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Wahdaty AF, Deijs M, Jebbink MF,
Bakker M and van der Hoek L (2022)
Transmission of anelloviruses to HIV-1
infected children.
Front. Microbiol. 13:951040.
doi: 10.3389/fmicb.2022.951040

COPYRIGHT

© 2022 Kaczorowska, Cicilionytė,
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Anelloviruses (AVs) are widespread in the population and infect humans at the

early stage of life. The mode of transmission of AVs is still unknown, however,

mother-to-child transmission, e.g., via breastfeeding, is one of the likely

infection routes. To determine whether the mother-to-child transmission of

AVs may still occur despite the absence of natural birth and breastfeeding, 29

serum samples from five HIV-1-positive mother and child pairs were Illumina-

sequenced. The Illumina reads were mapped to an AV lineage database

“Anellometrix” containing 502 distinct ORF1 sequences. Although the majority

of lineages from the mother were not shared with the child, the mother and

child anellomes did display a significant similarity. These findings suggest that

AVs may be transmitted from mothers to their children via different routes

than delivery or breastfeeding.

KEYWORDS

anellome, anelloviridae, anellovirus, early-life infections, mother-to-child
transmission, virome

Introduction

Anelloviruses (AVs) are small, circular single-stranded DNA viruses. So far, AV
infection has not been associated with any disease, however, the levels of AVs seem to
be connected with the levels of host immunosuppression (Focosi et al., 2016). AVs are
detected in a majority of body fluids in people of all ages (Spandole et al., 2015), but they
dominate in blood, being one of the most abundant viruses in this environment (Cebriá-
Mendoza et al., 2021). Not much is known about the ways of transmission of AVs. There
is evidence of blood transfusion transmission (Arze et al., 2021). However, considering
the enormous abundance of AVs in the human population, including young children, a
mother-to-child transmission is highly likely.

Children are born AV-negative (Lim et al., 2015; Liang and Bushman, 2021),
and there was so far no convincing evidence of vertical transmission of AVs
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(Tyschik et al., 2017). AV DNA was detected in children’s
blood (Tyschik et al., 2017, 2018; Kaczorowska et al., 2022a)
and feces (Lim et al., 2015) in the first months of life, thus
it is likely that AVs are transmitted from the mother to child
during the delivery or the post-partum period. Children born
naturally tend to have higher loads of AVs compared to the ones
born via the caesarian section (McCann et al., 2018). Moreover,
AV DNA has been detected in breastmilk (Ohto et al., 2002;
Maqsood et al., 2021), and we described recently that beta- and
gammatorqueviruses are dominating both in breastmilk and in
the blood of children younger than 6 months, which suggests
a role of breastfeeding in AV transmission (Kaczorowska et al.,
2022a). However, other means of mother-to-child transmission,
such as fecal-oral or respiratory, are yet to be explored.

Here, we Illumina-sequenced a total of 29 serum samples
derived from five mother and child pairs. We compared the
viromes of the mother and child pairs and assessed the presence
of shared anellovirus genomes. All the subjects were HIV-1
positive, thus the children were born via cesarean section and
they were not breastfed.

Materials and methods

Clinical samples

Twenty-nine serum samples were collected from five
mothers and their children. All individuals were HIV-1 positive.
There was no information available regarding the presence
of antiretroviral therapy in the subjects at the moment of
samples’ collection, except the mother 3, who was on the therapy
from the second time point onward. Four mothers (M1, M3,
M4, and M5) and two children (C1 and C5) had more than
one serum sample available, and the samples were collected
longitudinally at irregular intervals. All samples are listed in
Supplementary Table 1.

Nucleic acid isolations

After thawing at room temperature, the serum samples were
centrifuged for 10 min at 5,000 g. A 100 µL of supernatant
was transferred to a new tube and treated with TURBO DNase
(Invitrogen). The total nucleic acids were extracted using the
Boom isolation method (Boom et al., 1990), and stored at –80◦C
until further use.

