
fmicb-13-946296 July 13, 2022 Time: 15:46 # 1

TYPE Review
PUBLISHED 19 July 2022
DOI 10.3389/fmicb.2022.946296

OPEN ACCESS

EDITED BY

Rajarshi Kumar Gaur,
Deen Dayal Upadhyay Gorakhpur
University, India

REVIEWED BY

Jie Cui,
Institut Pasteur of Shanghai (CAS),
China
Koldo Garcia-Etxebarria,
Biodonostia Health Research Institute
(IIS Biodonostia), Spain

*CORRESPONDENCE

Shu Zheng
zhengshu@zju.edu.cn
Jessie Qiaoyi Liang
JessieQY@cuhk.edu.hk

SPECIALTY SECTION

This article was submitted to
Virology,
a section of the journal
Frontiers in Microbiology

RECEIVED 17 May 2022
ACCEPTED 29 June 2022
PUBLISHED 19 July 2022

CITATION

Zhang M, Zheng S and Liang JQ (2022)
Transcriptional and reverse
transcriptional regulation of host
genes by human endogenous
retroviruses in cancers.
Front. Microbiol. 13:946296.
doi: 10.3389/fmicb.2022.946296

COPYRIGHT

© 2022 Zhang, Zheng and Liang. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Transcriptional and reverse
transcriptional regulation of
host genes by human
endogenous retroviruses in
cancers
Mengwen Zhang1,2, Shu Zheng1,2* and Jessie Qiaoyi Liang3*
1The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
2Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated
Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China, 3Department
of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing
Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong,
Hong Kong, Hong Kong SAR, China

Human endogenous retroviruses (HERVs) originated from ancient retroviral

infections of germline cells millions of years ago and have evolved

as part of the host genome. HERVs not only retain the capacity as

retroelements but also regulate host genes. The expansion of HERVs

involves transcription by RNA polymerase II, reverse transcription, and re-

integration into the host genome. Fast progress in deep sequencing and

functional analysis has revealed the importance of domesticated copies

of HERVs, including their regulatory sequences, transcripts, and proteins

in normal cells. However, evidence also suggests the involvement of

HERVs in the development and progression of many types of cancer.

Here we summarize the current state of knowledge about the expression

of HERVs, transcriptional regulation of host genes by HERVs, and the

functions of HERVs in reverse transcription and gene editing with their

reverse transcriptase.

KEYWORDS

endogenous retrovirus (ERV), long terminal repeat (LTR), cancer, non-coding RNA,
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Introduction

Human endogenous retroviruses (HERVs) are the remnants of infectious retroviral
agents, which were initially integrated into the genome of human germline cells for
vertical genetic transmission. HERVs have accumulated in the human genome for over
60 million years since initial germline fixation, expanding as retrotransposons, and
have been inherited through successive human generations in a Mendelian fashion
(Jaenisch, 1976; Feschotte and Gilbert, 2012). HERVs account for ∼8% of our genome

Frontiers in Microbiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.946296
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.946296&domain=pdf&date_stamp=2022-07-19
https://doi.org/10.3389/fmicb.2022.946296
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.946296/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-946296 July 13, 2022 Time: 15:46 # 2

Zhang et al. 10.3389/fmicb.2022.946296

(Lander et al., 2001). The identification and phylogenetic
analysis of HERVs were accelerated by the use of Whole-
genome sequencing technology. Generally, HERVs are
classified by their relationship with exogenous retroviruses
and named by the specific tRNAs of their primer binding
sites (PBSs) that are involved in their reverse transcription.
Fast progress in deep sequencing and functional analysis
has revealed the importance of domesticated copies of
transposable elements (TEs), including their regulatory
sequences, transcripts, and proteins in normal cells. HERVs
are highly active in embryonic and pluripotent cells but mostly
remain silenced in differentiated cells (Grow et al., 2015).
Recently, evidence suggests that HERVs are involved in the
development and progression of various cancer (Staege and
Emmer, 2018; Zhang et al., 2019). As ERV sequences are
resident in all human cells whole life long, they were likely
to have considerable impacts on the human genome and
biological activity, while they are not fully understood yet.
We summarize the expression of HERVs in normal cells and
cancers, their transcriptional regulation of host genes, and the
functions of HERVs in RT and gene editing with their reverse
transcriptase (RTase).

Human endogenous retroviruses
and their physiological expression
in the human genome

Human endogenous retroviruses
composition in the human genome

The human genome contains all the information about
human development, variation, and evolution. Marked variation
of different features was shown by the genomic landscape,
including genes, TEs, recombination, and so on. The human
genome project revealed that retrotransposable elements
account for about 45% of the human genome, while the exons
of our protein-coding genes represent only 1.2%, and dozens
of genes seem to be derived from TEs (Redi and Capanna,
2012). TEs were composed of retrotransposons (class 1) and
DNA transposons (class 2). Retrotransposons are subdivided
by whether there are long terminal repeats (LTRs) flanking
the central coding region. Non-LTR retrotransposons are
divided into “autonomous” and “non-autonomous” elements,
depending on whether they can retrotransposition within
themselves (Platt et al., 2018). The most abundant classes of
autonomous retrotransposons and endogenous RTase elements
are the long interspersed nuclear elements-1 (LINE-1) and Alu
(Lander et al., 2001), while ERVs are retrotransposons with LTRs
flanking coding region.

