ml Lennox’s LB agar 
supplemented with gentamicin sulfate to select for 
electrotransformants. Plate cultures were incubated at 37°C 
for ~1 day (E. coli) or 25°C for ~2 days (P. protegens).

Fungal growth inhibition in vitro

The ability of P. protegens Pf-5 and its derivatives to inhibit the 
growth of B. cinerea in  vitro was assessed using confrontation 
assays described previously (Balthazar et al., 2022b). A pathogenic 
strain of B. cinerea, isolated from symptomatic C. sativa plants in 
British Columbia, Canada (Punja et al., 2019), was kindly provided 
by Z.K. Punja (Simon Fraser University, BC, Canada). Actively 
growing cultures were routinely maintained at 25°C on potato 
dextrose agar (PDA; Difco, BD, Franklin Lakes, NJ, United States), 
and mycelial plugs (5 mm in diameter) were harvested from the 
edge of the colony. Bacterial cells were collected from Lennox’s 
LB-gentamicin broth cultures no older than 24 h, washed twice 
with sterile PBS solution (1×) with centrifugation at 3,950 × g for 
5 min at 4°C, then resuspended to a final concentration of 
108 CFU ml−1 in PBS solution (1×), using standard curves and 
optical density readings at 600 nm. Two 10-μl drops of each 
normalized bacterial suspension were spotted at equal distance 
(30 mm) from a mycelium plug placed in the center of a Petri plate 
containing 20 ml fresh PDA medium. Drops containing sterile PBS 
solution (1×) were added in control Petri plates. Four Petri plates 
were prepared for each bacterial strain, and the experiment was 
replicated a second time. Plate cultures were incubated at 25°C in 
the dark until the mycelium reached the edges of the control plates 
(~5 days). Absence of mycelial growth around the bacterial colonies 
in the treated plates reflected their ability to inhibit B. cinerea 
growth, and the corresponding inhibition zones were measured.

Cannabis gray mold disease reduction 
assays

The biocontrol ability of P. protegens Pf-5 and its derivatives to 
reduce gray mold severity on cannabis plants was assessed using 
growth chamber trials as described previously (Balthazar et al., 
2022b). Briefly, seeds of C. sativa cultivar “Anka” (hemp type) 
obtained from Céréla (Saint-Hugues, QC, Canada) were 
germinated in peat-based potting mix (75% v/v Pro-Mix, 25% v/v 
vermiculite; Premier Tech, Rivière-du-Loup, QC, Canada) at 23°C, 
70% relative humidity, 300 μmol m−2 s−1 light intensity, and 18/6 h 
(light/dark) photoperiod in a PGR15 growth chamber (Conviron, 
Winnipeg, MB, Canada). After 7 days, cannabis seedlings were 
transplanted into individual 4-in diameter pots and grown under 
the same conditions as above. Plants were inoculated with bacteria 
after 5 additional days. Bacterial cells were collected from broth 
cultures no older than 24 h, washed twice in PBS solution (1×) as 
described above, and resuspended to a final concentration of 
105 CFU ml−1 in water, as previously described (Balthazar et al., 
2022b). The aerial parts of each plant were sprayed with ~10 ml 
normalized bacterial suspension (treated plants), or an equivalent 
amount of water (control plants). Each treatment included 12 
independent plants arranged randomly in the growth chamber. 
Plants were infected with B. cinerea conidia 2 days later. Conidia 
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were harvested in water from PDA cultures that had been incubated 
under light beforehand to induce fungal sporulation. Conidia 
concentration was measured with a hemocytometer and diluted to 
103 conidia ml−1 in a solution of 0.067 M KH2PO4 and 0.11 M 
glucose to promote infection (Van Den Heuvel, 1981). Two 10-μl 
drops of normalized conidia suspension were spotted onto one leaf 
per plant (on each side of the central vein of the main leaflet from 
the second true leaf pair), and plants were kept under high humidity 
in clear plastic bags until control plants without bacteria exhibited 
strong disease symptoms (~8 days post infection). Disease severity 
was evaluated according to an ordinal scoring scale with the 
following symptom classes: 0, no symptoms; 1, chlorosis without 
lesions; 2, localized lesions; and 3, spreading and/or sporulating 
necrotic lesions (Balthazar et  al., 2022b). The experiment was 
replicated a second time, totaling 24 plants per treatment. The 
disease severity index (DSI) for each treatment was calculated as

 
DSI score 3 24 100

1

24
= ( ) ÷ ×( )×

=
∑
n

n %

which corresponds to the sum of each score obtained by the 
24 plants, divided by the highest possible score on the scale and 
the total number of plants, in percentage. The disease reduction 
index (DRI) for each treatment was then calculated as

 
DRI DSI DSI DSI 100control treated control= ÷ ×−( ) %

which corresponds to the reduction of disease severity 
achieved by each bacterial treatment compared to the control 
treatment without bacteria, relative to the disease severity of the 
control treatment, in percentage.

