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Microbial co-occurrence network analysis is being widely used for data 

exploration in plant microbiome research. Still, challenges lie in how well 

these microbial networks represent natural microbial communities and how 

well we can interpret and extract eco-evolutionary insights from the networks. 

Although many technical solutions have been proposed, in this perspective, 

we touch on the grave problem of kingdom-level bias in network representation 

and interpretation. We underscore the eco-evolutionary significance of using 

cross-kingdom (bacterial-fungal) co-occurrence networks to increase the 

network’s representability of natural communities. To do so, we demonstrate 

how ecosystem-level interpretation of plant microbiome evolution changes 

with and without multi-kingdom analysis. Then, to overcome oversimplified 

interpretation of the networks stemming from the stereotypical dichotomy 

between bacteria and fungi, we  recommend three avenues for ecological 

interpretation: (1) understanding dynamics and mechanisms of co-occurrence 

networks through generalized Lotka-Volterra and consumer-resource models, 

(2) finding alternative ecological explanations for individual negative and 

positive fungal-bacterial edges, and (3) connecting cross-kingdom networks 

to abiotic and biotic (host) environments.
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Introduction

Plants are closely associated with microbes from diverse kingdoms, such as 
bacteria, archaea, protists, oomycetes, and fungi. Host health and its evolutionary 
trajectory are impacted by host–microbe interactions and the interactions among 
microbes from multiple kingdoms (Durán et al., 2018; Zhang et al., 2019; Vemuri et al., 
2020; Rao et al., 2021). In the past decade, the bacterial microbiome has been a focus 
of research, but more and more studies are including the fungal microbiome due to its 
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impact on host health and its bacterial microbiome (van der 
Heijden et  al., 2016; Jiang et  al., 2017; Nash et  al., 2017; 
Paterson et  al., 2017; Laforest-Lapointe and Arrieta, 2018; 
Bergelson et al., 2019; Forbes et al., 2019; Kapitan et al., 2019; 
Galloway-Peña and Kontoyiannis, 2020). In the next decade, 
we anticipate viruses, protists, and oomycetes to be added to 
microbial surveys to gain a more holistic insight into the 
ecology and evolution of the microbial ecosystems. Here, 
we  advocate for the fungal kingdom as a proxy for other 
non-bacterial microbial kingdoms.

Although co-occurrence network analysis has many 
unresolved intrinsic and technical limitations (Faust, 2021), 
it remains to be the only explorative data analysis technique 
that allows researchers to infer microbial interactions with 
sequence data, especially when inferring inter-kingdom 
interactions. However, we lack the perspective on why we are 
using this cross-kingdom co-occurrence network analysis in 
the first place. In other words, we vaguely assume and agree 
that simply adding more kingdoms would be  worthwhile. 
Therefore, in this perspective, we demonstrate the utility of 
using cross-kingdom networks regarding their evolutionary 
implication in a rice microbiome domestication dataset. Next, 
a more important aspect we lack is the perspective on how to 
ecologically interpret the cross-kingdom networks. The 
current status of research assumes a simplified “competition 
vs. cooperation” framework between the bacterial and fungal 
kingdom, where studies hypothesize that host properties 
emerge due to either antagonistic or mutualistic relationships 
between the two kingdoms. Although it is extremely difficult 
to think beyond the negative/positive edges (correlations) 
given by the co-occurrence networks, it is paramount to 
adopt a more multi-dimensional, alternative framework 
derived from community ecology theories and models. Even 
if these theories do not provide exclusive mechanistic 
explanations of the microbial networks, they will still prevent 
us from designing follow-up experiments that may just 
increase our confirmation bias and make us experiment with 
more creative hypotheses to explain the co-occurrence 
networks. The goal of this perspective is to convey the 
importance of cross-kingdom networks and provide 
ecological frameworks to interpret these networks.

Importance of constructing 
cross-kingdom networks

By using cross-kingdom networks, researchers revealed 
that non-bacterial species can act as central hub species in a 
microbial community and that non-bacterial species can 
affect community stability and connectivity. We  briefly 
summarize the literature first. Then, to further demonstrate 
the evolutionary significance of cross-kingdom networks in a 
plant-microbiome co-evolution context, we use a published 
rice seed microbiome network dataset.

Overview of literature using 
cross-kingdom networks

Cross-kingdom network analysis contributed to the 
discovery of hub or keystone fungal species in the microbiome 
(Agler et al., 2016; Banerjee et al., 2016; Tipton et al., 2018; 
Bergelson et al., 2019; Kim et al., 2020; Lemoinne et al., 2020). 
Hub species have large network centrality values, such as 
degree centrality and betweenness centrality, whereas 
keystone species have a disproportionate destabilizing effect 
on the community upon their removal. In a co-occurrence 
network, hub or keystone species can be  inferred by 
identifying species with the highest network centrality indices 
or using in silico extinction methods (Berry and Widder, 
2014; Agler et al., 2016). In leaves of Arabidopsis thaliana, a 
fungal species, Dioszegia sp. and an oomycetes Albugo sp. 
were detected as hubs in the networks and experimentally 
validated as keystone species (Agler et al., 2016). In the wild 
rice seed microbiome, two fungal species were discovered to 
be  hub species in the cross-kingdom network (Kim et  al., 
2020). Similarly, in the human gut and skin, fungal hubs (e.g., 
Davidiellaceae family, Candida spp.) were prevalent (Tipton 
et al., 2018; Lemoinne et al., 2020). Therefore, bacteria-only 
research would have neglected these hub/keystone 
non-bacterial species.

