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Sustainable meat production is important to providing safe and quality protein

sources for humans worldwide. Intensive artificial selection and high energy

input into the diet of many commercial animals for the last decade has

significantly increased the daily gain of body weight and shortened the raising

period, but unexpectedly decreased the meat quality. The gastrointestinal

tract of animals harbors a diverse and complex microbial community that

plays a vital role in the digestion and absorption of nutrients, immune system

development, pathogen exclusion, and meat quality. Fatty acid composition

and oxidative stress in adipose and muscle tissue influences meat quality in

livestock and poultry. Recent studies showed that nutraceuticals are receiving

increased attention, which could alter the intestinal microbiota and regulate

the fat deposition and immunity of hosts to improve their meat quality.

Understanding the microbiota composition, the functions of key bacteria, and

the host-microbiota interaction is crucial for the development of knowledge-

based strategies to improve both animal meat quality and host health. This

paper reviews the microorganisms that affect the meat quality of livestock

and poultry. A greater understanding of microbial changes that accompany

beneficial dietary changes will lead to novel strategies to improve livestock

and poultry meat product quality.

KEYWORDS

meat quality, livestock, poultry, antioxidant capacity, fatty acid composition, gut
microbiota

Introduction

To consumers, meat quality has always been important, especially in the twenty
first century (Joo et al., 2013). With the rapid development of animal husbandry, issues
relating to the animal’s microbiome have been raised, including the low feed conversion
efficiency, nitrogen utilization efficiency, meat quality, and high methane emissions
(Nkrumah et al., 2006; Kumar et al., 2013; Gharechahi et al., 2021). To produce high
quality meat, it is necessary to understand the characteristics of meat quality traits and
the factors that control them.

Meat quality is difficult to define as it is a complex concept that is largely determined
by consumer preferences. In a narrower aspect, meat quality is defined as sensory quality,
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which is the stimulation of the meat product to human
senses such as vision, smell, taste, and touch. The sensory
quality of meat is evaluated by its color, flavor, pH, drip loss,
marbling, tenderness, and juiciness (Thorslund et al., 2016).
In a broader sense, meat quality also includes processing
quality, nutritional value, and meat hygiene. Fresh meat, as
animal tissue that is suitable for use as food, has characteristic
qualities that are influenced by various factors (Joo et al.,
2013) such as muscle structure, chemical composition (i.e., fatty
acid composition, intramuscular fat, and carbohydrate content),
chemical environment, interaction of chemical constituents,
postmortem (p.m.) changes in muscle tissues, stress (such
as oxidative stress), pre-slaughter effects, product handling,
processing and storage, and microbiological numbers and
populations. For example, the fatty acid composition can easily
be altered though feeding especially in monogastric animals.
Meanwhile, carbohydrate content is more closely related to
genetics in animals such as pigs; feeding in the last days
before slaughter and handling at slaughter (both ante- and
postmortem) (Aaslyng and Meinert, 2017). Other factors also
play important roles in meat quality, such as exposure to other
organisms including Campylobacter and Salmonella, which play
an important role in the quality and safety of end-products from
these animals. Additional steps, including washing and chilling
of the meat within the production cycle, aim to control the
proliferation of these microbes as well as those which cause
product spoilage (Marmion et al., 2021). Storing meat under
different temperatures (Kaur et al., 2021; Liang et al., 2021) also
aims to control these microbes. In addition, microbiota also play
crucial role during meat fermentation (Ferrocino et al., 2018).
Here, we will focus on the meat quality of fresh meat.

The composition and relative proportions of dominant
gut microbial groups vary animal among species (Richards
et al., 2005). The gut microbiota is believed to influence
many metabolic processes such as (van Kuijk et al., 2021)
nutrient absorption (Xu et al., 2013), host health, and the
meat quality (Richards et al., 2005). By comparing the skeletal
muscle of germ-free mice to the pathogen-free mice, germ-free
mouse skeletal muscle showed atrophy, decreased expression of
insulin-like growth factor 1 of host mice (Lahiri et al., 2019).
In ducks, the abundance of genus Prevotella, Lactobacillus,
and Lachnospiraceae UCG-008 was significantly lower in meat
production ducks (Qin et al., 2019). Saccharolytic and anaerobic
microbiota can especially aid in the degradation of host-
indigestible carbohydrates (such as cellulose and resistant
polysaccharides) into monomeric or dimeric sugars, and
subsequently ferment them into short-chain fatty acids (SCFAs)
(Tremaroli and Bäckhed, 2012; Koh et al., 2016), which can be
carried by the host’s systemic circulation to reach extraintestinal
organs and make broad-range impacts on the host (Silva et al.,
2020; Gautier et al., 2021). Among the SCFAs, butyrate is
the preferred energy source for colonocytes and has been
investigated most extensively, other absorbed SCFAs drain

into the portal vein (Koh et al., 2016). For example, acetate
can reduce appetite via a central homeostatic mechanism by
crossing the blood-brain barrier (Frost et al., 2014). Acetate-
dependent GPR43 stimulation in the white adipose tissue
improved glucose and lipid metabolism (Kimura et al., 2013).
High-fiber diet (produce high amounts of propionate) protect
against allergic airway through inducing hematopoiesis of
dendritic cells that seed the lungs (Trompette et al., 2014).