Statistical analyses

Kruskal Wallis rank sum tests were performed to examine the 
effect of the bacterial treatments on the inhibition zones in Petri 
plates and on the count of cannabis leaves in symptom classes. If 
the test was significant at the 0.05 confidence level, Fisher’s Least 
Significant Difference (LSD) post hoc comparisons with 
Benjamini-Hochberg correction were carried out to identify 
which bacterial mutants differed from the wild-type group (R 
version 4.1.0, package agricolae).

Results

PLT and DAPG contribute significantly to 
fungal growth inhibition in vitro

In vitro confrontation assays with bacterial mutants were used 
to examine whether production of PLT and DAPG played a 

significant role in the ability of P. protegens Pf-5 to inhibit 
B. cinerea mycelial growth. Compared to wild-type Pf-5/pUCP22, 
the inhibitory capability of deletion mutant ∆pltD/pUCP22 was 
significantly reduced while, paradoxically, that of deletion mutant 
∆phlA/pUCP22 was significantly increased (Figure  2). 
Complementation in both mutants, obtained by reintroducing the 
corresponding deleted gene under the control of a constitutive lac 
promoter on the pUCP22 vector plasmid, restored their inhibition 
levels to that of wild-type Pf-5/pUCP22 (Figure 2), indicating that 
the mutations did not have polar effects. Introduction of the 
empty plasmid pUCP22 (without insert) in the original wild-type 
and knockout strains ensured that the only difference between 
these strains and the complemented strains would be the presence 
of genes phlA or pltD, rather than the additional presence of 
plasmid pUCP22 (which might have otherwise influenced the 
bacterial phenotypes; Figure 1C).

FIGURE 2

In vitro confrontation assays of Pseudomonas protegens Pf-5-
derived strains against Botrytis cinerea mycelium growth. Potato 
dextrose agar plates containing plugs of B. cinerea mycelium and 
drops of normalized bacterial suspensions (108 CFU ml−1 in PBS 
solution) were incubated at 25°C in the dark. Inhibition zones 
between the bacterial colonies and mycelium growth were 
measured after 5 days. Means (indicated above each bar) and 
standard errors are from two independent experiments 
containing four replicates each (n = 8). Exact p values are 
indicated for comparisons with wild-type/pUCP22 according to 
Fisher’s LSD post-hoc analysis with Benjamini-Hochberg 
correction, * represents p < 0.05.

https://doi.org/10.3389/fmicb.2022.945498
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Balthazar et al. 10.3389/fmicb.2022.945498

Frontiers in Microbiology 08 frontiersin.org

FIGURE 3

In planta disease reduction assays of P. protegens Pf-5-derived 
strains against cannabis gray mold disease. Leaves of 12-day-old 
cannabis plants were sprayed with normalized bacterial 
suspensions (105 CFU ml−1 in water), or water for control plants. 
Leaves were infected 2 days later with two drops of B. cinerea 
conidia suspension (103 conidia ml−1). Symptoms were observed 
8 days after infection when control plants exhibited strong disease 
symptoms, and disease severity was scored using the four-class 
scale presented by pictures. The disease reduction index (DRI) 
was calculated for each treatment relative to the control plants 
without bacteria, as detailed in Methods. Stacked barplots 
represent the count of leaves in each symptom class from two 
independent experiments containing 12 plants each (n = 24). Exact 
p values are indicated for comparisons with plants treated with 
wild-type/pUCP22 according to Fisher’s LSD post-hoc analysis 
with Benjamini-Hochberg correction, * represents p < 0.05.