Although little research has focused on the effect of 
fungal species on the overall connectivity or stability in the 
plant microbiome, in the human lung and skin microbiomes 
cross-kingdom networks have higher connectivity and 
network robustness than single-kingdom networks (Tipton 
et al., 2018). This suggests that fungi stabilize and facilitate 
communication in microbial ecosystems (Tipton et al., 2018). 
The difference between cross-kingdom and bacteria-only 
networks could indicate the involvement of cross-kingdom 
interactions in governing microbial community structure. 
This could lead to the discovery of topological patterns that 
reflect ecological shifts or co-evolution (Cosetta and Wolfe, 
2019; Kim et  al., 2020). Accordingly, we  use a published 
network dataset to show that cross-kingdom networks are 
vital to understand co-evolution in plants.

Cross-kingdom network analysis 
with wild and domesticated rice 
microbiome data

To demonstrate that important aspects of host evolution can 
be missed when using bacteria-only networks compared to using 
bacterial-fungal co-occurrence networks, we use a published 
amplicon sequencing dataset (Kim et al., 2020) of bacterial and 
fungal endophytic communities in the seeds of 43 rice accessions 
(17 wild and 26 domesticated accessions). Sixteen accessions of 
the wild rice were obtained from the International Rice Research 
Institute (IRRI), Philippines. Grains of 27 rice accessions (one 
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wild and 26 domesticated accessions) were obtained from the 
National Agrodiversity Center at the National Institute of 
Agricultural Sciences, Korea. The variation and hierarchical 
analysis of the seed microbiome data corroborated that seed 
sampling location had no significant or little effect on the 
microbial composition compared to the domestication status of 
the sample (Kim et al., 2020), and thus our discussions will focus 
on the domestication effect. To help facilitate our discussion, we 
have explained the terminology related to networks and ecology 
in the Appendix.

The microbial co-occurrence network of rice seeds showed 
that rice domestication alters the rice seed microbiome structure. 
Including fungi changed the rice seed microbiome network 
structure in terms of node centrality, network robustness (an 
aspect of stability), connectance, transitivity, modularity, and 
nestedness. For the analysis, four co-occurrence networks were 
created for comparison: a bacterial-fungal network of wild rice, a 
bacteria-only network of wild rice, a bacterial-fungal network of 
domesticated rice, and a bacteria-only network of domesticated 
rice (Figure 1). Network visualizations indicated a stark contrast 
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FIGURE 1

Cross-kingdom networks and bacteria-only networks in wild and domesticated rice seed microbiomes. (A,B) Bacteria-only co-occurrence 
network of wild and domesticated rice seed microbiomes. (C,D) Cross-kingdom (bacterial-fungal) co-occurrence network of wild and 
domesticated rice-seed microbiomes. Orange nodes are bacterial nodes. Purple nodes are fungal nodes. The size of the node is proportionate to 
betweenness centrality. Blue edges are co-occurrence network edges with positive correlation coefficients. Red edges are co-occurrence 
network edges with negative correlation coefficients. (E) Change of betweenness centrality of the same bacterial nodes in the bacteria-only 
network (x-axis) and bacterial-fungal network (y-axis). (F) Change in eigenvector centrality of the same bacterial nodes from a bacteria-only 
network (x-axis) to a bacterial-fungal network (y-axis). The dashed line is y = x. Solid lines (red and blue) are regression curves using locally 
weighted smoothing (loess) to wild and domesticated nodes, respectively. The grey area next to the regression curves indicates a 95% CI.
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between bacteria-only and bacterial-fungal networks of wild and 
domesticated rice microbiomes (Figures 1A–D). For example, the 
cross-kingdom network of wild rice (Figure  1C) has a 4-fold 
greater number of nodes (361 vs. 87 nodes) and 8-fold more 
edges (673 vs. 80 edges) compared to the bacteria-only wild rice 
network (Figure 1A). In this section, we connect these contrasting 
network features with host evolution and ecological interactions 
of bacteria and fungi to demonstrate the importance of cross-
kingdom networks.

Cross-kingdom networks reveal the 
evolution of the fungal-bacterial 
relationship during crop domestication

The addition of fungi alters bacterial node centrality in 
wild and domesticated rice. The addition of fungi boosted 
bacterial node centrality for most nodes of the wild rice 
network (Figure 1E). In contrast, in the domesticated rice 
network, fungi decreased the betweenness centrality of 
bacteria (Figure 1E). This suggests that domestication selects 
bacterial species less connected to fungi. Furthermore, an 
increase in the betweenness centrality of bacteria in the wild 
rice network suggests that fungal nodes in wild rice act more 
strongly as modular connectors that create links between 
bacterial nodes compared to the domesticated rice network. 
Another important caveat is that fungi shift influential 
bacterial species in terms of eigenvector centrality in the wild 
rice network. By contrast, in the domesticated rice networks, 
the importance of bacterial nodes is unaffected by fungi 
(Figure  1F). Therefore, cross-kingdom co-occurrence 
networks reveal that the fungal-bacterial relationship evolved 
distinctly in wild and domesticated plants.