There is a growing interest in understanding the role of
the gut microbiome on meat quality related traits (Muinos-
Buhl et al., 2018). Genetic background, in addition to diet
composition, might impact gut microbiota composition (Lopez-
Garcia et al., 2021; Figure 1). For carcass composition and meat
quality traits in pigs, heredity of the microbiome was estimated.
High positive microbial correlation was found among different
traits, particularly with traits related to meat color and firmness
score (Khanal et al., 2021). Better understanding of microbial
composition could aid the improvement of complex traits
(Khanal et al., 2021). There were also differences in the diversity
and composition of the microbial community among swine
breeds; among these breeds, Duroc, known for its excellent meat
quality, tenderness, improved flavor, and palatability, showed
different microbial community from other breeds (Alain et al.,
2014; Pajarillo et al., 2015). Symbiotic supplementation into
the diet improved the growth performance, oxidative stability,
and meat quality in both chicken (Cheng et al., 2017) and
duck (Chen et al., 2018). Furthermore, the gut microbiome
is also well-acknowledged as a key element in regulating fat
deposition: since they are closely related to meat quality,
excessive lipid accumulation and high oxidative stress have
become a serious health and economic problem in the pig
industry (Zhao et al., 2022).

This paper reviews the microorganisms affecting the meat
quality in livestock and poultry. A better understanding of the
livestock and poultry gut function and microbiology will provide
us new opportunities for the improvement of meat quality in
animal production.

Gut microbiota affect
intramuscular fat deposition

Animal fat deposition is a complex biological process.
Obesity has been shown to be highly related to gut microbial
profile (Portune et al., 2017), as gut microbiota imbalance
contributes to lipid deposition (Kallus and Brandt, 2012; Zhao,
2013). Since many of the bacterial taxa correlated to the
intramuscular and subcutaneous fat depots did not overlap, the
gut microbiota likely impacted adipose accumulation largely via
separate adipogenic pathways (Krause et al., 2020). Abundance
in the genera of unclassified Erysipelotrichaceae and Butyrivibrio
increased in pigs fed with rice distillers’ by-products and
induced an improvement in animal growth and fat deposition
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FIGURE 1

Function of gut microbiota.

(Nguyen Cong et al., 2019). Fat deposited in muscle includes
intermuscular fat and intramuscular fat (IMF). As IMF is a key
factor affecting meat qualities such as tenderness, juiciness, and
taste (Hausman et al., 2009), it is an economically important
factor in animal breeding (Fang et al., 2017). Excluding age, sex,
and nutrition, gut microbiome and genetics are two important
factors affecting IMF (Zheng et al., 2022). As a newly discovered
factor of IMF, the gut microbiome is reported in recent years in
various animals (Lahiri et al., 2019; Qi et al., 2019; Wen et al.,
2019; Chen et al., 2021; Liu et al., 2021a).

The gut microbiome was found to play a crucial role in
varying tendencies for fattiness in different breeds of pigs
(Lei et al., 2021). The Duroc breed had higher IMF content
than Landrace and Large White (Bergamaschi et al., 2020).
Gut microbiome studies showed that the higher relative
abundances of the genera Ruminococcaceae_NK4A214_group,
Parabacteroides, Christensenellaaceae_R-7_group, and
Ruminiclostridium might corelate with higher IMF content
(Lei et al., 2021; Figure 2). In addition, differences of colonic
bacterial abundances and bacterial metabolites between fatty-
and lean-type pigs were detected (Jiang et al., 2016). Similarly,
other studies showed that an elevated ratio of Firmicutes to
Bacteroidetes and increased abundance of genus Romboutsia in
colonic samples was correlated with higher IMF content in pigs