ERV sequences were highly similar to exogenous
retroviral proviruses as they have originated by RT into

DNA from infectious retroviruses and then integrated
into the host genome long ago. An ERV genome generally
consists of four genes encoding different proteins and
enzymes: gag, pro, pol, and env. Gag encodes structural
matrix and capsid proteins; pro encodes the viral protease;
pol encodes the RTase and integrase; and env encodes
envelope glycoproteins that mediate the host cell tropism.
ERV sequences were highly variable, while they also
preserved some features of the original provirus. Some
ERV sequences preserve complete LTRs but not the retroviral
genes, most of which are highly fragmented as compared
with their parental virus genomes, losing most of their
coding capacities. Retroviral genes Syncytin-1 (Mboko et al.,
2014), Rec, and Np9 (Uygur et al., 2019) still retain the
protein-coding capacity, encoding fully functional proteins.
These retroviral genes belong to HERVs (HERV-W and
HERV-K) that have been incorporated into the genome
relatively recently. However, there seems to be no fully
infectious HERVs anymore.

Expression of human endogenous
retroviruses in normal cells

HERVs exist in all human cells, but their expression differs
greatly at mRNA and protein levels (Lower et al., 1993).
Most HERVs are silent in healthy adult cells and tissues,
but proviral RNAs or proteins were observed in several
diseases, such as inflammation, autoimmune diseases, and
malignancies (Grandi and Tramontano, 2018a; Tokuyama
et al., 2018; Licastro and Porcellini, 2021). Recently, several
studies reported that HERV-K expression was increased
after severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection both in vivo and in vitro (Guo
et al., 2022; Temerozo et al., 2022). Interestingly, evidence
showed that HERV activity correlated with cell proliferation.
HERVs were highly active in early embryonic cells and
in induced pluripotent stem cells (iPSC), where they
seem to be indispensable but still need tightly regulated
for successful differentiation (Grow et al., 2015). HERVs
were demonstrated to be highly expressed in reproductive
organs and embryonic origin, while mature, terminally
differentiated and non-dividing muscle cells showed less
HERV activity (Seifarth et al., 2005). Expression profiles of
several proviruses of the HERV-K and HERV-W families
show an aging-related pattern as indicated by genome-
wide RNA-sequencing (Nevalainen et al., 2018). Tokuyama
et al. (2018) described a method called ERV map to study
cell-type-specific ERV expression patterns in specific cells
or tumor tissues. ERV map across various diseases has
the potential to discover new disease-associated antigens
that have not been identified currently by focusing on
protein-coding sequences.
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FIGURE 1

Epigenetic regulation of the expression of HERVs and LTR-driven genes during carcinogenesis. Most HERVs/LTRs are inactivated in normal cells
by DNA methylation. Activation of HERVs is induced by the global loss of DNA methylation in cancer cells. Activated HERVs can be transcribed
into mRNAs, lncRNAs, and dsRNAs. LTRs can also act as the promoters of host genes to induce gene expression.

Human endogenous retroviruses
in carcinogenesis

Aberrant reactivation of human
endogenous retroviruses in cancers

Cancer remains a major challenging disease globally. Viral
products of HERVs were demonstrated to have played a
role in species evolution, as well as cancer development

(Ruprecht et al., 2008; Staege and Emmer, 2018). The best-
known mechanisms for HERV expression and repression were
epigenetic mechanisms (Figure 1), such as DNA methylation
and histone modifications (Xie et al., 2013). Epigenetic
alterations were reported to be responsible for the initiation of
tumor development to some extent, including hypermethylation
of tumor suppressor genes and hypomethylation of oncogenes
(Rodriguez-Paredes and Esteller, 2011). Retroviral elements that
promote carcinogenesis were expressed again by reactivation
of HERVs, which was regulated by epigenetic reprogramming
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(Staege and Emmer, 2018; Zhang et al., 2019). HERV RNAs
and HERV-encoded proteins were detected in various cancers
including germ cell tumors, melanoma, genital tract cancers,
gastrointestinal cancer, and breast cancer (Table 1).

Since the expression of HERVs is associated with cancers to
some extent, HERVs may act as biomarkers for cancers. Song
et al. (2021) have reviewed the HERVs as biomedicine markers
and provided a new perspective on the clinical application
of HERVs. The newly discovered “HEMO” HERV envelope
(Env) protein, encoded by the MER34 member 1 of the
ERV group, was active in numerous cancerous tissues and
most active in breast cancer and ovarian cancer (Heidmann
et al., 2017). Recently, Kasperek et al. (2021) reported a
pan-cancer analysis of HEMO both in primary tumors and
metastatic tumors. A link between HEMO expression and
Wnt/β-catenin signaling activation was revealed in endometrial
cancer (Kasperek et al., 2021). The aberrant reactivation of
HERV-H in cancers, especially colorectal cancer, has been
summarized in our previous review (Zhang et al., 2019).
Dynamic roles of the aberrantly activated HERVs have been
reported in cancer development. HERVs have also been
reported to be a promising predictive biomarker for anti-
cancer therapy. Ficial et al. (2021) revealed that high levels of
ERVE-4 expression combined with CD8+PD1+TIM3−LAG3−

tumor-infiltrating cells predicted response to the anti-PD-
1 antibody nivolumab in patients with metastatic clear cell
renal cell carcinoma.

TABLE 1 Expression of HERV families in cancers.