Cross-kingdom networks unveil fungal 
impact on microbiome network stability, 
transitivity, and modularity

Robustness, a measure of network stability, was analyzed in 
silico via extinction experiments. Nodes were deleted from the 
network in a given order: degree (highest to lowest), betweenness 
centrality (highest to lowest), eigenvector centrality (highest to 
lowest), and random deletion (Figure  2A). We  considered 
secondary extinctions as node removal due to the loss of all 
connected edges. The size of the largest component was recorded 
after every extinction event. For robustness curves, the fraction 
of nodes extinct and the fraction of the largest component size 
(largest component size after attack/largest component size 
before any extinction) were plotted on the x and y-axes, 
respectively.

Connectance, transitivity, modularity, and nestedness 
metrics were calculated in R or with the Vegan R package. To 
derive nestedness, only edges connecting bacterial and fungal 

species were used to create a bipartite network. Z-score 
normalization of summary statistics was carried out using the 
mean and SD of random configuration models (with the 
curveball method). Because the connectance of the random 
model had a standard deviation of 0, the Z-score 
normalization was done by dividing by the mean of the 
random model.

Network robustness was examined to determine the effect 
of fungi on the stability of the microbial network. Robustness 
is a good measure of network stability when time-series data 
are not available to consider dynamics explicitly. Robustness 
curves revealed different effects in the attack order (Figure 2A). 
If the attack order reflects the node’s importance in network 
stability, deleting nodes in that order will quickly destabilize 
the network and decrease the size of the largest component. 
That will make the robustness curves more convex and closer 
to the plot’s periphery, and thus decrease the area under the 
robustness curves (AUC). Because random extinctions do not 
reflect the order of node importance, the robustness curve will 
be  less convex and closer to the diagonal of the plot. 
We  observed that an eigenvector centrality-based attack 
yielded similar curves to random extinctions. This suggests 
those degree and betweenness centrality are more reliable 
measures of node importance in terms of maximum damage 
from disconnecting the integrity of the system and breaking it 
into small components. The lower AUC of degree and 
betweenness centrality attack orders in the bacterial-fungal 
networks showed that consideration of fungi decreased the 
network robustness of wild and domesticated rice microbial 
networks (Figure  2B). These results may hold the key to 
explaining the mechanism by which fungi reduce diversity and 
abundance in domesticated rice. We hypothesize that because 
fungi reduce network stability, selection pressure during 
domestication may have destroyed bacterial-fungal modules or 
interactions in the perturbation-susceptible wild rice 
microbial community.

Moreover, the role of fungi can be  evaluated using 
network summary statistics. For wild and domesticated rice 
networks, fungi increased the Z-score normalized transitivity 
(clustering coefficient) and modularity (Figure  2C). This 
means that fungi increased the probability of the network 
having adjacent interconnecting nodes and enhanced the 
modular structure of the microbial community. The 
nestedness of the wild rice network was significant compared 
to randomized networks (NODF = 2.0125, p = 0.019), but that 
of the domesticated rice network was not (p = 0.988; 
Figures 2D,E). Network nestedness measures the tendency for 
nodes to interact with subsets of the interaction partners of 
better-connected nodes. Therefore, nestedness found only in 
wild rice indicates that the wild rice microbiome preserves a 
structured gradient of fungal-bacterial interactions, whereas 
the domesticated microbiome has randomized non-structured 
cross-kingdom interactions, possibly disrupted during 
host domestication.

https://doi.org/10.3389/fmicb.2022.953300
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lee et al. 10.3389/fmicb.2022.953300

Frontiers in Microbiology 05 frontiersin.org

The use of only bacterial sequence data would have 
generated a completely different picture of microbe-plant 
co-evolution. Fungi considerably impacted bacterial centrality 
by acting as modular connectors and generalist interactors and 
shifted the order of bacterial influence as measured by 
eigenvector centrality. Fungi also increased the sensitivity to 
extinction events in the networks. More importantly, the effect 
of crop domestication on the microbial community was more 
evident using bacterial-fungal networks compared to 
bacterial networks.

Ecological interpretations of 
cross-kingdom networks

The potential of cross-kingdom networks does not end with 
network centrality or stability analysis. In combination with 
community ecology models and theories, cross-kingdom 
networks can generate testable hypotheses. Community ecology 
aims to understand the temporal and spatial dynamics of 
communities, interactions of the members, and the emergent 
properties of communities (Christian et al., 2015). Here, we use 