(Wu et al., 2021). Obese Jinhua pigs had better meat quality that
is associated with higher IMF content than lean Landrace pigs.
To show that this trait was related to gut microbiota, mice were
given microbiota from each pig species. The mice receiving
Jinhua pig’s microbiota had elevated lipid and triglyceride levels
and the lipoprotein lipase activity, as well as reduced ANGPTL4
expression in the muscle (Wu et al., 2021). This increase was also
accompanied with an elevated ratio of Firmicutes/Bacteroidetes
and increased abundance of Romboutsia. Prevotella copri, and
could increases fat accumulation by activating host chronic
inflammatory responses through the TLR4 and mTOR signaling
pathways. This also significantly upregulated the expression of
the genes related to lipogenesis and fat accumulation (Fabp9,
Scd1, Scd2, and Scd3) (Chen et al., 2021). In Enshi pigs, the
microbiota genera Prevotellaceae UCG-001 and Alistipes in
the cecum and Clostridium sensustricto 1 in the jejunum were
shown to be highly, positively correlated with IMF (Tang
et al., 2020). IMF content in the longissimus muscle was
increased with antibiotic exposure, which increased expression
of genes related to fatty acid uptake and de novo synthesis and
decreased expression of genes related to triglyceride hydrolysis
(Yan et al., 2020).

In ruminants, a previous study found that anti-
Porphyromonas gingivalis antibody titers were positively
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FIGURE 2

Gut microorganisms related to intramuscular fat accumulation. The yellow dots are lipid droplets and the bacterial genera related to
intramuscular fat (IMF) content are listed. The genes and pathways are also listed.

correlated with intramuscular adipose tissue content (Watanabe
et al., 2021). Castration in male cattle increased adiposity
via small intestinal microbial alterations (Whon et al., 2021),
which resulted in a greater increase in the subcutaneous
and intramuscular fat, and a higher meat tenderness score
than those of non-castrated bulls (Field, 1971; Marti et al.,
2017). The castrated male cattle harbored distinct ileal
microbiota dominated by the family Peptostreptococcaceae
(Whon et al., 2021). Angus beef meat, which is superior in
juiciness, tenderness, and flavor due to a higher intramuscular
fat (IMF) content, was found to have a significantly higher
relative abundance of Roseburia, Prevotella, and Coprococcus
Angus (Zheng et al., 2022). The gut microbial species
B. uniformis, R. inulinivorans, B. vulgatus, C. catus, E. rectale,
and F. prausnitzii were all found to be positively correlated
with the muscular metabolism-related genes including MSTN,
ATP2A1, MYLPF, ACTN3, MYL1, and TNNT3 and have
positive effect on meat quality in cattle (Zheng et al., 2022).
The mucin-degrading bacterium Akkermansia, known for
regulating energy expenditure, was enriched in Brahman calves
that contained less IMF content, while butyrate-producing
bacterium Faecalibacterium was linearly positively correlated
with Angus, which is known for its high IMF (Fan et al.,
2019). The phyla Tenericutes and Saccharibacteria (formerly
known as TM7) were negatively correlated in longissimus
lipid content of Angus steers (Krause et al., 2020). Increased
dietary energy improved beef C18:1 cis-9, C18:2n-6 trans,
monounsaturated fatty acids (MUFAs) and IMF content, and

decreased C18:0, C18:1 trans, C22:0, C20:3n-3, C22:6n-3,
and saturated fatty acids (SFAs) in Holstein bulls (Wang
H. et al., 2019). These changes were accompanied by an
increase in abundance of the genera Prevotellaceae_UCG-
004, Phocaeicola, Acetitomaculum, Lachnoclostridium_1,
Prevotellaceae_UCG-003, and Anaerovibrio.

In chickens, Methanobrevibacter and Mucispirillum
schaedleri were identified to be significantly correlated with
fat deposition: chickens with a lower Methanobrevibacter
and a higher M. schaedleri abundance had significantly lower
abdominal fat (Wen et al., 2019). The ELOVL2 gene, which is
involved in long-chain polyunsaturated fatty acid elongation
and lipid synthesis (Jakobsson et al., 2006; Gregory et al.,
2013; Pauter et al., 2014), was found to be associated with
feed utilization in correlation with a higher abundance of
Corynebacterium (Wen et al., 2021). The bacteria related genes
and pathways affecting IMF content that are discussed here are
summarized in Figure 2.

Bacterial metabolites short-chain
fatty acids improved meat quality
traits

Fatty acids are carboxylic acids with an aliphatic chain.
The varying fatty acid contents and profiles of adipose tissues
and muscles influence the meat characteristic qualities in pigs,
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sheep, and cattle (Enser et al., 1996; Wood et al., 2008). Fatty
acid composition defines the firmness/oiliness of adipose tissue
and muscle oxidative stability, which in turn affects flavor and
muscle color (Wood et al., 2008). Meat is considered as a
major source of polyunsaturated fatty acids (PUFA), which are
essential for humans, creating a concerted effort to increase the
production of PUFAs in livestock.