HERV family Cancer type

HERV-E Clear cell kidney cancer (Cherkasova et al., 2011), breast cancer
(Frank et al., 2008)

HERV-F Soft tissue sarcoma (Giebler et al., 2018), breast cancer (Frank et al.,
2008)

HERV-H Gastrointestinal and pancreatic neuroendocrine tumors (Yuan
et al., 2021), colon cancer (Liang et al., 2009a,b, 2012; Li et al., 2012),
lung cancer (Zare et al., 2018), breast cancer (Rhyu et al., 2014)

HERV-K Breast cancer (Wang-Johanning et al., 2003), soft tissue sarcoma
(Giebler et al., 2018), melanoma (Singh et al., 2013, 2020), germ cell
tumor (Chan et al., 2019), leukemia (Chen et al., 2013), colon cancer
(Dolci et al., 2020a,b), Hodgkin lymphoma (Barth et al., 2019), lung
cancer (Zare et al., 2018)

HERV-P Lung cancer (Zare et al., 2018), breast cancer (Tavakolian et al.,
2019), primary cutaneous t-cell lymphomas (Bergallo et al., 2018)

HERV-R Colon cancer (Dolci et al., 2020a), lung cancer (Zare et al., 2018),
breast cancer (Rhyu et al., 2014), ovarian cancer (Jeon et al., 2020),
primary cutaneous T-cell lymphomas (Bergallo et al., 2018)

HERV-W Endometrial (Strissel et al., 2012), testicular cancer (Gimenez et al.,
2010), germ cell tumors (Benesova et al., 2017), non-small cell lung
cancer (NSCLC) (Li et al., 2019), endometrial carcinoma (Liu et al.,
2019)

HERV-FRD Seminomas (Benesova et al., 2017), glioblastoma (Diaz-Carballo
et al., 2017)

HEMO breast cancer and ovarian cancer (Heidmann et al., 2017),
endometrial cancer (Kasperek et al., 2021)

Human endogenous
retroviruses-mediated mechanisms of
oncogenesis

HERVs play oncogenic roles via various mechanisms,
including transforming properties of the HERV genes, direct
participation in the maintenance of cancer phenotypes,
inactivation of tumor suppressor genes, activation of oncogenes,
mediating cell fusion, activation of cancer signaling pathways,
suppression of anti-tumor immunity, etc.

Some retroviruses are proven to have transforming
properties in vivo, characterized by the presence of host
oncogenes in their genomes during retroviral transduction (van
Lohuizen and Berns, 1990). Some transforming retroviruses
carry oncogenes themselves, such as those with the oncogene
ras named after rat sarcoma, which is homologous to human
oncogenes named HRAS, KRAS, and NRAS (Weiss, 2020). The
functional proteins encoded by HERVs also have oncogenic or
transforming potentials. Recent research showed the ERK1/2
pathway was activated by the HERV-K Env cytoplasmic
tail to acquire oncogenic properties (Lemaitre et al., 2017).
This indicates transforming properties of HERV-K Env may
contribute to oncogenesis.

HERV-K is the most broadly studied ERV type associated
with cancer, followed by HERV-H and HERV-W/syncytin-
1. The HERV-K family was transcriptionally active and
involved in tumor cell proliferation via different mechanisms.
HERV-K activation was associated with cancer hallmarks,
such as phenotype transition, stemness, immune evasion, and
metastatic properties (Balestrieri et al., 2018). Specifically,
Rec and Np9 proteins encoded by HERV-K are essential
for the control of HERV-K-related cancer stemness features
(Balestrieri et al., 2018). Cancer stem cells are required for
cancer progression and aggressiveness and express high levels
of the stem cell markers, such as Sox2, Oct4, Nanog, and
kruppel-like factor 4 (Barbato et al., 2019). Interestingly, Oct4
could in return transactivate HERV-K LTRs and synergistically
facilitate HERVK expression (Grow et al., 2015). Argaw-
Denboba et al. (2017) demonstrated that HERV-K activation
promoted phenotype-switching of melanoma cells and was
strictly required to maintain the stemness features of CD133+

melanoma cells in response to microenvironmental changes.
Matteucci et al. (2018) further confirmed that HERV-K
activation was required for maintenance and expansion of
a CD133+ melanoma cell subpopulation. Dai et al. (2018)
demonstrated that the HERV-K single-spliced product Env and
double-spliced product Np9 played a major role in angiogenesis
and tumorigenesis of Kaposi’s sarcoma. HERV-H has been
proven to be an important determinant of the pluripotency of
human embryonic stem cells, as well as the reprogramming
process of iPSCs (Ohnuki et al., 2014).

HERVs may contribute to the inactivation of tumor
suppressor genes or activation of downstream oncogenes by
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insertional mutagenesis or non-homologous recombination
(Ohnuki et al., 2014). Cell-cell fusion was an important source
of malignant cell heterogeneity and genetic instability, leading
to chromosomal numerical abnormalities, thus involved in
cancer progression and metastasis (Bastida-Ruiz et al., 2016).
Uncontrolled cell fusion was reported to be stimulated by the
fusogenicity of HERV Env in tumors (Grandi and Tramontano,
2018a). Moreover, HERV Env syncytin-1 can mediate the
fusion stage when the extracellular vesicle cargo was delivered
into target cells to edit the host gene (Uygur et al., 2019).
HERV-K Env was also associated with cellular transformation
by inducing the downstream effectors of the MAPK/ERK1/2
pathway, including transcription factors ETV4, ETV5, and
EGR1 (Lemaitre et al., 2017).