Genus-specific qPCR

Three quantitative PCRs (qPCRs) were performed
on all the selected samples to assess the prevalence and
concentration of AV genera in the tested samples. The

first qPCR detected the genus alphatorquevirus, the second
one detected betatorquevirus, and the third—beta- and
gammatorquevirus. The qPCRs were performed as described
previously (Kaczorowska et al., 2022a). Briefly, the qPCR
reaction mixture consisted of 2.5 µL isolated nucleic acids
(non-rolling circle amplified), 6.25 µL 2× Qiagen RotorGene
Probe Master-mix (Qiagen, catalog number 204574), 0.25 µL
probe, 0.5 µL forward, and 0.5 µL reverse primer (all 10 µM)
and 2.5 µL H2O. The reaction was performed on a Rotor-Gene
machine (Qiagen GmbH, Hilden, Germany) as follows: 95◦C
for 3 min, followed by 40 cycles of 95◦C for 3 s, 60◦C for 10 s.
The final elongation step was held at 72◦C for 3 min.

Illumina libraries preparation

The Illumina libraries were prepared as described previously
(Kaczorowska et al., 2022b). Briefly, the nucleic acid samples
were first amplified using rolling circle amplification (4 h at
30◦C, followed by 10 min at 65◦C) and then fragmented
using fragmentase enzyme, for 25 min at 37◦C. The ends of
the fragmented nucleic acids were repaired using polymerase
I, large (Klenow) fragment (New England Biolabs, NEB) in
combination with NEB2 10× buffer (NEB) and dNTPs (final
concentration 500 µM each). A-taling was performed with 3′-
5′ exo (-) polymerase I, large (Klenow) fragment (NEB), NEB2
buffer, and dATPs (final concentration 200 µM, NEB). Both
reactions were performed at 37◦C for 30 min and between each
of the mentioned enzymatic reactions, an AMPure XP Beads
clean-up was performed. The NEB Next adaptors were mixed
with T4 ligase (Invitrogen) and T4 buffer and the reaction was
incubated overnight at 16◦C. Afterward, an AMPure XP Beads
size selection was performed and the eluate was used in the
adaptor-enrichment PCR. The PCR master mix consisted of
Q5 Hot Start master mix (NEB), NEB Next universal primer
(final concentration of 0.5 µM; NEB), NEB Next index primer
(unique for each sample; final concentration of 0.5 µM; NEB),
and USER enzyme (NEB). Cycling was performed as follows:
37◦C for 15 min, 98◦C for 30 s, followed by 12 cycles of 98◦C
for 10 s and 65◦C for 75 s, followed by a final extension at 65◦C
for 5 min. Two rounds of AMPure XP Beads size selection were
performed, and the concentration of each sample was measured
using Qubit High Sensitivity assay (Invitrogen). The samples
were pooled at equal concentrations and run on the Illumina
miSeq sequencing machine. The pool containing samples from
mothers (n = 22) was processed and ran separately from the
children’s sample pool (n = 7), to avoid cross-contamination.

Anellometrix sequence database

All complete or nearly complete human-derived AV
sequences were downloaded from NCBI database (state for
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FIGURE 1

Anelloviruses in mothers and their children. (A) Alpha-, beta-, and beta- and gammatorquevirus DNA copies per mL serum in mothers and
children measured by genus-specific qPCR; only samples positive in the assay are included in the graph. Wilcoxon sum-rank test was used to
assess the significance; all differences were insignificant (p-value >0.05). (B) Number of lineages (richness) in each sample.

October 2021). The sequences were merged into one fasta
file, and the ORF1 gene nucleotide sequences were extracted
using EMBOSS getorf.1 The sequences were clustered using 95%
threshold, and any duplicates were removed using dedupe script
from BBTools.2 By running a BLASTn search against a recently
updated database of AV sequences (Varsani et al., 2021), we
categorized the majority of the lineages into species. The final
Anellometrix genome database consisted of 502ORF1 sequences
(Supplementary Table 2).