Microbiota residing in the livestock and poultry
gastrointestinal tract digest and ferment food consumed
by animals into nutrients which are utilized by the host
to produce meat and milk (Liu et al., 2021c). Among the
metabolites produced by the beneficious gut microbiota, short-
chain fatty acids (SCFAs) have received increasing attention
because of their important role in disease prevention and
recovery (Sanderson, 2004). SCFAs are part of a microbial
fermentation product in the gut which may be related to the
reduced body fat of rabbits. Acetate, a major SCFA in rabbit gut,
reduced intramuscular triglyceride levels via increasing fatty
acid uptake and fatty acid oxidation. PPARα was also found to
be associated with the acetate-reduced intracellular fat content
(Liu et al., 2019). SCFAs levels, especially butyrate level, had
critical impacts on finishing weight of rabbit. Gut microbiome
explained nearly 11% of the variation in finishing weight (Hu
et al., 2021). Low fat content pigs had higher abundances
of butyrate-producing bacteria species that improved the
formation of SCFAs, especially butyrate, thus alleviating fat
deposition, while high fat-content pigs had a higher abundance
of Archaeal species along with higher methanogenesis functions,
leading to more efficient fat deposition (Zhao et al., 2022). SCFA
administration into the ileum could improve the meat quality of
growing pigs by inhibiting the mRNA expressions of fatty acid
synthase (FAS) and acetyl-CoA carboxylase in the longissimus
dorsi (Jiao et al., 2021).

In addition, SCFAs have been demonstrated to play
important roles in maintaining morphology of the small
intestine wall (Mannelli et al., 2019) in addition to offering
energy to host cells as well as gut microflora (Jiao et al., 2021).
As they are commensal fermentation products, the levels and
compositions of SCFAs are influenced by dietary fiber intake and
consumption of SCFA-enriched foods (Yamamura et al., 2020).
Especially in these ruminants, rumen microbes ferment feed,
and produce volatile fatty acids (VFAs), the main energy source
for the host (Miura et al., 2021). Stable rumen fermentation,
with an increase in Prevotella spp. and unclassified Bacteroidales
in fattening periods, has been shown to be one of the most
important factors to producing high-quality meat in cattle
(Miura et al., 2021). In goats, the contents of saturated fatty acids
(SFAs) C14:0, C16:0, and C18:0 were significantly higher in the
alfalfa (Medicago sativa L.) fed group. The microbe Prevotella_1
was negatively correlated with C18:0 and positively correlated
with C16:1, whileClostridium andRomboutsia showed a positive
correlation with monounsaturated fatty acids (MUFAs) and
PUFAs (Wang Y. et al., 2022).

In summary, fermentation of dietary fiber by commensal
gut bacteria in the colon leads to the production of short-chain
fatty acids (SCFAs) including acetate, propionate and butyrate
(Liu et al., 2021d), which are rapidly absorbed by colonic
cells via monocarboxylate transporters, passive diffusion, or
bicarbonate (HCO3−) exchange via an unidentified exchange
mechanism (Figure 3). The SCFAs including acetate, butyrate,
and propionate are converted to acetyl-CoA or propynyl-CoA
by pathways involving the acetyl-CoA carboxylase (ACSSs)
and beta oxidation. This step will produce ATP, which
contributes to the maintenance of cell homeostasis. SCFAs
that are not metabolized by colonic cells travel via the
basolateral membrane into the portal circulation to the liver,
providing an energy substrate for hepatocytes via oxidation
(Dalile et al., 2019). Thus, only small amounts of the SCFAs
produced in the colon reach systemic circulation. The colon
derived SCFAs that do manage to reach systemic circulation
promote anti-inflammatory and immunomodulatory effects
as well as increasing insulin secretion, maintaining energy
homeostasis and improving the function of the gut, liver,
skeletal muscles, and adipose (Figure 3). These results
showcased the positive effects of SCFAs from gut microbiota
on muscle (Liu et al., 2021a) and fat tissue to further
influence meat quality.