In some scenarios, HERVs up-regulate immune signals and
trigger a subsequent anti-tumor immune response by the viral
mimicry process. The replication intermediates and protein
products of HERVs in tumors can serve as intrinsic pathogen-
associated molecular factors and activate the immune system
to recognize HERVs as exogenous infections, thus stimulating
the specific anti-tumor immunity (Alcazer et al., 2020; Vergara
Bermejo et al., 2020). However, the transmembrane subunits
of Env glycoproteins of HERVs possess immunosuppressive
properties and contribute to tumor progression (Grandi and
Tramontano, 2018a; Vergara Bermejo et al., 2020). In addition,
the immunosuppressive domain of HERV Env may abrogate
the anti-oncogenic cytolytic immune response to support tumor
progression (Kassiotis and Stoye, 2017). It seems that tumors
with higher expression of HERVs are more immunogenic.
The innate immune systems produce type I/III interferons
when they detect the viral products, such as the Env proteins,
leading to an antiviral state (Lazear et al., 2019). Thus, HERVs
are targeted as a promising internal strategy to enhance the
anti-tumor immune responses by sensitizing tumor cells for
immunotherapies. Vitiello et al. (2021) reviewed the role of
HERVs activation as a promising molecular predictive marker
and immunotherapy target in cancers.

Transcriptional regulation of host
genes by human endogenous
retroviruses

The human genome consists of 3 billion base pairs of
DNA, while only 1% of them can be translated into human
proteins. Notably, 25% of the human promoter regulatory
regions have TE-derived sequences (Jordan et al., 2003). HERVs
and solitary LTRs were the most common retroviral elements
in our genome, with the others being classified as non-LTR
retrotransposons (Geis and Goff, 2020). Most HERVs have
lost the ability of retrotransposition and insertional mutations,
but they regulated the host genes by their viral mRNA

or protein products, or their LTR-derived gene regulatory
regions (Chen et al., 2019; Geis and Goff, 2020). Aberrant
expression of oncogenic genes and oncogenic long non-coding
RNAs (lncRNAs) were driven by multiple mechanisms, such
as gene translocation, gene amplification, and inappropriate
usage of tissue-restricted enhancers or promoters (Babaian
and Mager, 2016). Exaptation of LTRs as promoters for other
protein-coding genes and lncRNAs is frequently observed.
Transcriptional regulation by these ancient viral remnants has
been demonstrated to be more dynamic and effective than
initially assumed. Recent evidence shows that gene co-option
of ERVs provides important effects on the transcriptional
regulation of the host genes. Kitao et al. (2021) identified an
RNA element (SPRE) overlapping with lineage-specific ERVs.
The SPRE-like elements not only induced the expression of
viral genes but also enhanced host gene expression (Kitao
et al., 2021). Bakoulis et al. (2022) demonstrated that co-opted
ERVs transcribed into unstable RNAs and also acted as active
enhancers and gene promoters.

Here we summarized recent findings regarding the
transcriptional regulation of host genes by HERVs. We also
provided an overview of how HERVs fulfill physiological
functions and modulate genome-wide host gene expression.

Exaptation of human endogenous
retroviruses-long terminal repeats as
regulatory regions for host genes

More than 300,000 regulatory regions contain the same
sequences as the remnants of inserted LTRs from retroviral
infections in our genome. The two LTRs located at the
5′ and 3′ ends of a HERV insert contain transcription
factor binding sites (TFBS) to regulate transcription of the
insert and adjacent regions efficiently (Rebollo et al., 2012).
Solitary LTRs originating from recombination between the 5′

and 3′ LTRs, also function in transcriptional regulation of
adjacent cellular genes. More than 800 LTRs from HERVs
and mammalian apparent LTR-retrotransposons (MaLRs), a
group of retrotransposon-like elements, drive stage-specific
gene expression in mammalian oocytes and developing
zygotes by acting as alternative promoters and first exons
(Franke et al., 2017). Genome-wide studies have estimated
that, far more than anticipated, alternative promoters were
used in about 75% of human genes (Takeda et al., 2006).
We summarized known examples of LTRs that function
as alternative promoters for human oncogenes in Table 2.
These examples showed that HERV-LTR exaptation induced
a new pattern of gene expression different from the pattern
before LTR insertion.

Huh et al. (2008) identified a novel alternative RNF19
promoter region for a MaLR element, and tumor tissues
showed a higher expression of the MaLR-derived RNF19
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TABLE 2 Onco-exaptation of LTR-derived oncogenes expression in cancers.

Gene Primary result of LTR-driven expression LTR type Cancer type

IRF5 Ectopic expression of IRF5 protein (ERV1) LOR1a Hodgkin lymphoma (Kreher et al., 2014;
Babaian et al., 2016)

ALK Protein truncation (ERVL) LTR16B2 Melanoma (Wiesner et al., 2015)

CSF1R Ectopic expression of CSF1R protein (ERVL-MaLR) THE1B Hodgkin lymphoma (Lamprecht et al.,
2010), melanoma (Giricz et al., 2018)

SLCO1B3/OATP1B3 Cancer-specific expression of a chimeric protein
“cancer-type OATP1B3 (Ct-OATP1B3)”

(ERV1) LTR7 Colon and lung cancer tissues (Nagai
et al., 2012), colon and pancreatic cancer
(Thakkar et al., 2013)

RNF19 Ectopic expression of RNF19 protein MaLR (LTR) and AluJo elements Conlon cancer (Huh et al., 2008)

GSDML Ectopic expression of GSDML protein HERV-H LTR Conlon cancer and melanocyte (Sin et al.,
2006)

FABP7 Ectopic expression of a chimeric protein “LTR2-FABP7” (ERV1) LTR2 Diffuse large B-cell lymphoma,(Lock et al.,
2014)

Syncytin-1 Overexpression of syncytin-1 through interacting with
c-Myb

HERV-W LTR Bladder urothelial cell carcinoma (Yu
et al., 2014)