Sequencing data processing

The adaptors and low quality reads were trimmed using
Trimmomatic version 0.39 (Bolger et al., 2014). Paired reads

1 http://emboss.bioinformatics.nl/cgi-bin/emboss/getorf

2 https://jgi.doe.gov/data-and-tools/software-tools/bbtools/

were aligned to the Anellometrix database using bowtie2
(Langmead et al., 2009), using –very-sensitive setting. The
obtained sam files were indexed, converted to bam, and sorted
using SAMtools (Li et al., 2009). A table with mapped read
numbers was generated using SAMtools idxstats function,
and the percentage coverage was obtained using bbmap
mpileup command.3 The mapping was considered valid when
the genome was covered at least once for ≥75% of the
genome length. The read counts were normalized to reads
per million (RPM), or, for the heatmap graphs, to relative
abundance.

To compare the anellomes between the samples, we
used unweighted UniFrac on QIIME2 (Lozupone et al.,
2006; Bolyen et al., 2019). Unweighted UniFrac calculates
the distance matrix based on presence-absence tables and
phylogenetic relationships between the tested samples. The

3 https://sourceforge.net/projects/bbmap/
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FIGURE 2

Blood anellomes of mothers and children. Heatmaps of relative abundance of different anellovirus lineages (x-axis) in samples (y-axis) within
pair #1 (A), pair #2 (B), pair #3 (C), pair #4 (D) and pair #5 (E). The stronger the color, the higher the relative abundance (indicated by “value”),
and the white color indicates the absence of a lineage. (F) Proportion of shared and not shared lineages within each pair. The unshared lineages
were either detected solely in the mother (“mother-only”) or in the child (“infant-only”).

ORF1 sequences of Anellometrix database were aligned using
MAFFT (E-INS algorithm) (Katoh et al., 2018) and the
maximum-likelihood phylogenetic tree was constructed using
RAXML (Stamatakis, 2014). All the abovementioned programs
were run on a high-performance cluster computer Lisa
(Surfsara).4

Statistical analysis

All graphs were constructed in R version 4.1.3 using
the tidyverse, vegan, reshape2, and ggpubr packages, and the
statistics were calculated using rstatix and vegan packages.

Results

We assessed the DNA concentrations of the 3 human-
infecting anellovirus (AV) genera using the genus-specific
qPCRs. All samples were positive in alphatroquevirus qPCR,
while five samples were negative in betatorquevirus and four
in beta- and gammatorquevirus qPCR (Supplementary
Table 1). Interestingly, we observed negative values
only in mother samples after having given birth, but

4 https://www.surf.nl/

there were no significant differences between AV DNA
concentrations between mother and child samples
(Figure 1A).

The highest AV DNA concentrations among
mothers were noted for mother #1 (Supplementary
Figure 1). Alphatorquevirus DNA loads were stable for
all mothers (Supplementary Figure 1A), while beta-
and gammatorquevirus loads were fluctuating over time
(Supplementary Figures 1B,C).

Illumina sequencing resulted in a total of 5.4 × 107

paired reads, ranging from 3.0 × 105 (sample M1A) and
6.5 × 106 (C3A) reads per sample (Supplementary Table 1).
Sample M5D was excluded from further analysis due to a low
number of reads. We mapped the reads to the Anellometrix
database, which consists of 502 ORF1 sequences derived from
a broad spectrum of AV lineages. We obtained between 0 reads
per million (rpm; sample M5C) and almost 5 × 105 rpm
(C1B) reads mapping to Anellometrix reference sequences.
The AV richness differed among the subjects, with the highest
richness observed in mother #1 samples (Figure 1B), which
also showed the highest AV DNA concentrations in genus-
specific qPCRs (Supplementary Figure 1). One of the samples
from this subject, M1E, had reads mapping to as many as
98 distinguishable AV lineages (Figure 1B). Interestingly, of
all children, child #1 also possessed the highest number of
lineages (56 lineages). The lowest richness values were observed
in child #2 (7 lineages)/mother #2 (5 lineages), and child #3 (6
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FIGURE 3