Diet improves meat quality by
altering gut microbiota

Food and nutraceuticals are important for the
gastrointestinal microbiome composition of humans and
other animals (Lanng et al., 2021). Poor-quality food items
consumed as main meals were reported to relate to severe
irritable bowel syndrome in humans, as an enrichment of gut
microbiota with a function toward a specific type of hydrogen
metabolism associated with animal carbohydrate metabolism
were detected in these cases (Tap et al., 2021). The dietary
glucose oxidase could inhibit harmful bacteria and promote
beneficial bacteria, which could be related to the improvement
of the growth performance and intestinal barrier function in
chickens (Zhao et al., 2021). Eubacterium rectale subspecies
harboring flagellin-encoding genes were associated with a
predominantly meat-based diet (Tap et al., 2021). Two of the
three E. rectale subspecies were found to be associated with
lower gut microbial community diversity, higher host BMI,
and higher fasting blood insulin levels (Costea et al., 2017).
Higher protein intake during resistance training does not
enhance strength, but modulates gut microbiota in middle-aged
adults (McKenna et al., 2021). Intramuscular fat, fibrosis, and
the number of pro-inflammatory cells in rats after high-fat
high-sugar feeding increased by 3-days and was sustained
across 28-days, compared to control-diet animals (Collins et al.,
2016). Nutrients have a great influence on the state of the body
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FIGURE 3

Metabolism of short-chain fatty acids (SCFAs) from dietary fiber to systemic circulation. MCT1, monocarboxylate transporter 1; SMCT1,
sodium-dependent monocarboxylate transporter 1; GLP-1, glucagon-like peptide-1; GLUT-4, activated glucose trans-porter protein-4; PYY,
peptide YY. Figure based on the study of Dalile et al. (2019).

through gut microbiota community, and this effect on meat
animals is to affect their meat performance.

In these monogastric mammals, such as pigs fed on high-
fructose corn syrup increased subcutaneous fat and triacyl
glycerides in plasma compared to sucrose fed pigs, but IMF
did not differ between diets (Maj et al., 2021). Most of the
IMF-associated operational taxonomic units (OTUs) in pigs
belonged to the bacteria genera related to polysaccharide
degradation and amino acid metabolism, such as Prevotella,
Treponema, Bacteroides, and Clostridium (Fang et al., 2017).
Pigs that received fermented complete feed (FCF) had better
meat quality, which was indicated by a higher unsaturated fatty
acid content and a lower average back-fat thickness. This feed
also significantly reduced the relative abundances of presumably
pathogenic bacteria of genus Escherichia–Shigella (Tang et al.,
2021). L. plantarum ZJ316 was found to have probiotic effects,
which could improve the meat quality of pigs, including
chewiness, gumminess, and restoring force, by inhibiting of the
growth of opportunistic pathogens (Suo et al., 2012).

In poultry, the effects dietary fiber on cecal SCFA
concentrations and cecal microbiota of chickens showed
that there were interactions between bird breed and dietary
fiber, based on the concentrations acetic acid and total
SCFA (Walugembe et al., 2015). In caged chickens, adding
lignocellulose increased the microbial diversity and the
abundance of the butyrate-producing bacteria Faecalibacterium
and Roseburia (Hou et al., 2020), which could in turn reduce
the production of proinflammatory factors. The addition of

Yingshan Yunwu green tea polysaccharide conjugates increased
chicken breast muscle pH and redness-greenness (a∗) value and
increased the abundance of Bacteroidetes and Lactobacillus and
decreased the abundance of Proteobacteria (Xiang et al., 2020).

Especially in ruminants, vitamin E is an essential nutrient
that stabilizes PUFA and has a central role in meat quality.
Extra dietary vitamin E has been shown to have a beneficial
effect on the growth performance, oxidative stress biomarkers,
carcass characteristics, and meat quality of lambs (Maraba et al.,
2018). Meat quality was improved in lambs that had a high fiber
and low protein, which might corelated with Planctomycetaceae
(OTU1882) abundance (Akonyani et al., 2021). Alterations in
the gut microbiota with a high-rice (HR) diet improved the
meat quality of goats, which was displayed as a significantly
reduced lightness of the meat at 45 min and 24 h after slaughter.
The abundance of Oscillibacter increased, while Phocaeicola and
Christensenellaceae_R-7_group significantly decreased with the
HR diet (Wang K. et al., 2021). Dietary administration of L-
carnitine can improve feed efficiency and modulate the ruminal
and intestinal microbiota of lambs, ruminal fermentation was
also improved with higher concentration of SCFA were detected
(Martin et al., 2022).