PLA2G4A Ectopic Expression of cytosolic phospholipase A2 (cPLA2) HERV-E LTR Urothelial carcinoma (Gosenca et al.,
2012)

CALB Ectopic Expression of an aberrant calbindin protein HERV-H LTR Prostate carcinoma (Gebefügi et al., 2009)

PLA2L Ectopic Expression of RTVL-H/PLA2L RTVL-H LTR Teratocarcinoma (Feuchter-Murthy et al.,
1993)

PTN Ectopic expression of HERV-PTN chimeric transcripts HERV type C Choriocarcinoma (Schulte et al., 1996)

ERRB4 Aberrant expression of ERBB4-truncated transcripts (ERVL-MaLR) MLT1C LTR Anaplastic large-cell lymphoma (Scarfo
et al., 2016)

transcripts compared with normal and primate tissues. In
Hodgkin lymphoma, upregulation of the oncogenic factor
interferon regulatory factor 5 (IRF5) was driven by the
transcriptional activation of a normally dormant HERV
LOR1a-LTR upstream of IRF5 (Babaian et al., 2016). Ectopic
expression of the solute carrier organic anion transporter
family member 1B3 (OATP1B3) was detected in solid tumors
of non-hepatic origin, particularly in pancreatic cancer and
colon cancer (Lee et al., 2008; Thakkar et al., 2013). The
expression of “cancer-type” OATP1B3 was driven by an
alternative promoter within the 5′ LTR (LTR7) of a partly
full-length antisense HERV-H element (Nagai et al., 2012).
Overexpression of fatty acid binding protein 7 (FABP7) was
detected in several solid tumors (Thumser et al., 2014).
FABP7 is expressed driven by an antisense 5′LTR of a HERV-
E element in some diffuse large B-cell lymphoma patients
(Lock et al., 2014).

Cancer progression was accompanied by repression of
tumor suppressor genes and abnormal expression of oncogenes.
Beyer et al. (2016) and Kronung et al. (2016) identified
the LTR12 from ERV9 as a germline-specific promoter that
induced the expression of the tumor suppressor gene TP63 and
TNFRSF10B, which is often silenced in testicular carcinoma.
The promoter activity of LTR12 can be reactivated by broad-
range histone deacetylase (HDAC) inhibitors in testicular
cancer cells, which represent a novel applicable way to
induce activation of pro-apoptotic genes in cancer cells. We
also identified an ERV-related human-specific gene, named

psiTPTE22-HERV, which is silenced by DNA methylation in
cancers (Liang et al., 2010).

Human endogenous
retroviruses-derived long non-coding
RNAs with oncogenic functions

LTRs regulated the expression of neighbor genes and
generated RNAs required for LTR enhancer activity by acting
as promoters and enhancers. Song et al. (2002) transfected
human tumor cells by a retroviral vector containing VL30-1
lncRNA, which was transcribed from one member of the VL30
ERV family, VL30-1 lncRNA was capsulized and integrated
into the host genome as an ERV, thereby increasing the
metastatic potential of the host. The undifferentiated state for
cell identity and pluripotency was maintained by the stem-cell-
specific transcripts driven by HERV-LTR promoter-enhancer
activity (Pontis et al., 2019). Babarinde et al. (2021) showed
that 65% of non-coding transcripts in human pluripotent stem
cells (hPSCs) contained TE-derived sequences, and single-
cell RNA-seq revealed that hPSCs expressed ERV-containing
transcripts, and differentiated subpopulations lacking ERV-
containing transcripts. ESRG is an hPSC-related HERV-H-
driven lncRNA. It has a higher expression than other HERV-Hs
and is tightly silenced after differentiation (Takahashi et al.,
2021). Linc-ROR is a lncRNA derived from the LTR7 of a HERV-
H element. It was shown to play a role in human pluripotency
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by acting as a microRNA sponge of miR-145, which inhibits
the pluripotency transcription factors Oct4, Sox2, and Nanog
(Wang et al., 2013). Recently, several studies have reported
an oncogenic role for lncROR in breast and gastric cancers
by various mechanisms (Fan et al., 2015; Zhou et al., 2016).
We summarized known examples of ERV-driven lncRNAs
that promote tumor progression and those with expression
correlated with cancer in Table 3.

HERVs are known to harbor cis-regulatory elements, and
their roles in modulating innate and adaptive host immunity
have been studied recently. HERVs-induced cellular immune
responses could result in beneficial or pathogenic effects.
“Traditional” genes are co-opted for new uses as they are
descendants of ancient retroviral gag, pol, or env genes (Grandi
and Tramontano, 2018b). For example, the integrase domains
and RNaseH of the retroviral pol gene serve as fundamental
blocks of our immune system (Moelling and Broecker, 2015).
A new isoform of Angiotensin-converting enzyme 2 (ACE2)
was generated by the co-option of intronic retroelements as a
promoter and alternative exon, inducing abnormal expression
patterns of the aerodigestive tracts and being more sensitive
to IFN stimulation (Ng et al., 2020). HIV-1 infection activated
several members of the HERV9 lineage, particularly LTR12C
elements (Srinivasachar Badarinarayan et al., 2020). LTR12C
elements provide cryptic transcription start sites for the
interferon-inducible genes GBP2 and GBP5 in primary CD4+

T cells (Srinivasachar Badarinarayan et al., 2020).