A
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FIGURE 2

Robustness analysis and connectance, transitivity, modularity, and nestedness of cross-kingdom and bacteria-only networks in wild and 
domesticated rice seed microbiomes. (A) Robustness analysis by in silico extinction experiments. Nodes were deleted from the network in order of 
degree, betweenness centrality, and eigenvector centrality, and randomly. The size of the largest component (y-axis) was recorded after every 
extinction event until all vertices were removed. For robustness curves, the fraction of nodes extinct and the fraction of the largest component 
size (largest component size after the attack ÷ largest component size before any extinction) were plotted on the x- and y-axes, respectively. 
(B) Area under the robustness curves for each attack order and network. (C) Z-score normalized connectance, transitivity, and modularity. Z-score 
normalization of summary statistics was carried out using the mean and SD of random configuration models (with the curveball method). Because 
the connectance of the random model had a standard deviation of 0, Z-score normalization was done by dividing by the mean of the random 
model. (D,E) Visualization of nestedness in wild and domesticated cross-kingdom co-occurrence networks. Rows are bacterial species and 
columns are fungal species. A red pixel denotes a link between bacterial and fungal species. Only edges connecting bacterial and fungal species 
were used to create the bipartite network.
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community ecology frameworks to suggest how cross-kingdom 
networks can be  ecologically explained and experimentally 
validated (Figure 3).

Understanding dynamics and mechanism 
of co-occurrence networks through 
generalized Lotka-Volterra and 
consumer-resource models

A co-occurrence network is a cross-sectional summary of 
pair-wise microbial interactions based on correlations. Therefore, 
to further understand ecosystem dynamics and its causal 
mechanism, the network can be complemented with community 
population models (e.g., Lotka-Volterra, consumer-resource 
models). Microbial community population dynamics can 
be modeled using the generalized Lotka-Volterra (gLV) model in 
the form:

 

( ) ( )( ) ( )( )= +
dx t

D x t r Ax t
dt

where x(t) is a species abundance vector of length n containing the 
abundances of all species at time t, r is a vector of intrinsic growth 
rates in monoculture, and A is an n-by-n matrix of species-to-
species interaction coefficients, thereby called community matrix. 
For example, Aij > 0 denotes that species i increases the abundance 
of species j, and Aji > 0 denotes species j increases species i’s 
abundance. D(x(t)) is a diagonal matrix with species abundance 
vector x on the diagonal. By constructing a gLV model, we can 
phenomenologically summarize the underlying ecology: biological 
growth (r) and species interaction type and strength (A). To infer 
these gLV parameters, regularized regression can be done with 
time-series sequence data with well-developed methods such as 
LIMIT (Fisher and Mehta, 2014) and MDSINE (Bucci et al., 2016).

If we  can fit gLV model parameters with time-series 
microbiome sequencing, we  will be  able to simulate and 
construct co-occurrence networks from the gLV model (Berry 
and Widder, 2014; Hirano and Takemoto, 2019). This will enable 
us to explain the ecology behind the observed co-occurrence 
network. Berry and Widder (2014) devised a method to simulate 
networks from gLVs by numerically integrating a gLV ordinary 
differential equation that includes a random subset of species 
until their abundance reaches a steady state. With many of these 
recorded relative abundances of steady-state profiles, one can 
compute the pair-wise correlation of species abundance, which 
then is visualized in a co-occurrence network. We will be able to 
quantify how much our model can explain the observed network 
by comparing the simulated co-occurrence network to the 
observed co-occurrence network. With the community matrix 
A of the gLV at hand, we  can hypothesize how species 
interactions resulted in the observed phenomenon (Stein 
et al., 2013).

To experimentally infer the gLV model, it is imperative to 
have time-series sequence data. This has been successfully carried 
out with densely sampled (e.g., 1 day interval) human stool time-
series data (Stein et al., 2013; Faust et al., 2018). To our knowledge, 
gLV modeling has not been done using both bacterial and fungal 
time-series data. Because of the lowering cost of sequencing, it is 
becoming ever more feasible to use time-series data to 
ecologically explain the observed cross-kingdom interactions. 
The number and interval of time-series sampling and sequencing 
would depend on how fast the community reaches the stable 
state, the interval of cyclic fluctuations of abundance, if any, and 
the frequency of external perturbations. The sampling scheme 
should sufficiently capture the temporal changes in abundance in 
order to fit the model.

While the gLV model is phenomenological in explaining 
species interaction, the consumer-resource model can explain 
explicitly how resource densities influence consumer population 
growth rates and how in turn competing consumers affect their 
resources (Tilman, 1982; Mittelbach and McGill, 2019). A 
resource is defined as either an abiotic (e.g., minerals, nutrients, 
and light) or biotic (e.g., prey) factor that positively contributes 
to the growth rate of the species population and is made 
unavailable to other species when consumed (Mittelbach and 
McGill, 2019). Most bacterial-fungal interaction studies focus on 
interference competition involving microbial compounds, such 
as antimicrobial peptides (e.g., copsin), biosurfactants (e.g., 
surfactin and nunamycin), phenol, and quinone derivatives (e.g., 
penicillin), phenazines, and volatile organic compounds (Li et al., 
2020). This means that there is a huge opportunity and gap in 
knowledge in resource competition between bacteria and fungi. 
Growth experiments have been done with bacterial and fungal 
species to test if there is niche overlap in carbon sources (Rousk 
and Frey, 2015). Some studies also showed that nutrients can 
promote antagonistic relationships between bacteria and fungi 
(Bosmans et al., 2016; Zheng et al., 2018). However, no study has 
used the consumer-resource model to quantitatively show how 
fungal and bacterial communities interact through resource 
competition. This framework is powerful, like the gLV model, 
because it enables the prediction of community dynamics and 
steady-state community structure, and thus it can mechanistically 
explain the observed co-occurrence networks through 
resource competition.