UniFrac distances of the anellomes. Principal Component Analysis (PCoA) plot using unweighted UniFrac distances between all samples (A) and
samples excluding pair #1 (B). The colors represent different pairs, while the shapes represent the category of a sample (child or mother).
(C) Unweighted UniFrac pairwise comparison between the longitudinal samples from the same subject, and related and unrelated samples (thus
within or outside the pairs). To compare related and unrelated samples, only selected samples (Supplementary Table 1—samples marked with
an asterisk) were used. Statistical significance was assessed using Wilcoxon sum-rank test. Only the significant values are marked on the graph;
explanations of the symbols: *P ≤ 0.05, **P ≤ 0.01, ****P ≤ 0.0001.

lineages)/mother #3 (6 lineages). One of the samples derived
from mother #5 (M5C) had a proper number of sequence
reads, a reasonably high virus load (107 DNA copies/mL),
yet no detectable AV Illumina reads. Apparently, the library
preparation did not work in this sample, possibly due to a lack of
circular genomes needed for rolling circle amplification. There
was no significant difference between the number of lineages
detected in mothers and in children (Wilcoxon sum-rank test,
p-value >0.05).

We observed that mothers and children within the same pair
possessed a similar number of lineages (Figure 1B), however,
the lineages were not always the same (Figure 2). In pair #1,
which had the broadest anellome, 59 out of the total of 138 (43%)
lineages were shared between mother and children samples
(Figure 2A). There was just 1 lineage shared between the mother
and the child in pair #2 (out of 11 lineages; 9%; Figure 2B), 2
out of 16 in pair #3 (12.5%; Figure 2C), 8 out of 34 in pair #4
(24%; Figure 2D), and 9 out of 26 in pair #5 (35%; Figure 2E).
For pairs #1, #3, and #4 the majority of not shared lineages
were present in mothers only, while in pairs #2 and #5 most

of the unshared lineages were detected in infants (Figure 2F).
In pair #1 and pair #5, the shared lineages were significantly
more abundant in mother samples than the unshared lineages
(Wilcoxon sum-rank test; p-value = 7.3× 10−11 for pair #1 and
0.01 for pair #5; Supplementary Table 3). Moreover, the most
abundant AV lineage of mother #2 was also the only one that
was shared with the child (Figure 2B). No correlation between
the relative abundance and sharing of the lineage was observed
in pairs #3, #4, and #5 (p-value >0.05).

Of note, we observed that anellomes of the mothers that
had more than 1 sample available (#1, #3, #4, and #5) were
relatively stable in time in terms of the anellome breadth. The
broad anellome of mother #1 remained so for the whole follow-
up period (Figure 2A), while the smaller anellomes of mothers
#3 (Figure 2C) and #4 (Figure 2D) were narrow throughout the
follow-up. However, only a small number of lineages persisted
throughout the whole follow-up period. In mother #1, 37 out of
117 lineages were detected in all the time points, in mother #3
it was 1 out of 16, and there were no such lineages in mother
#4 and mother #5. Moreover, in mother #5, a large drop in the
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number of lineages was observed over time—with samples M5C
and M5D having no detectable lineages, and the last sample
possessing only two lineages (Figure 2E).

Even though the majority of AV lineages were not shared
between the mothers and children, we still hypothesized
that the AV lineages of mother and child within a pair
are phylogenetically related, and unrelated samples possess
more phylogenetically divergent anellomes. We compared the
anellome diversity and the phylogenetic relationships of all
samples using the unweighted UniFrac. Principle component
analysis (PCoA) of pairwise unweighted UniFrac showed strong
clustering of samples from pair #1 (Figure 3A), but no such
clustering was observed in the case of samples from the
remaining pairs (Figure 3B).