Modulation of genome-wide host gene
expression by human endogenous
retroviruses

Genome evolution results in the acquisition of new genes
or new gene isoforms and new gene expression patterns. TEs

contribute to the source of genetic innovation. TEs have their
own promoters and enhancers, which can act as “controlling
elements” for host genes, as well as their own open reading
frames. HERV is a subtype of TEs and also an important source
of incoming genetic materials for the host to repurpose, which
has co-evolved with host genes for millions of years. Cryptic
regulatory elements within HERVs were reactivated in cancers
by epigenetic regulations to influence oncogenesis, the process
of which is termed as onco-exaptation (Babaian and Mager,
2016). Since epigenetic variance increases during oncogenesis,
the epigenetic evolution model for onco-exaptation takes an
important place in tumor evolution (Mazor et al., 2016). Babaian
et al. (2016) re-analyzed the CAGE datasets of retrotransposon-
derived transcriptional start sites (TSSs) published by Faulkner
et al. (2009), and demonstrated that TE-derived TSSs had
lower expression and were less reproducible between biological
replicates, as compared to non-TE promoters (Babaian and
Mager, 2016). During malignant transformation, deregulation
of transcription factors and genome-wide epigenetic variations
were observed (Hanahan and Weinberg, 2011), changing the
set of active LTRs and increasing the total level of LTR-driven
transcriptional elements. Therefore, LTR-driven transcription
would be also subject to epigenetic reprogramming and become
“passenger” expression signals during the somatic evolution of
cancer cells (Lee and Kong, 2016).

HERVs enabled coordinated genome-wide activation of
species-specific gene expressions by providing binding sites for
transcriptional regulators. However, the HERV-induced gene
expression and regulation must be balanced with their genotoxic
potential. Jang et al. (2019) characterized the global profile of TE
onco-exaptation across different cancer types and highlighted
the TE cryptic promoter-activation events as an important
mechanism for oncogene activation and tumorigenesis,
including the HERVH-SLCO1B3 transcript, which was onco-
exaptation in various cancer types. Pontis et al. (2019) showed

TABLE 3 HERV-derived lncRNAs with oncogenic functions.

lncRNA Primary result of lncRNA expression ERV type Cancer type

TROJAN Binds to a metastasis-repressing factor ZMYND8, and increases its
degradation.

LTR70 mosaic with
MER67C and LTR56

Human triple-negative breast cancer (Jin
et al., 2019)

UCA1 Regulates cell cycle by CREB through PI3-K dependent pathway. LTR7Y and HERV-H Bladder carcinoma (Yang et al., 2012)

linc-ROR Induces an epithelial-to-mesenchymal transition (EMT) program and
also play a role in human pluripotency.

HERV-H, LTR7 Breast cancer (Hou et al., 2014), gastric
cancer (Yu et al., 2020)

lncMER52A Regulates EMT pathway via post-translational control of p120-catenin
protein stability.

MER52A LTR Hepatocellular carcinoma (Wu et al.,
2020)

POU5F1-PSORS1C3 Acts as promoter initiating long RNA transcripts through the
PSORS1C3-POU5F1.

ERV-LTR2B Renal cell carcinoma (Siebenthall et al.,
2019)

SchLAP1 Inhibits the function of the tumor suppressor SWI/SNF complex. LTR12C (ERV9) Prostate cancer (Prensner et al., 2014)

HOST2 Functions as a miRNA sponge of miRNA let-7b, which is a tumor
suppressor gene.

HERV-E, LTR2B Ovarian cancer (Gao et al., 2015)

HERV-H4p15.2 Down-regulated expression in colon, stomach, and kidney cancers. HERV-H Colon, stomach, and kidney cancers
(Liang et al., 2009b)

HCP5 Enriched in lung cancer risk-related loci (6p21 and 15q25) by GWAS. ERV type 16 Lung cancer (Yuan et al., 2016)
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that Krüppel-associated box (KRAB)-containing zinc finger
proteins (KZFPs) controlled the activation of transcriptional
cis regulators derived from HERV-K and HERV-H subgroups
during early embryogenesis. Thus, the transcriptional impacts of
HERV-TEs during embryogenesis facilitated their incorporation
into the genome-wide transcriptional networks, thus regulating
the human genome.

Reverse transcription and
retrocopying by reverse
transcriptase of human
endogenous retroviruses

Mammal genomes have an ancient history of co-evolution
with ERVs, resulting in ERVs comprising a substantial fraction
of most mammal genomes (Bourgeois et al., 2020). Thus,
interest has been intrigued in exploring mechanisms about
how the host genomes keep pace with the rapidly evolving
viruses. The life cycle of HERVs contains transcription by RNA
polymerase II, RT, and re-integration (Weiss, 2017). RT is
the defining activity of retroviruses. Viral genomic RNAs are
converted into double-stranded proviral DNAs intermediated
by this process. The provirus is required for virus replication,
permanent integration into the host cell chromosome, and
further expression by the host cell transcriptional machinery
(Baltimore, 1970). The retroviruses can trigger tumorigenesis
by inserting their proviral DNA into host genomic regions
(retroviral integration) that control the expression of proto-
oncogenes (Lesbats et al., 2016). Thus, there remains a pressing
need for a deeper molecular understanding of the HERV life
cycle. Here we focus on recent advances in understanding how
HERV RT initiates, the roles of HERV RTase and the host tRNA-
derived fragments (tRFs) in this process, and the functions of RT
and retrocopying by HERVs.