To experimentally fit the consumer-resource model, time-
series sequence (species abundance) data plus resource 
concentration (metabolite flux) data need to be collected. Recently, 
metabolite and species abundance dynamics were successfully 
predicted using a consumer-resource model in bacterial 
communities (Gowda et  al., 2022). With a small size cross-
kingdom community and a focused pool of metabolites, it will 
be  possible to learn the resource-mediated cross-kingdom 
interactions and its ramification on the co-occurrence network. 
Together, the gLV and consumer-resource models can provide 
mechanistic insights and promote the investigation of complex 
cross-kingdom relationships in networks.
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Interpreting negative and positive 
fungal-bacterial interactions in 
cross-kingdom networks

In co-occurrence networks, an edge or a link means that two 
species’ abundance correlation is significantly negative or positive. 
Multiple studies have evaluated whether bacterial-fungal 
interactions are negative or positive in cross-kingdom networks. 

The results are mixed. For example, bacterial-fungal interactions 
were found to be  mostly antagonistic in the leaf and root of 
A. thaliana (Agler et al., 2016; Durán et al., 2018). Other network 
studies found that fungal-bacterial edges were dominated by 
positive links (Bergelson et al., 2019; Kim et al., 2020). In the 
human skin and lung microbiome, fungal-bacterial edges 
contributed to an increase in the ratio of negative edges when 
compared to single-domain networks (Tipton et al., 2018). These 

FIGURE 3

Ecological interpretations of cross-kingdom co-occurrence networks. (Top) Cartoon illustrating ways to interpret individual negative and positive 
fungal-bacterial edges. Negative interactions include competition and predator–prey relationships, whereas positive interactions are cooperative, 
such as coexistence, facilitation, and mutualism. All positive and negative correlations are not cooperation and competition, respectively. (Middle) 
Dynamical modeling of co-occurrence networks using generalized Lotka-Volterra (gLV) and consumer-resource models. The cartoon depicts 
species dynamics related to the gLV and consumer-resource model, respectively (only for illustration purposes). These models can be used to 
supplement the network to elucidate the mechanism of the interactions. (Bottom) Effects of abiotic and biotic factors on cross-kingdom 
networks. To investigate cross-kingdom interactions in natural microbial communities, it is important to treat microbial interactions as variables 
dependent on the magnitude of stress, space, time (abiotic factors), and host (biotic factor). (Left) Stress gradient hypothesis—the relative 
importance of competitive vs. facilitative interactions varies along the environmental harshness gradient. Another consideration is the host effect 
(biotic factor). (Right) The host immune system mediates the interaction between the bacterial and fungal communities. The biotic factors 
influencing the microbial community can be affected by host plant pathogen susceptibility or resistance.
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mixed results indicate that fungal-bacterial interactions are 
context-dependent and thus cannot be  simply generalized to 
be  either positive or negative. Therefore, an ecological 
understanding of these positive/negative interactions is needed to 
understand the nature of inter-kingdom interaction and 
understand how it affects the community-level structure.

When discussing negative or positive edges in cross-kingdom 
networks, it is tempting to consider the two microbial kingdoms 
as simply competitive or cooperative (Agler et al., 2016; Durán 
et  al., 2018). Because this is using correlation as a proxy for 
causality, one should be  careful in presuming that a negative 
association indicates a competitive relationship or a positive 
association a cooperative relationship between bacteria and fungi. 
Here, with the help of community ecology, we  describe the 
possible alternative interpretations of negative and positive 
correlations of individual fungi and bacteria and avenues to test 
these hypotheses.

Predator-prey interactions are 
underestimated in cross-kingdom 
networks

A negative correlation does not always imply competition; 
predation, often overlooked, is another possibility. Predator–prey 
interactions between bacterial and fungal species have been 
investigated (Pion et al., 2013; Rudnick et al., 2015; Ballhausen and 
de Boer, 2016; Swain et  al., 2017). For example, the fungus 
Morchella reportedly rears and consumes Pseudomonas putida 
(Pion et  al., 2013). Conversely, bacterial mycophagy has been 
found (Höppener-Ogawa et al., 2009; Ballhausen et al., 2015). 
Whether the predator is a generalist or a specialist determines the 
strength of the negative interactions. Generalist predators 
consume a range of prey species, whereas the feeding choice of 
specialist predators is restricted to a single species. Thus, specialist 
fungal/bacterial predation relationships have stronger negative 
correlations than generalists. Although studies have shown the 
presence of individual cases of predator–prey relationship between 
bacteria and fungi, not much empirical research has been done to 
show how these relationships impact the overall 
community structure.

Discriminating competition and predation is important 
because of their different effects on microbiome properties such 
as stability and invasiveness (Case, 1990; May, 2019). Microbial 
communities are thought to have a stable equilibrium to which the 
community returns after perturbations, stochastic events, and 
temporal changes (Beisner et al., 2003; Lozupone et al., 2012). 
Simulations indicate that competitive and mutualistic interactions 
destabilize, whereas predator–prey interactions stabilize the 
community (Allesina and Tang, 2012). For example, generalist 
predators (e.g., protists) coexist with prey species in multitrophic 
systems and stabilize the community by resource partitioning 
between predators and ensuring the availability of resources for 
prey (e.g., bacteria; Johnke et al., 2017).

