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Translocation of chloroplast-located genes to mitochondria or nucleus is considered
to be a safety strategy that impedes mutation of photosynthetic genes and maintains
their household function during evolution. The organelle translocation strategy is also
developed in photosynthetic NDH-1 (oNDH-1) genes but its understanding is still far
from complete. Here, we found that the mutation rate of the conserved pNDH-1 genes
was gradually reduced but their selection pressure was maintained at a high level during
evolution from cyanobacteria to angiosperm. By contrast, oxygenic photosynthesis-
specific (OPS) pNDH-1 genes had an opposite trend, explaining the reason why they
were transferred from the reactive oxygen species (ROS)-enriched chloroplast to the
ROS-barren nucleus. Further, genome-wide sequence analysis supported the possibility
that all conserved pNDH-1 genes lost in chloroplast genomes of Chlorophyceae and
Pinaceae were transferred to the ROS-less mitochondrial genome as deduced from
their truncated pNDH-1 gene fragments. Collectively, we propose that the organelle
translocation strategy of pNDH-1 genes during evolution is necessary to maintain
the function of the pNDH-1 complex as an important antioxidant mechanism for
efficient photosynthesis.

Keywords: organelle translocation, photosynthetic NDH-1, mitochondrial NDH-1, evolutionary events, plant
evolution

INTRODUCTION

During evolution of photosynthetic organisms, the rise of O, and environmental stress inevitably
results in the production of reactive oxygen species (ROS), which can trigger the mutation of genes
under the low selection pressure (Ishikawa et al., 2008; Otten and Smeets, 2015). It is well known
that in eukaryotic photosynthetic organisms, genes are located in the genomes of chloroplast,
mitochondria, and nucleus. Considering the O, content, the ROS concentrations of chloroplast,
mitochondria, and nucleus under environmental stresses are assumed to be relatively abundant,
less, and barren, respectively (Allen and Raven, 1996; Martin and Herrmann, 1998; Adams and
Palmer, 2003; Foyer and Noctor, 2003; Laloi et al., 2004; Zhao et al., 2020). As a consequence,

Abbreviations: dy, non-synonymous substitution rate; ds, synonymous substitution rate; K., amino acid conservative
substitution; OPS, oxygenic photosynthesis-specific; pPNDH-1, photosynthetic NDH-1; rNDH-1, respiratory NDH-1; ROS,
reactive oxygen species.
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the organelle translocation is considered to be an important
safety strategy that impedes mutation of photosynthetic genes
and maintains their household function during evolution.

Complete sequencing of the chloroplast genomes of
Marchantia polymorpha and Nicotiana tabacum unexpectedly
demonstrates the presence of photosynthetic NDH-1 (pNDH-1)
(hereafter referred to as pNDH-1) genes (Ohyama et al., 1986;
Shinozaki et al., 1986). All complexes of pNDH-1 are involved
in cyclic electron transfer around photosystem I (Berndt et al.,
2011), which is an important antioxidant mechanism that
balances the ATP/NADPH ratio required for the Calvin-Benson
cycle and reduces the ROS production (Arnon, 1971; Kramer
and Evans, 2011). They consist of conserved subunits (NdhA
to NdhK) and oxygenic photosynthesis-specific (OPS) subunits
(such as NdhL to NdhQ, NdhS, and NdhV) (Laughlin et al,
2019; Schuller et al., 2019, 2020; Pan et al., 2020; Zhang et al,,
20205 Shen et al., 2022). It is found that these conserved genes
of pNDH-1 reside in chloroplast genome (Ohyama et al., 1986;
Shinozaki et al.,, 1986) but its OPS genes are translocated to
the nucleus genome (Rumeau et al., 2005; Ishikawa et al., 2008;
Shimizu et al., 2008; Suorsa et al., 2009; Yamamoto et al., 2011;
Fan et al., 2015). However, little is known regarding the reason
why these OPS pNDH-1 genes are translocated to the nucleus
genome. In addition, genome-wide sequence analysis of pPNDH-1
genes in Chlorophyceae and Pinaceae indicates that OPS pNDH-
1 genes reside also in the nucleus genome, but all conserved
pNDH-1 genes are lost entirely in the chloroplast and nucleus
genomes (Wakasugi et al., 1994; Maul et al., 2002; Nystedt et al,,
2013; Neale et al., 2014; Ranade et al., 2016; Lin et al., 2017).
However, as yet, whether all these conserved pNDH-1 genes have
been lost entirely or transferred to the mitochondrial genome
remains a mystery.