Reverse transcription of human
endogenous retroviruses mediated by
their own reverse transcriptase and
primed by host tRNAs

RTase is abundantly distributed in organisms that are
with high copy numbers of mammalian retroelements
(Lander, 2011). Activities of endogenous RTase encoded by
retrotransposons have been identified in the cells of higher
eukaryotes and associated with a wide spectrum of pathological
and physiological processes (Spadafora, 2008). RTase enzymes
have evolved to bind specific host tRNAs with high affinity to
initiate RT. Primer tRNAs are enriched in viral particles with
RTase in cells infected with exogenous retroviruses, such as
HIV, respiratory syncytial virus, and human cytomegalovirus

(Kelly et al., 2003). HERVs shape mammalian genomes in
a random way as the integration of exogenous retroviruses
and modifications of endogenous retroviruses may both
occur during the evolution of the host genome. Co-option
of HERVs seems to occur in a gradual process, and they may
achieve cis-regulatory effects immediately after integration
into the host genome or acquire the regulatory capability until
additional mutations occur (Chuong et al., 2017). Goke et al.
(2015) reported that ERVs were systematically transcribed
during human early embryogenesis in a stage-specific manner.
The expression of specific ERVs was identified as a mark of
cellular identity and cell potency that characterized the cell
populations in early embryos and placentation in mammalians
(Lynch et al., 2015). These lineage-specific co-opted HERVs
are integrated into the host genome under similar selective
pressures (Chuong et al., 2017). ERVs, like exogenous infectious
retroviruses, use their host tRNAs as primers for RT and
replication. ERVs initiate RT by using their specific tRNA
primers and copying their RNA into DNA to insert into the
genome (Schorn and Martienssen, 2018).

tRFs, a novel type of mature tRNA-derived or precursor
tRNA-derived small non-coding RNAs, play an important role
in governing gene expression at a post-transcriptional level (Xie
et al., 2020). The 3′-end, but not 5′-end, of mature tRFs are
highly complementary to HERV sequences in the genome. 3′-
tRFs perfectly match ERV-LTRs at their highly conserved tRNA
PBS (Schorn and Martienssen, 2018), which plays an important
role in RT. HERV-derived sequences bind specific host tRNAs
with high affinity and recruit them to the PBS site, where the 3′-
tRFs initiate RT and integrate the full-length, double-stranded
retroviral DNA into the genome (Figure 2A; Lesbats et al.,
2016; Schorn et al., 2017; Schorn and Martienssen, 2018). 3′-
tRFs have been found in stem cells and cancer cells with a
high HERV burden (Schorn et al., 2017). Schorn et al. (2017)
reported that 3′-tRFs protected the pre-implantation embryo
from transposon damage during epigenetic reprogramming. It
is known that changes in tRNA levels can promote cancer
(Goodarzi et al., 2016), and cleavage into tRFs is expressed
highly in a wide range of cancer cell lines, playing important
roles in tumorigenesis by regulating the expression of oncogenes
(Zhu et al., 2019).

Inhibition of reverse transcription of
human endogenous retroviruses via
host tRNA-derived fragments

tRFs targeting is a highly conserved mechanism of small
RNA-mediated transposon control, PBS of ERVs may offer
a unique target for specific inhibition of ERV RT and
retrotransposon mobility (Yang and Kazazian, 2006; Schorn
et al., 2017). This reminds us of the possibility that replication-
competent ERV sequences with a functional PBS can be blocked
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FIGURE 2

The life cycle of an LTR retrotransposon and tRFs-mediated inhibition. (A) Schematic representation of the life cycle of an LTR retrotransposon.
The LTR encodes promoter elements and termination signals. The 3′-tRFs (red cloverleaf) primes RT by hybridizing to PBS. After transfer events,
a double-stranded retroviral DNA is integrated into the host genome. (B) tRFs competitively bind with YBX1 and caused oncogene transcripts
degradation. (C) tRFs function as potential inhibitions at the posttranscriptional and RT levels. tRFs loaded into argonaute (AGO) protein and
other proteins form an RNA-induced silencing complex (RISC), thus inducing RNAi on target mRNAs (right panel). tRFs inhibit RT by directly
targeting their PBS and inhibiting retrotransposon’s replicative cycle (left panel).

at the RT step by targeting the PBS sequence. Schorn et al.
(2017) showed that tRFs targeted various ERVs, particularly
active ERVs which can cause ongoing mutagenesis, and inhibit
retrotransposition by obstructing RT.

Recently, tRFs are used for the promotion and suppression
of retrotransposon transcription (Schorn et al., 2017). Li
et al. (2012) demonstrated that endogenous 3′-tRFs suppressed
the unwarranted expression of ERVs through the RNA
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interference (RNAi) pathway, thus protecting the genome
against retrotransposons. There are two different classes of 3′-
tRFs: 17–19 nt and 22 nt fragments, carrying 1-methyladenosine
and pseudouridine at positions of 17–19 and 22, respectively
(Mboko et al., 2014; Kumar et al., 2016). Endogenous 22-nt
3′-tRFs post-transcriptionally silence coding-competent ERVs,
while 18 nt 3′-tRFs have no effect on RNA or protein levels but
specifically interfere with RT (Schorn et al., 2017). Therefore,
three possible ways have been proposed for tRFs-inhibited
retrotransposition: (1) tRFs-guided H3K9me3 deposition in
transcriptional silencing, (2) RNAi-induced post-transcriptional
silencing, (3) Blocking RT to inhibit the retroviral intermediates.