Thus, healthy and high-quality foods for all animals is
necessary. To avoid the generation of food waste products,
nutraceuticals should be developed into a sustainable approach
that can be implemented in commercial, antibiotic-free
livestock and poultry to provide safe and high-quality meats
(Tolnai et al., 2021).
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Antioxidant and meat quality

Stress inevitably occurs in the journey from the farm to
abattoir in modern livestock husbandry (Xing et al., 2019).
An excess of free radicals will trigger oxidative stress (Estévez,
2015), leading to harmful effects on DNA, proteins, and lipids
(Xing et al., 2019). Oxidative stress that is characterized as
elevated reactive oxygen species (ROS) levels could result in
the deterioration of meat quality, degenerative health problems,
and could lead to great economic losses for the industry every
year (Fellenberg and Speisky, 2006; Xing et al., 2019). Oxidative
stress occurs in farmed animals when free radical production
exceeds the capacity of the antioxidant defense system. Oxidized
diets were one of the most effective factors on oxidative stress
in livestock and poultry (Xing et al., 2019). A significant
increase in some benign intestinal bacteria (Lactobacillus etc.)
and a significant decrease in harmful bacteria (Turicibacter and
Helicobacter) was found to diminish oxidative stress in mice
(Liu et al., 2021b), which indicated the crucial function of gut
microbiota in oxidative stress regulation. In addition, oxidized
pork stimulated oxidative stress and inflammation by altering
gut microbiota in mice (Ge et al., 2020). Understanding how the
gut microbiota contributes to oxidation and how oxidative stress
alters the meat quality and protein functionality as well as the
sensory, nutritional, and shelf-life quality of meat (Zhang et al.,
2013) is important.

Meat becomes susceptible to oxidative processes due to
high levels of unsaturated fatty acids (UFAs) and multiple
initiators such as transition metal, and certain oxidoreductase
enzymes (Lund et al., 2011). Thus, optimization of UFAs
composition of meat in livestock and poultry is desirable
(Li et al., 2012). Butyrivibrio proteoclasticus-related bacteria
extensively hydrogenate PUFA to saturated fatty acids (SFA).
For example, they are responsible for the conversion of trans-
vaccenic acid (C18:1) to stearic acid (C18:0) (Li et al., 2012),
resulting in the high ratio of SFA/PUFA (Huws et al., 2011).
In fish, the proportions of unsaturated to saturated fatty acids
as well as Bacillus species increased in response to temperature
changes (Tsuda et al., 2015). Dietary polyunsaturated fatty
acids (PUFAs) were reported to activate hepatic AMP kinase
(Suchankova et al., 2005) and PUFAs to induce a partitioning of
fatty acids toward oxidation rather than lipogenesis, increasing
the production of free radicals (Viollet et al., 2006). Feeding
100% enzymatically digested food waste did not alter the meat
quality of pigs compared with pigs fed with traditional diet but
contained more omega-3 fatty acids (Jinno et al., 2019). The
use of Lactobacillus johnsonii as a probioticexhibited a positive
effect on muscle lipid peroxidation by significantly increasing
superoxide dismutase (SOD) and attenuating the decrease of
intramuscular fat, C18:3n-3 (α-linolenic acid, ALA), C20:4n-
6, C20:5n-3 (eicosapentaenoic acid, EPA), C22:4n-6, C22:5n-3,
C22:6n-3 (docosahexaenoic acid, DHA), total PUFA, and n-3
PUFA (Wang et al., 2017).

In addition, supplementing antioxidants in the diet also
has a dual effect for the commercial animals by improving
meat quality and maintaining growth performance (Xie et al.,
2022). In Japanese quails, essential oil (EO) supplementation
was found to be beneficial, and should be recommended
for improving the meat quality (Kurekci et al., 2021).
Meanwhile, butyrate, in combination with forskolin, alleviates
necrotic enteritis, increases feed efficiency, and improves
carcass composition of broiler chickens (Yang et al., 2022).
In chickens, dietary supplementation with magnolol improved
meat quality with a balanced gut microbiota homeostasis of
increased Faecalibacterium and decreased Coprobacillus in the
cecum, and increased glutathione (GSH), superoxide dismutase
(SOD), and total antioxidant capacity (T-AOC) levels in breast
muscle and jejunum (Xie et al., 2022). Protocatechuic acid
(PCA) increased the relative abundance of Firmicutes and
Actinobacteria while reducing Bacteroidetes and Proteobacteria,
thus improved the feed efficiency, growth performance, meat
quality, and antioxidant capacity of broilers. It also enhanced
intestinal immune function and improved the structure of
intestinal flora to favor improved intestinal health in Chinese,
yellow-feathered broilers (Wang Y. et al., 2019). Dietary
supplementation of onion leaf powder in chickens exerted
antimicrobial, immunomodulatory, and antioxidant effects
(Adeyemi et al., 2021), in addition to showing an increase in
cecal Lactobacillus spp. counts. Azolla at 10% supplementation
affected phase-feeding and increased oxidative stress in chicken
(Abdelatty et al., 2021). On the other side, toxins have opposite
effect on meat quality compared to the antioxidant. After
aflatoxin B1 (AFB1) exposure, mutton quality was impaired,
which was reflected by the changed structure of muscle fibers
in addition to other changes (Cao et al., 2021). AFB1 caused
changes in the levels of oxidative stress indicators T-SOD,
T-AOC, MDA, and GSH, as well as changing the GSH/GSSG
ratio, and decreasing the abundances of Butyrivibrio, all of
which are related to the quality of the mutton (Cao et al., 2021).