Next, we compared the unweighted UniFrac distances
between the samples (Figure 3C). Unsurprisingly, the mean
pairwise distances between the longitudinal samples derived
from the same subject were significantly smaller than the
ones measured between different subjects: different mothers
(Wilcoxon sum-rank test; p-value = 9.34 × 10−8), and different
children (p-value = 0.01; Figure 3C, Supplementary Table 4).
Thus, to avoid the bias caused by the high similarity of follow-up
samples from the same subject, we selected just one sample per
subject when comparing the related and unrelated mothers and
children. We chose the mother and child samples within each
pair that were closest to each other in terms of UniFrac distances
(samples marked with asterisks in Supplementary Table 1).
We selected these samples because they were most likely
collected at the moment of the most prominent mother-to-
child transmission. There was indeed a significant difference in
pairwise distances between mothers and related children versus
unrelated mothers and children (p-value = 0.04; Figure 3C;
Supplementary Table 4). This result shows that even though
children do not share exactly the same AV lineages with their
mother, their anellome composition is more similar to their
own mother compared to unrelated mothers or children. Next
to that, we also compared the UniFrac distances using mother
samples collected closest to the delivery moment (samples
marked by "$” in the Supplementary Table 1). In this case,
we lost significance between related samples on the one hand
and unrelated samples on the other hand (p-value >0.05;
Supplementary Figure 2, Supplementary Table 5). This finding
suggests that the moment of delivery is not the main moment of
AV transmission.

Discussion

In this study we compared the anellovirus (AV) viromes
(anellomes) of 5 HIV-1 infected mother and child pairs. We
observed that related mothers and children possess more similar
anellomes than unrelated people—both in the terms of AV
lineage richness and phylogenetic relationships. We found an

inconsistent number of shared lineages within pairs, which
suggests that there may not be a general pattern of transmission
when children are born from HIV-1 infected mothers. One
mother and child pair shared almost half of the lineages (pair
#1), while another shared as little as 1 out of 11 lineages (pair
#2), and another only 2 out of 16 (pair #3). We hypothesize that
the AV lineages that were present only in children may have
been acquired from siblings, other family members tending to
the child, or from the environment.

The healthy human virome is regarded as highly dynamic
in the first months of life, both in the gut and in blood (Lim
et al., 2015; Tyschik et al., 2017; Bushman and Liang, 2021;
Kaczorowska et al., 2022a). The AVs colonize infants within
the first 6 months of life (Lim et al., 2015; Kaczorowska et al.,
2022a), yet the main source or route of the first infection is still
unknown. All children in our study were born via caesarian
section, were not breastfed, and still were infected by AVs in
the very first months of life—thus the transmission must have
occurred via a different route. Fecal-oral transmission is likely—
feces are positive for AVs both in children and in adults (Lim
et al., 2015; Shkoporov et al., 2019; Liang and Bushman, 2021;
Beller et al., 2022). Airway transmission is another possible
route since AVs are frequently detected in nasal secretions
(Maggi et al., 2003), saliva (Inami et al., 2000; Naganuma et al.,
2008; Liang and Bushman, 2021), and bronchoalveolar lavage
liquid (Young et al., 2015; Segura-Wang et al., 2018). In one
longitudinal study by Maggi and colleagues, two children were
initially PCR-positive for alphatorquevirus DNA in the nasal
secretions and negative in plasma. After a month since the initial
detection in the respiratory tract, both children became positive
for alphatorquevirus in plasma (Maggi et al., 2003), which
suggests that the airway may be an important transmission route
of AV infection in children. A metagenomic study involving
paired nasal, fecal, and blood samples from mothers and their
children would shed more light on the importance of the airway
and fecal-oral transmission routes in early-life AV acquisition.
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