Despite its importance, the predator–prey relationship has been 
scarcely studied in cross-kingdom co-occurrence networks due to 
a need for additional validation. With only the co-occurrence 
network, it is hard to discern predation from competition, because 
constructed co-occurrence networks are mostly undirected, having 
no direction in their edges. To circumvent this limitation, one 
computational strategy is to use time-series abundance data as 
described in the previous section to compute the community 
matrix A in the gLV model. When Aij < 0 and Aji > 0, we can say that 
species i preys on species j. Conversely, if Aij < 0 and Aji < 0, we can 
assume that species i and j are in a competitive relationship. 
However, a simulation study reported that interaction patterns in 
predator–prey communities were relatively harder to predict 
compared to those in competitive communities (Hirano and 
Takemoto, 2019). Therefore, we can supplement sequencing-based 
methods with experimental methods such as microfluidics, 
microscopy, and stable isotope probing (Mandolini et al., 2021). 
Microfluidics will help emulate the natural plant microbiome 
environment but simplify it so that we can observe predator–prey 
behavior, and thus it will enable relatively high-throughput 
screening of predation. In a recreated environment or natural 
environment, we can use microscopy accompanied by taxa-specific 
staining (FISH) to track the physical interactions of bacterial and 
fungal strains. Because microscopic methods might not 
be sufficient to verify one species consuming another, 13C-labeled 
bacteria or fungi can be deployed to detect whether the predator 
consumed the isotope-labeled species in microcosm experiments.

Positive edges may not be cooperation 
but alleviated competition: Co-existence

Positive associations between bacteria and fungi are commonly 
regarded as cooperative interactions such as mutualism and 
facilitation. Facilitation is defined as an interaction in which the 
presence of one species alters the environment in a way that 
enhances the growth, survival, or reproduction of a second, 
neighboring species (Bronstein, 2009). These facilitation 
mechanisms are abundant in bacterial-fungal interactions (BFIs). 
Fungi serve as foundation species in the microbiome by providing 
structural networks for bacterial transport (i.e., the fungal highway; 
Kohlmeier et  al., 2005). Fungal mycelia facilitate bacterial 
movement to nutrient reservoirs previously unreachable (Worrich 
et al., 2016) or provide access to fungal metabolites (Stopnisek 
et al., 2016). Bacteria can also benefit fungal communities; bacterial 
antibiotic treatments significantly impaired fungal growth and 
secondary metabolite production (Vahdatzadeh et  al., 2015; 
Mondo et al., 2017; Schulz-Bohm et al., 2017; Uehling et al., 2017).

Mutualism, arguably a subset of facilitation, is a reciprocally 
positive interaction between species (Mittelbach and McGill, 2019). 
The mutualism of bacteria and fungi can be  too specific to 
be detected in co-occurrence networks but is pervasive (Lastovetsky 
et al., 2016; Salvioli et al., 2016; Vannini et al., 2016; Li et al., 2017; 
Jung et al., 2018). The endosymbiont bacterium Paraburkholderia 
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rhizoxinica, which inhabits fungal cytoplasm, provides its host 
Rhizopus microsporus with a toxin that confers pathogenicity on 
rice (Partida-Martinez and Hertweck, 2005). Without the vertically 
transferred endobacteria, the fungus stops asexual sporulation and 
significantly decreases mating (Mondo et al., 2017). The seed-borne 
plant pathogenic bacterium Burkholderia glumae and the plant 
pathogenic fungus Fusarium graminearum interact to promote 
bacterial survival, bacterial and fungal dispersal, and disease 
severity in rice plants, despite the production of antifungal 
toxoflavin by the bacteria (Jung et al., 2018).

Positive edges between fungi and bacteria may lead to the 
notion that bacterial-fungal interactions are cooperative. 
Facilitation, mutualism, and symbiosis are indeed contributors to 
positive correlations, but that does not rule out the competition. 
Bacteria and fungi can show positive correlations while competing 
under conditions of spatial, temporal heterogeneity, and constant 
dispersal (Mittelbach and McGill, 2019).

To achieve stable coexistence and positive correlations, niche 
separation in space or time may be required. Fungal mycelial 
structures provide unique niches for bacterial colonization: i.e., 
the mycosphere (Frey-Klett et al., 2011). In soil or plant roots, 
bacteria colonize the mycospheres of diverse basidiomycetous 
fungi (Warmink et al., 2009). Fungal mycelia add spatial variation 
to the microbiome, thus promoting species coexistence. Temporal 
heterogeneity, which may be caused by fluctuations of nutrient 
type and level in the human gut or plant rhizosphere, also enables 
species coexistence, as in nectar yeasts (Letten et al., 2018). The 
other coexistence scenario is dispersal. The constant supply of 
species by dispersal could exceed the rate of competitive 
exclusion. This source-sink coexistence is particularly plausible 
because of the specialized dispersal structures of fungi (i.e., 
spores) and bacterial aerosols. For example, fungal endophytes 
colonizing plants are transmitted horizontally among hosts and 
vertically via seed infections (Rodriguez et al., 2009). The ease of 
microbial dispersal facilitates stable coexistence.