Here, we calculated and analyzed the mutation frequency and
selection pressure, explaining the reason why these OPS pNDH-1
genes were transferred from chloroplast to the nucleus. Further,
we found the presence of conserved pNDH-1 gene fragments
in mitochondrial genomes of Chlorophyceae and Pinaceae,
implying that these conserved pNDH-1 genes lost in chloroplast
genomes of Chlorophyceae and Pinaceae were transferred to
their mitochondrial genomes. Collectively, our data provide new
insights into the organelle translocation of pPNDH-1 genes during
evolution from cyanobacteria to angiosperm.

MATERIALS AND METHODS
Phylogenetic Analysis

Phylogenetic tree was constructed based on rbcL gene of
Methanogen, Cyanobacteria, Chlorophyceae, Bryophyta,
Pinaceae, Monocots, and Dicots. The gene sequences of rbcL
from different species were obtained from the National Center
for Biotechnology Information (NCBI'). The names of the
selected species and their GenBank accession numbers are listed
in Supplementary Table 1. Sequence alignments were performed
using MUSCLE (Edgar, 2004). The aligned dataset was analyzed

Uhttp://www.ncbi.nlm.nih.gov/

in Data Analysis in Molecular Biology and Evolution (DAMBE)
version 7 (Xia, 2018), and was converted into MEGA format.
Unrooted phylogenetic trees were created using MEGA version
7 (Kumar et al, 2016) and maximum likelihood method
(Felsenstein, 1981) with the bootstrap support of 1,000 replicates.
Creating the phylogenetic tree, the parameters used were:
complete deletion of gaps/missing data, distance model set to
applying the nucleotide kimura-2-parameter, homogeneous
pattern among lineages and uniform rates among sites and using
the maximum composite likelihood model. The FigTree (v1.3.1%)
was used for the unrooted phylogenetic tree visualization.

Calculation of Synonymous Substitution
Rate and Non-synonymous Substitution
Rate

The values of synonymous substitution rate (ds) and non-
synonymous substitution rate (dyn) were calculated using
DNAsp6 software (Rozas et al., 2017). We first removed the
terminators of each sequence and then used MUSCLE for
sequence alignment, and the alignments of all these genes of
pNDH-1 and rNDH-1 were converted into a codon alignment
using TranslatorX (Abascal et al., 2010). The ambiguously aligned
regions were excluded using trimAl v1.2 (Capella-Gutiérrez et al.,
2009) and the results were exported as a Fasta file. Having
opened the exported file with DNAsp6, we set the genomic
state and chromosomal location, assigned the coding regions,
and calculated the dg and dy values. The average values were
calculated using SigmaPlot 14.0.

Calculation of Amino Acid Conservative
Substitution

Calculation of amino acid conservative substitution (K.) was
carried out with the aid of a pipeline SAMEM v.0.83.> The
SAMEM package (Gunbin et al, 2011) has a major path for
the gene evolution analysis. We divided these 20 amino acids
into two groups according to their physicochemical properties,
such as volume (RQEHILKMFWYV ANDCGPST), which are
related to protein function. Amino acid substitutions within
groups are called conservative substitutions (Hanada et al., 2007).
The general step and method of calculating K. are as follows:
translation of nucleic acid sequence into amino acid sequence
by Transeq, multiple alignment of amino acid sequences by
the Mafft 6.717 algorithm (Katoh and Toh, 2008) using the
BLOSUM 62 matrix (Henikoff and Henikoff, 1992), and models
of amino acid substitutions were calculated based on multiple
alignment using the Modelestimator algorithm (Arvestad, 2006),
phylogenetic trees were calculated on the basis of the replacement
model using FastTree 2.1.1 (Price et al., 2010), ancestral gene
sequences are reconstructed based on gapless alignments of
codons using FASTML (Pupko et al., 2002), calculation of K
using Zhang’s (2000) method (the HON-NEW program). For
each of 531 properties (Kawashima et al., 2008), amino acids are
divided into classes by k-means clustering using R.

Zhttp://tree.bio.ed.ac.uk/software/figtree
3http://pixie.bionet.nsc.ru/samem/
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Sequence Analysis

Homology search was performed by comparing amino acid
sequences with sequences in local nucleotide databases
(TBLASTN). Eleven Arabidopsis thaliana pNDH-1 gene
sequences were used as templates for TBLASTN searches of
Chlorophyceae and Pinaceae mitochondrial genomes. The
TBLASTN expectation value threshold E was altered to 10 to
allow for a less stringent alignment search.

Data Availability

The data underlying this article are available within the NCBI
GenBank database,* and all GenBank accession numbers
are listed in Supplementary Table 1. The alignments
analyzed in this study are available in the article’s online
Supplementary Figures 2-4.