In total, these diet supplemented antioxidants (such as
magnolol, butyrate, essential oil etc.) could alter gut microbiota
composition and decrease oxidative stress and further improve
the meat quality of livestock and poultry (Figure 4).

Different rearing systems and
microbiota

As a result of consumer demand for high-quality products
and legal livestock and poultry welfare requirements, rearing
systems have been the focus of scientific research for many
years (Bogosavljevic-Boskovic et al., 2012). The choice of
rearing system is a highly important parameter of meat
characteristics (Meluzzi et al., 2009), with organic production
giving better quality meat. Outdoor access also appears to
improve meat characteristics (Ponte et al., 2008). Studies
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FIGURE 4

Antioxidants affect the composition of the gut microbiota and meat quality.

across multiple experimental and commercial systems have
shown greater fear and anxiety in the indoor-raised animals
(Campbell et al., 2020). Rearing systems alter gut microbiota
composition, and can hence influence the immune system
(Thoene-Reineke et al., 2014) and meat quality. For example,
comparisons of intestinal permeability, morphology, and
ileal microbial communities of commercial hens housed in
conventional cages and cage-free housing systems are different
(Wiersema et al., 2021).

Previous studies have compared housing system effects on
microbiota (Yan et al., 2021), such as birds housed in indoor
versus outdoor systems (Seidlerova et al., 2020; Schreuder et al.,
2021). Free-range hens had richer Actinobacteria, Bacteroidetes,
and Proteobacteria (Cui et al., 2017) species diversity. The
rearing system causes changes of behavior, microbiome, and
gene expression in chickens (Chen et al., 2019). Cage-
free environments generated higher gut microbiota diversity
(Hubert et al., 2019).

Indoor enrichment (more space, straw bedding) generally
improved pig meat juiciness and flavor through higher IMF
concentration (Lebret, 2008). Berkshire pigs, known for their
high-quality meat and adaptation to semi-grazing conditions
(Jang et al., 2018), were shown to have increased fat area in
muscle and adipose tissue and the myofiber density significantly
in the pigs of the free grazing farm group. The relative
abundance of bacteria associated with lipid metabolism (such
as Oscillibacter) and probiotic function (Lactobacillus and
Clostridium) was also higher (Qi et al., 2019). The Tibetan pig
(Sus scrofa), which also has been known for its meat quality,
showed a higher abundance of Bacteroides and Fibrobacterota
under semi-grazing conditions (Niu et al., 2022).

In ruminants, compared to feedlot-fed beef, grazed beef had
lower fatty acid content and higher vitamin content (Prache
et al., 2020). Rumen Bacteriodetes, involved in carbohydrate
and lipid metabolism and lipoic acid metabolism, further broke

down fatty acids (Hart et al., 2018). In both dairy and beef
cows, grazing was found to affect metabolic properties of gut
microbiota (including Firmicutes, Bacteroidetes, Proteobacteria,
TM7, and Actinobacteria) (Kim and Wells, 2016), thus also
affecting their skeletal muscle characteristics and compounds
of meat (Mwangi et al., 2019). The significant differences in
gut microbe composition between grazing and feedlot Angus
beef might have an impact on the meat quality of the meat
(Zhang et al., 2021). Nellore cattle fed with concentrated diets
at adaptation day had a higher content of SCFAs and relative
higher abundance of Succinivibrio (Pinto et al., 2020). In the
muscles of sheep, artificial pasture grazing feeding increased
the level of PUFAs in meat, especially the concentrations of
n3 PUFA, and reduced n6/n3 (Wang B. et al., 2021). Also
in in these artificial pasture grazing sheep, the abundance of
ruminal Moryella was decreased, Schwartzia and Anaeroplasma
were increased, both of which were strongly correlated with
the n3 PUFA in the muscle of lambs. Among the SCFAs,
the propionic acid content was higher in the novelty group,
where pullets were presented with novel objects such as
balls, bottles, bricks, brooms, brushes, buckets and changed
at weekly intervals than the control group chickens, which
had rice hulls as floor litter only. The indoor and outdoor
hens could be differentiated by their gut microbiota profiles
(Bari et al., 2021).