Krishna et al. (2021) revealed the involvement of functional
tRFs in transposon post-transcriptional control. Goodarzi et al.
(2015) found a specific set of tRFs functionally combined
with the oncogenic RNA-binding protein YBX1, which was
one of the most highly expressed oncogenes in human cancer,
it can bind with some endogenous oncogene transcripts
to maintains their stability and promote cancer progression
(Lasham et al., 2012). tRFs can competitively bind with YBX1
and caused oncogene transcripts degradation (Figure 2B).
Argonaute (AGO) proteins are loaded with small RNAs to
silence complementary RNA transcripts, and they are central
to RNAi. The dysregulated expression of the genes encoding
AGO proteins was demonstrated in solid tumors as well as
leukemia (Nowak and Sarshad, 2021). The majority of reports
agree that 3′-tRFs could be incorporated into AGO proteins
and act through RNAi pathways (Martinez et al., 2017). Cross-
linking ligation and sequencing of hybrids (CLASH) and high-
throughput RNA sequencing have revealed that tRFs target
a number of genic mRNAs in humans (Kumar et al., 2014).
Some reports revealed that tRFs may have a parallel effect on
inhibiting translation in a miRNA-like fashion and inducing
mRNA cleavage (Figure 2C; Li et al., 2012, 2013). tRFs are also
incorporated into AGO proteins and target retrotransposons
by inducing the production of secondary sRNAs from their
RNA transcripts. A lack of mature tRNAs can inhibit the
translation of retrotransposon proteins and prevent RT at
the same time (Figure 2C). Thus, the ability of 3′-tRFs, via
degrading ERV mRNAs, to inhibit RT and retrotransposon
mobility could be a highly conserved mechanism for controlling
the transposons process.

Reverse transcriptase inhibitors in
inhibiting endogenous retrovirus
activity

Antiviral compounds or RTase inhibitors inhibit
endogenous RTase by various mechanisms. Interferon
regulatory factor-1 (IRF-1) is an antiviral host factor that
attenuates the replication of multiple RNA and DNA viruses
and acts as a tumor suppressor (Wang et al., 2007; Mboko

et al., 2014). Stoltz et al. (2019) further identified IRF-1 as
a suppressor of ERV expression, which may contribute to
its tumor-suppressive function considering the emerging
appreciation of the oncogenic role of ERVs. Tyagi et al. (2017)
found that RTase inhibitors could significantly inhibit HERV-K
RTase activity, while protease inhibitors were not as effective
as RTase and integrase inhibitors. The RTase inhibitors and
the integrase inhibitor could effectively block pseudotyped
HERV-K virus infection and production in HeLa cells, such
as Zidovudine, Abacavir, and Raltegravir (Tyagi et al., 2017).
The non-nucleoside RTase inhibitor, Efavirenz, alone or in
combination with other drugs could reduce the multiple
sclerosis-related retrovirus (HERV-W) env expression in vitro
(Morandi et al., 2018). Morandi et al. (2018) observed that
people infected with HIV may have a lower risk of developing
multiple sclerosis than the HIV-uninfected healthy population,
supporting the hypothesis that anti-retroviral therapies used to
treat HIV infection suppress HERV expression as well.

Reverse transcription of host genes by
endogenous retrovirus to mediate
retrocopying

HERVs residing in human genomes “copy-and-paste”
themselves via the activation of RTase. In addition to acting
on their RNAs to replicate, HERVs also occasionally act on
host mRNAs. RTase of HERVs facilitates the duplication of host
genes via RT of the mRNA and integration of the cDNA, the
process of which is termed retro copying (Casola and Betran,
2017). Retrocopying by HERV RTase can inflict deleterious
consequences on host genomes by disrupting genes, causing
insertional mutagenesis and ectopic recombination (Hancks
and Kazazian, 2012). However, sometimes retrocopying can
introduce innovation in host genomes via the birth of new
exons or genes and gene-regulatory networks (Mi et al., 2000;
Schmitz and Brosius, 2011; Chuong et al., 2016). Yang et al.
(2020) showed that retrotransposon-mediated gene birth could
lead to the continual evolution of new innate immune genes.

Retrocopying is different from DNA-based duplications,
with limited RNA expression in germline cells and early
embryonic tissues (Friedli et al., 2014). Functional retention
in retrocopied sequences has been found. For example, novel
TRIMCyp fusion genes were created by retrocopying of
the CypA gene between coding exons of the TRIM5 gene,
thus retroviruses including HIV-1 were restricted (Malfavon-
Borja et al., 2013). In other examples, ERV elements and
viral genes themselves, such as the LINE-1 type transposase
domain containing 1 (L1TD1) and Refrex-1 (encoding a
truncated envelope protein) genes, have been retrocopied and
domesticated for various functions, such as antiviral defense (Ito
et al., 2013; McLaughlin et al., 2014).
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Discussion

Most HERVs are silenced due to accumulated mutations,
deletions, truncations, and fusions during the evolution to
maintain genomic stability or epigenetic mechanisms. HERVs
are reactivated in certain pathological contexts, such as
cancers or virus infections. Cancer cells are characterized by
deregulation of the genome (Rodriguez-Paredes and Esteller,
2011), which changes the gene expression patterns, including
HERVs. The balance between HERVs and the genome is broken
in cancers. Reactivation of HERVs can be induced by genetic
deregulation in cancers, which we have summarized in our
previous review (Zhang et al., 2019). Treatment of DNMT- and
HDAC-inhibitors can result in HERV expression in somatic cells
(Groudine et al., 1981; Daskalakis et al., 2018), which reminds
us that HERV expression can also be induced by epigenetic
deregulation of the genome. The roles of HERVs reactivation
have been partially explored, including (1) transcriptional
regulation of host genes, (2) acting as new binding sources of
transcription factors, (3) binding specific tRNAs to initiate RT,
and (4) facilitating retrocopying of host genes. More details
about the mechanisms by which HERVs function in oncogenic
progress are still not fully understood, and new HERV-related
regulators remain to be identified.
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