PLT and DAPG contribute significantly to 
gray mold reduction in planta

In planta disease reduction assays with bacterial mutants were 
used to examine whether production of PLT and DAPG played a 
significant role in the biocontrol exerted by P. protegens Pf-5 against 
B. cinerea on cannabis leaves. Confirming its biocontrol abilities, 
wild-type Pf-5/pUCP22 reduced disease symptoms significantly by 
40%, corresponding to approximately one third of the plants 
displaying no symptoms or small chloroses exempt of lesions, 
compared to control plants that had not received any bacteria and 
were largely affected by necrotic lesions (Figure 3). Conversely, the 
biocontrol capabilities of deletion mutants ∆phlA/pUCP22 and 

∆pltD/pUCP22 were significantly reduced to only 19 and 10% 
disease reduction, respectively (Figure 3). Complementation in both 
mutants restored their disease reduction abilities to levels not 
significantly different from that of wild-type Pf-5/pUCP22, yet 
slightly inferior (26 and 29%, respectively; Figure 3).

Discussion

In this study, the potential involvement of the antibiotics PLT 
and DAPG in the biocontrol exerted by P. protegens Pf-5 against 
B. cinerea infecting C. sativa plants was investigated with knockout 
mutants. The two-step double crossover mutagenesis method, 
previously used for precise in-frame deletions in Pseudomonas 
aeruginosa (Hmelo et al., 2015), was successfully used to generate 
unscarred unmarked P. protegens mutants (Figure 1). To the best of 
our knowledge, this is the first validation study to establish the 
importance of specific molecular determinants in a biocontrol agent 
with cannabis plants. In other crops, the decisive roles of DAPG and 
PLT in disease suppression by beneficial Pseudomonas strains have 
already been firmly demonstrated with bacterial mutants deficient 
in their production (Vincent et al., 1991; Fenton et al., 1992; Keel 
et al., 1992; Shanahan et al., 1992; Maurhofer et al., 1994; Cronin 
et al., 1997a,b; Rodriguez and Pfender, 1997; Iavicoli et al., 2003; 
Weller et al., 2012; Quecine et al., 2016; Zhang et al., 2020) and/or 
with complementation of deficient mutants recovering biocontrol 
abilities (Vincent et al., 1991; Fenton et al., 1992; Keel et al., 1992; 
Cronin et al., 1997a,b; Iavicoli et al., 2003; Weller et al., 2012). In this 
study, two knockout Pf-5 mutants were generated by precise deletion 
of genes pltD or phlA, which encode a halogenase or an enzyme 
subunit required for the synthesis of PLT or DAPG, respectively. 
Indeed, in P. protegens strains, disruption or deletion of gene pltD 
(Nowak-Thompson et  al., 1999; Zhang et  al., 2020) or phlA 
(Schnider-Keel et al., 2000; Kidarsa et al., 2011; Henkels et al., 2014; 
Quecine et  al., 2016) has been consistently demonstrated to 
completely abolish the production of PLT or DAPG, respectively, as 
measured with high-performance liquid chromatography (HPLC). 
In P. protegens CHA0, complementation of a DAPG-deficient 
mutant with plasmid pME6261 carrying the wild-type phlA gene 
was also shown to fully restore the ability to produce DAPG in vitro 
(Schnider-Keel et  al., 2000; Iavicoli et  al., 2003). Additionally, 
enzymatic assays and protein structure determination further 
demonstrated that expression of phlA is required to provide an 
essential subunit to the multimeric enzyme complex catalyzing 
DAPG biosynthesis (Pavkov-Keller et al., 2019). Based on these 
previous studies and rigorous verification by diagnostic PCR 
amplification (Supplementary Figures S1, S2), the effective deletion 
of pltD or phlA genes in the knockout mutants was confidently 
interpreted as leading to deficient production of the 
corresponding antibiotic.

During the subsequent in vitro confrontation assays, the 
inhibitory capability of deletion mutant ∆pltD/pUCP22 was 
significantly reduced compared to wild-type Pf-5/pUCP22, as 
expected, whereas that of deletion mutant ∆phlA/pUCP22 was 
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surprisingly increased (Figure 2). The latter observation could 
hypothetically be due to overproduction of PLT by mutant ∆phlA/
pUCP22 in vitro. Indeed, overproduction of PLT in Pseudomonas 
mutants deficient in DAPG production has already been reported 
(Schnider-Keel et al., 2000; Zhang et al., 2020), even though it may 
depend on the growing media, carbon sources, and incubation 
conditions used, since wild-type levels of PLT production have 
also been reported (Kidarsa et  al., 2011; Henkels et  al., 2014; 
Quecine et al., 2016). The well-known co-regulation between the 
biosynthesis pathways of PLT and DAPG has been proposed to 
explain this observation. Indeed, while both PLT and DAPG act 
as autoinducers of their own production, they repress each other’s 
production via a crosstalk likely mediated by phloroglucinol 
(Schnider-Keel et al., 2000; Brodhagen et al., 2004; Kidarsa et al., 
2011; Li et  al., 2012a; Clifford et  al., 2016; Yan et  al., 2017). 
Moreover, as regulation of PLT and DAPG biosynthesis in the 
genus Pseudomonas is notoriously complex and involves 
transcriptional repressors and activators, quorum sensing systems, 
and/or global translational regulatory networks responding to 
environmental cues (Li et al., 2012a; Biessy and Filion, 2021), the 
effect of a single mutation impairing one biosynthesis pathway can 
be unsurprisingly pleiotropic, thus resulting in the deregulated 
production of other compounds, as observed in previous studies 
(Maurhofer et al., 1994; Rodriguez and Pfender, 1997; Schnider-
Keel et al., 2000; Zhang et al., 2020).