To validate the mechanism behind the positive relationship 
between bacterial and fungal species in networks, pair-wise 
interaction can be examined again with the help of microcosm 
experiments, microfluidics, microscopy, and stable isotope 
probing (Mandolini et al., 2021). With the microfluidic spatial 
design, fungal hyphae were observed to facilitate bacterial 
dispersal (Mafla-Endara et  al., 2021). If the mechanism is 
resource mediated, microcosm experiments with known 
resources and communities can help quantitatively understand 
co-existence using the consumer-resource model. To study the 
effect of spatial and temporal heterogeneity on bacterial-fungal 
co-existence, one can examine co-existence profiles and networks 
under varying degrees of spatial/temporal heterogeneity (Gravuer 
et al., 2020; Shi et al., 2021), and then compare the result to the 
bacteria-fungi co-culture without spatial/temporal heterogeneity. 
If the bacteria and fungi cannot co-exist in a homogeneous 
environment but can co-exist in heterogeneous conditions, this 
will indicate coexistence through niche separation of time 
or space.

Positive edges require stable 
cooperation: Black queen hypothesis

To explain the evolution of cooperation by Darwinian natural 
selection, unless the problem of cheaters is unresolved, the Black 
Queen hypothesis maintains that microbes shed necessary 
functions based on self-interest and depend on other organisms 
for those functions (Morris et  al., 2012). Bacterial and fungal 
functions are often leaky, meaning that they produce resources 
that benefit others, such as the detoxifying activity of catalase-
peroxidase and iron chelators to solubilize iron. Natural selection 
disfavors communities with large cheater populations because 
community-level efficiency is decreased when secretion genotypes 
are concentrated in a few microbes. For natural selection to favor 
cooperating secretors, there must be a moderate level of genotype 
mixing of beneficial traits (Oliveira et al., 2014). Many secretion 
systems are related to the horizontal gene transfer in bacteria 
(Nogueira et al., 2009; Rankin et al., 2011). Also, inter-kingdom 
horizontal gene transfer occurs frequently in the mycosphere 
(Bruto et al., 2014; Nazir et al., 2017; Li et al., 2018). Furthermore, 
the positive effects of mutualism must be  limited to avoid 
destabilizing the microbial community because mutualism could 
create a continuous positive feedback loop (Allesina and Tang, 
2012). Cooperative interactions could be stabilized by negative 
density dependence or mutualistic effects that decrease with age 
or growth stage (Mittelbach and McGill, 2019). Therefore, positive 
correlations in cross-kingdom inference networks could 
be explained by the creation of stable cooperation, when there are 
beneficial leaky traits, horizontal gene transfer of those traits, and 
moderation of positive feedback loops. To experimentally validate 
these hypotheses, we can utilize stable isotope probing for tracking 
leaky compounds and use a genomics approach to detect 
horizontal gene transfer by constructing phylogenetic trees with 
horizontal gene transfer candidate genes (Jaramillo et al., 2015).

Future directions: Incorporating 
abiotic and biotic environmental 
factors into cross-kingdom 
networks

We have discussed how to interpret and validate cross-kingdom 
networks at the community and individual species-to-species level. 
Ultimately, it is imperative to contextualize these network 
interpretations within different environmental factors, because 
cross-kingdom microbial interactions are sensitive to (a) resource 
availability, (b) environmental stress, and (c) the host (Chen et al., 
2019; Ritter et al., 2021). Regarding resource and environmental 
stress, the gradient of environmental harshness can influence the 
relative importance of negative and positive interactions among 
species (i.e., the stress gradient hypothesis; Mittelbach and McGill, 
2019). In benign environments, competitive interactions may 
dominate, whereas, in stressful environments, facilitative 
interactions may become more important. For example, increased 
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organic input was correlated with a greater rate of negative 
interactions between bacteria and fungi (Zheng et  al., 2018). 
Investigating the effects on cross-kingdom ecosystems of resource, 
environmental stress, space, and time is essential to understanding 
the responses to environmental factors of complex systems.

Additionally, the host must be incorporated into cross-kingdom 
microbiome research. The change in host phenotype can 
systematically alter the cross-kingdom microbial network, indirectly 
mediating fungal-bacterial interactions. For example, plant immune 
response can alter rhizosphere community structure (Dudenhöffer 
et al., 2016; Berendsen et al., 2018) where the bacteria or fungi 
induce systemic acquired resistance in plants, in turn causing 
changes in the fungal/bacterial community (Carrión et al., 2019; 
Seybold et  al., 2020). In a study, a plant bacterial endophyte 
consortium induced local or systemic resistance to fungal pathogens 
in the roots (Carrión et al., 2019). By contrast, the fungal pathogen 
Zymoseptoria tritici indirectly altered bacterial species abundance 
by suppressing immune-related plant metabolism, making wheat 
vulnerable to further infection (Seybold et al., 2020). Therefore, the 
host effect on bacterial-fungal interactions should also 
be incorporated as a cause of shifts in fungal-bacterial interactions 
in cross-kingdom co-occurrence networks.