Overall, the physical environment (such as indoor/outdoor
access, individuals per pen, etc.) is a major criteria that
drives the phenotypic development and ultimately impacts
animal wellbeing (Zeineldin et al., 2019). Artificial pasture
grazing livestock and free-range chickens could alter the
gut microbiome composition, increasing abundances of
good bacteria genera such as Lactobacillus, Actinobacteria,
Bacteroidetes, Proteobacteria, and Clostridium genus, and
hence improve the immune system activity and meat quality of
livestock and poultry.
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FIGURE 5

Gut microbiota and meat quality.

Zoonotic diseases related
microorganisms

When we discuss microbes and meat quality, there is one
category we cannot ignore, which has a more important role
and far-reaching impact, and that is zoonotic pathogens. It may
be bacterial, viral or parasitic, or may involve unconventional
agents and can spread to humans through direct contact or
through food, water or the environment, resulting in infectious
disease that is transmitted between species from animals to
humans (or from humans to animals) (Rahman et al., 2020).
The “Asia Pacific strategy for emerging diseases: 2010” report
estimated that around 60% of the emerging human infections
are zoonotic in nature and among these pathogens more than
70% originated from wildlife species (Jones et al., 2008; Li
and Kasai, 2011). Domestic animals also play a significant
role in the transmission of various diseases to humans and in
many cases, they work as amplifiers of pathogens emerging
from wild animals (Morand et al., 2014). Cattle, sheep, goats,
dogs, cats, horses, pigs, and other domestic animals act as
reservoirs of pathogens of domestic zoonoses and can transmit
the diseases to humans (Chowdhury et al., 2021). Pathogens can
be transmitted through direct contact or animal-origin foods.
Of these zoonotic diseases transmitted by domestic animals,
anthrax caused by Bacillus anthracis poses significant public
health importance. B. anthracis is soil-borne bacteria with the
capability to produce spores; thus, allowing them to survive
in the environment for a very long time. Anthrax which can
be transmitted to humans through close contact with infected

animals (such as cattle and goats) or their products (such as
meat, milk, skin, hides, or even bones) (Goel, 2015). Among
the bovine zoonoses having serious public health significance,
tuberculosis is the most important zoonotic disease. The
disease has been a significant cause of severe economic loss
in animal production (including meat and milk production).
It is caused by Mycobacterium bovis, M. tuberculosis, or rarely
M. caprae (Torgerson and Torgerson, 2010; Bayraktar et al.,
2011). Brucellosis is one of the most common bacterial zoonotic
diseases causing over 500,000 human cases throughout the
world every year (Hull and Schumaker, 2018). Among the twelve
species of the genus Brucella, Brucella melitensis, B. abortus,
B. suis, and B. canis are zoonotic in nature. The common
transmission pattern of brucellosis to human occurs through the
consumption of unpasteurized milk or milk products, though
the human–human transmission is rare. Meat, dairy products,
and eggs are the main ways by which people are exposed to
zoonotic bacteria. S. aureus, Salmonella species, Campylobacter
species, Listeria monocytogenes, and Escherichia coli are the
major zoonotic bacterial pathogens that are the causative agents
of food-borne illness and death in the world associated with
the consumption of contaminated animal products (Abebe
et al., 2020). More than 90% of bacteria-triggered food-borne
illnesses are caused by Salmonella spp. and Campylobacter spp.
(Thorns, 2000). All domestic livestock, including poultry, can
act as a reservoir for bacteria causing food-borne illnesses
(Sobur et al., 2019; Alam et al., 2020; Ievy et al., 2020).
These bacteria may enter the food chain from production of
food animals up to the final consumption of animal products.
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Most human infectious diseases have animal origins. These
pathogens do not only cause diseases in animals, but they
also pose a serious threat to human health. Therefore, when
we pay attention to zoonotic diseases related microorganisms,
meat quality is no longer our primary consideration, its
impact on health is the most important thing. Robust active
surveillance targeting all components of the “One Health”
approach needs to be implemented to early and accurately detect
zoonoses, so that effective control measures could be taken to
protect public health.

Conclusion

The cultivation of sustainable livestock and poultry meat
production is crucial to providing safe and quality protein
sources for human nutrition worldwide (Shang et al., 2018). Gut
microbiotas play important roles in the digestion and absorption
of nutrients. The symbiotic interactions between the host and
microbe is fundamental to livestock species’ health, productivity,
and meat quality-related traits (Yeoman and White, 2014).
Here, we reviewed recent studies about the relationship between
microbiota and meat quality in livestock and poultry, which
showed that some gut microbiotas have a potential role in
influencing meat quality, indicating that diet and housing
could affect the microbial community, bacterial metabolites,
and finally change meat quality (Figure 5). Understanding the
role of the gut microbiome on meat quality and production
related traits in livestock species will be useful in developing
new tools for improving the meat production systems and
industry in the future.
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