The biocontrol capabilities of the bacteria were then examined 
in cannabis plants infected by B. cinerea. Inoculation with deletion 
mutants ∆pltD/pUCP22 or ∆phlA/pUCP22 resulted in significantly 
less disease reduction than with the wild-type Pf-5/pUCP22, while 
plasmid-based complementation restored the biocontrol abilities of 
the mutants (Figure 3). These results indicate that intact biosynthesis 
pathways for production of PLT and DAPG are required for the 
optimal biocontrol protection exerted by P. protegens Pf-5 in planta 
against B. cinerea. This conclusion is in accordance with previous 
studies supporting the major role of PLT and DAPG in the 
biocontrol success of beneficial Pseudomonas strains against plant 
pathogens (Gross and Loper, 2009), including a closely related 
P. protegens strain, FD6, controlling B. cinerea on harvested tomato 
fruits (Zhang et al., 2020).

Notably, though deleting phlA improved the ability of 
P. protegens Pf-5 to inhibit B. cinerea in  vitro (Figure  2), it 
nevertheless compromised the biocontrol activity of the bacterium 
in planta (Figure 3). While the reason for this discrepancy remains 
unclear, environmental differences between in vitro and in planta 
conditions may likely explain why a stronger antifungal effect of 
mutant ∆phlA/pUCP22 in vitro did not correlate with a better 
biocontrol protection in planta. Indeed, it is possible that the 
biosynthesis of bacterial antibiotics, their degradation and/or toxic 
effects toward the fungus, can be impacted by environmental factors 
in cannabis tissues, as previously suggested when comparing the 
results of in vitro cultures and of mushroom tissues inoculated with 
P. protegens Pf-5 (Henkels et al., 2014). The main disadvantage of in 
vitro confrontation assays is that secondary metabolite production 
can reach much higher amounts than in natural habitats, depending 

on the chosen nutritive medium which is often hundreds of times 
richer and allows ideal diffusion of the antibiotics through the agar 
(Köhl et al., 2019).While antibiotic detection in planta could provide 
useful information, the quantification of bacterial metabolites in 
natural substrates is notoriously difficult because of low recovery 
rates and production below limit of detection (Henkels et al., 2014), 
microbial degradation and chemical instability (Fernando et al., 
2005), or interferences with the extraction and chromatography 
processes due to organic components in plant tissues (Rodriguez 
and Pfender, 1997).

Finally, corroborating the results of P. protegens FD6 deletion 
mutants against grey mold on tomato fruits (Zhang et al., 2020), 
the biocontrol activity of P. protegens Pf-5 deletion mutants against 
grey mold on cannabis leaves was significantly impaired but not 
completely abolished (Figure  3), suggesting that secondary 
metabolites other than PLT and DAPG also contribute to the 
antagonistic effect against B. cinerea. Indeed, other compounds 
widely produced by Pseudomonas strains also have deleterious 
effects on B. cinerea growth and development, like pyrrolnitrin 
(Janisiewicz and Roitman, 1988; Ajouz et al., 2011; Chang et al., 
2011), hydrogen cyanide (Strano et al., 2017), rhizoxins (Loper 
et al., 2008) and phenazines (Schoonbeek et al., 2002; Zhang et al., 
2015; Simionato et al., 2017). The efficient two-step mutagenesis 
method used here (Figure 1) could thus prove useful in future 
work to investigate the remaining contribution of some of these 
compounds in the observed biocontrol.