Conclusion

In systems where microbes from diverse kingdoms affect the 
host, investigation of only bacteria might miss important aspects 
of the microbiome. The low cost of sequencing and the availability 
of computational tools enable the construction of cross-kingdom 
co-occurrence networks. Therefore, researchers can include 
multiple microbial kingdoms at a marginal cost to discover the 
effect of multi-kingdom interactions on the network during 
environmental change, including host evolution. To exploit the 
full potential of the cross-kingdom co-occurrence network, it can 
be complemented by community ecology models and theories. 
For example, gLV and consumer-resource models complement 
cross-kingdom networks by providing a dynamic, mechanistic 
summary of cross-kingdom interactions at the community level. 
Furthermore, ecological theories make us rethink negative and 
positive edges, mostly thought of as competition or cooperation. 
For instance, negative links in networks can be  ascribed to 
predation as well as competition. Positive links can result from 
stable coexistence due to spatiotemporal heterogeneity and 
source-sink dynamics. Finally, these ecological interpretations can 

change due to abiotic/biotic environments, and thus should 
be  always accompanied by explanations of resources, stress 
gradients, and the host. Ultimately, we hope this perspective will 
promote the use of cross-kingdom co-occurrence networks by 
helping researchers interpret the ecological implications of plant 
microbiome cross-kingdom co-occurrence networks.
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Appendix

Plant microbiome: The microbiome is the microbial consortium associated with a host or a defined non-host-related environment. 
The plant microbiome is the microbial community associated with host plant health, fitness, ecology, or evolution. It could reside within 
plant tissue (endophyte), on the surface of plant tissue (epiphyte), or close to the root system (rhizosphere).

Plant domestication: In the last 12,000 years, humans have used various strategies to artificially select and breed plant species or 
varieties that suit their needs, such as larger harvest or seed/fruit size. This transition to crops from their wild counterparts is 
plant domestication.

Biotic and abiotic factors: The ecosystem can be categorized as biotic or abiotic factors. Biotic factors are living organisms and abiotic 
factors are non-living components, such as water, air, or space.

Co-occurrence network: A co-occurrence network is a graphical visualization of species correlations and consists of links and nodes. 
The raw data table lists abundance values with the rows being samples and columns being species. After calculating the correlation of 
species abundance across samples, cutoff correlation coefficients and p-values for generating links are determined. In microbial community 
co-occurrence networks, the nodes are taxa, and the links indicate (significant) correlations of the abundances of two taxa. Links can have 
positive or negative correlation coefficients. Here, links typically do not have a direction, resulting in an undirected network.

Cross-kingdom network: A cross-kingdom network is a cross-kingdom co-occurrence network. The cross-kingdom co-occurrence 
network is a co-occurrence network using abundance data on multiple microbial kingdoms.

Edges, Vertices: Edges are the links of a network and vertices are its nodes.
Network centrality: Network centrality is a measure of node importance considering the network structure. Network centrality 

includes degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality.
Hub species: Hub species are represented by nodes in the network with the largest network centrality values such as degree centrality, 

betweenness centrality, and eigenvector centrality.
Keystone species: Keystone species are nodes with a disproportionate destabilizing effect on the community upon their removal. 

Keystone species and hub species can overlap, but not all keystone species are hubs (Agler et al., 2016).
Degree: Degree centrality is the simplest measure of network centrality. The importance of a node is measured by the number of edges 

connected thereto.
Betweenness centrality: Betweenness centrality is the proportion of cases in which a node lies on the shortest path between all pairs 

of other nodes. Thus, betweenness centrality measures node importance in terms of the extent to which a node lies on paths between 
other nodes.

Eigenvector centrality: Eigenvector centrality or eigenvector’s centrality measures node importance as a function of the importance 
of its neighboring nodes. This is because not all neighboring nodes are necessarily equivalent. For example, a node with 100 less important 
neighbors would have lower eigenvector centrality than a node with 100 more important neighbors, despite their degree centrality 
being identical.

Robustness: Network robustness measures the ability of the network to maintain functionality following sequential node removal/
attack. Here, we measured functionality as the size (the number of nodes) of the largest component.

Largest component: A component is a subset of nodes in which there is at least one path from each member of that subset to each 
other member. The largest component is the component with the largest number of nodes.

Connectance: Network connectance is the fraction of all possible links that are realized in a network (Dunne et al., 2002).
Modularity: Network modularity is the number of edges falling within groups minus the expected number in an equivalent network 

with edges placed at random. Modularity can be positive or negative, with positive values indicating the presence of community structure. 
Therefore, community structure can be  evaluated by assessing the partitions of a network with large positive modularity values 
(Newman, 2006).

Transitivity: Network transitivity is the probability of the network having adjacent interconnected nodes. Network transitivity can 
identify tightly connected communities (or clusters, subgroups, cliques).

Nestedness: Network nestedness measures the tendency for nodes to interact with subsets of the interaction partners of better-
connected nodes (Mariani et al., 2019).

Niche: An ecological niche is the range of conditions necessary for the persistence of a species, and includes resources, predators, time, 
and space.
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