Likewise, the bacterial mutants obtained here could 
be exploited to investigate alternative modes of action of PLT and 
DAPG in plant protection. Indeed, in A. thaliana, DAPG-
mediated induced systemic resistance (ISR) elicitation was shown 
to confer resistance against foliar pathogens B. cinerea and 
Pseudomonas syringae after priming with beneficial Pseudomonas 
strains Pf-5, Q2-87 and/or pure DAPG (Weller et al., 2012; Chae 
et al., 2020). However, DAPG production by another Pseudomonas 
strain, CHA0, did not elicit ISR against either of these two 
pathogens in A. thaliana, whereas it did against Hyaloperonospora 
arabidopsidis (formerly Peronospora parasitica) (Iavicoli et  al., 
2003), suggesting that ISR elicitation may depend on distinctive 
plant-microorganism interactions. In cannabis, so far, inoculations 
with non-DAPG producers Pseudomonas simiae WCS417 or 
Pseudomonas synxantha LBUM223 were unsuccessful at eliciting 
ISR against B. cinerea (Balthazar et  al., 2020), hence DAPG 
producers like strain Pf-5 used in this study could be considered 
for future work.

Understanding the mode of action of biocontrol agents is 
essential to develop effective biocontrol products that pose no risk 
to humans or the environment (Köhl et al., 2019). In this regard, 
specific challenges and opportunities to consider when developing 
inoculants for cannabis crops can be  found in a recent review 
dedicated to Pseudomonas spp. (Balthazar et al., 2022a). Notably, the 
risk for resistance development within the pathogen population 
seems to be of particular interest when considering antagonistic 
biocontrol agents acting through antibiosis. Indeed, raising 
concerns about the potential loss of efficacy of broadly used 
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biocontrol agents like beneficial Pseudomonas spp., it has been 
reported that B. cinerea mutants can exhibit reduced sensitivity to 
the antibiotics phenazines (Schoonbeek et al., 2002), pyrrolnitrin 
(Ajouz et al., 2010, 2011; Fillinger et al., 2012) and DAPG (Schouten 
et  al., 2008) under laboratory conditions. However, under field 
conditions, the risk of resistance build-up appears to be  lower 
because small concentrations of antimicrobial compounds are 
produced by beneficial organisms interacting intermittently with 
the pathogen, especially if compared to large-scale applications of 
purified antimicrobial compounds produced by fermentation and 
applied at high doses to the entire crop (Köhl et  al., 2019). 
Additionally, the use of biological control agents with multiple 
antimicrobial metabolites and/or modes of action, like beneficial 
Pseudomonas spp., may also help alleviate selection pressure and 
ensure lasting efficacy compared to isolated compounds (Ajouz 
et al., 2011). For example, in the case of DAPG, which does not 
target a specific protein as mode of action (Troppens et al., 2013), 
field isolates of the take-all pathogen G. tritici did not become more 
DAPG-resistant even after decades of wheat monoculture and 
exposure to populations of DAPG-producing Pseudomonas spp. 
(Kwak et  al., 2009). Moreover, resistance to pyrrolnitrin in 
laboratory-induced B. cinerea mutants has been associated with a 
reduced fitness, suggesting that these mutants may not persist under 
natural conditions (Ajouz et al., 2010) and potentially explaining 
why they have not been found in fields so far (Fillinger et al., 2012). 
Altogether, these results are thus encouraging regarding the 
sustainable use of antibiotic-producing Pseudomonas spp. as 
biocontrol agents (Biessy and Filion, 2021).

Conclusion and perspectives

In conclusion, this work suggests that the antibiotics PLT 
and DAPG are key determinants of P. protegens Pf-5 biocontrol 
success against the gray mold disease in cannabis. As 
P. protegens Pf-5 was previously demonstrated to inhibit a 
broad range of cannabis phytopathogens, these results might 
contribute to address the rising issue of emerging diseases 
causing severe yield and harvest quality losses in cannabis 
crops. In particular, screening for PLT-and DAPG-producing 
Pseudomonas strains seems to be indicated for the development 
of effective biocontrol products against devastating cannabis 
phytopathogens like B. cinerea. Moreover, this result might 
have further implications for the design of consortia combining 
such strains with other beneficial microorganisms, by dictating 
microbial compatibility (viability in combined formulations) 
and complementarity (offering different and/or synergistic 
modes of action). Future endeavors aimed at deciphering the 
molecular basis of pathogen susceptibility to PLT and DAPG, 
potential impacts on pathogen epidemiology and pathogenesis 
processes, as well as associated cannabis immune responses 
and microbiome changes after bacteria inoculations, should 
also provide useful avenues toward the development of effective 
biocontrol products.
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