RESULTS

Phylogenetic Tree Marks These
Important Evolutionary Events of
Photosynthetic NDH-1

Genome-wide sequence analysis suggests that pNDH-1
originates from a group 4 membrane-bound [NiFe] hydrogenase
(Bohm et al., 19905 Peltier et al., 2016) and evolves from archaea
(gray tree branches in Figure 1) to prokaryote (blue tree branches
in Figure 1) and to eukaryotic photosynthetic organisms (green
tree branches in Figure 1). In eukaryotic photosynthetic
organisms except Chlorophyceae, Pinaceae and Orchidaceae,
conserved pNDH-1 genes reside in chloroplast genome, whereas
OPS pNDH-1 genes are transferred to the nucleus genome
(Rumeau et al., 2005; Ishikawa et al., 2008; Shimizu et al., 2008;
Suorsa et al., 2009; Yamamoto et al., 2011; Fan et al., 2015). In
addition, in eukaryotic Chlorophyceae and Pinaceae (red species
name in Figure 1), OPS pNDH-1 genes reside also in the nucleus
genome, but all conserved pNDH-1 genes are lost entirely in
their chloroplast and nucleus genomes (Wakasugi et al., 1994;
Maul et al., 2002; Lin et al, 2017). The below investigations
will try to explain the reason why these OPS pNDH-1 genes
in eukaryotic photosynthetic organisms except Chlorophyceae,
Pinaceae, and Orchidaceae were transferred from chloroplast
genome to the nucleus genome and unravel the mystery whether
conserved pNDH-1 genes of Chlorophyceae and Pinaceae have
been lost entirely or transferred to the mitochondrial genome.

An Evolutionary Trend of Conserved and
Oxygenic Photosynthesis-Specific
Photosynthetic NDH-1 Genes

During the evolution process from cyanobacteria to dicots,
we found that the mutation rate of conserved pNDH-1 genes
was gradually decreased, as deduced from the results of
ds (Figures 2A-F). This was supported by the data of K.
(Supplementary Figure 1). As a consequence, the mutation rate

“https://www.ncbi.nlm.nih.gov/genbank

of conserved pNDH-1 genes has a trend of gradual decrease
during evolution.

To fully understand the trend of conserved pNDH-1 genes
during evolution, we calculated the ratio of dy to ds. Our
data indicated that all dy/ds ratios of conserved pNDH-1 genes
were less than 1 (Figures 3A-F), indicating that the evolutional
rate of all these conserved pNDH-1 genes was relatively slow
and under the purifying selection (Endo et al., 1997; Messier
and Stewart, 1997). Further, under the purifying selection, the
magnitude of dx/ds values could reflect the selection pressure
of these conserved pNDH-1 genes (Berg and Kurland, 2000). If
the dn/ds ratio was more close to 0, the selection pressure was
higher, whereas if the ratio was more close to 1, the selection
pressure was lower. We found that the selection pressure of
conserved pNDH-1 genes was increased during evolution from
cyanobacteria to dicots, as deduced from the results of dn/ds
values (Figures 3A-F). Collectively, we propose that conserved
pNDH-1 genes have an evolutionary trend that the mutation
rate was gradually decreased but the selection pressure was
maintained at a relatively high level.

Unexpectedly, the mutation rate of OPS pNDH-1 genes
was increased and kept at a high level during evolution
from cyanobacteria to dicots, as deduced from the ds
values (Figures 2A-F). Meanwhile, the selection pressure
of OPS pNDH-1 genes was deceased during evolution from
cyanobacteria to dicots, as deduced from the data of dy/ds values
(Figures 3A-F). Taking all these results together, we can clearly
find that OPS and conserved pNDH-1 genes have a distinctly
different trend of their mutation rate and selection pressure
during evolution.

Presence of Photosynthetic NDH-1 Gene
Fragments in the Mitochondrial
Genomes of Chlorophyceae and

Pinaceae

To unravel the mystery whether these conserved pNDH-1 genes
have been lost entirely or transferred to the mitochondrial
genome, we conducted the sequence searches in the
mitochondrial genomes of Chlorophyceae and Pinaceae using
pNDH-1 sequences of Arabidopsis thaliana as templates. Our
results revealed that the fragments of conserved pNDH-1 genes
lost in the chloroplast genomes of Chlorophyceae and Pinaceae
were found to be in their mitochondrial genomes (Figure 4
and Supplementary Figures 2-4). Collectively, we propose
that these conserved pNDH-1 genes lost in the chloroplast
genomes of Chlorophyceae and Pinaceae were transferred to
their mitochondrial genomes.

A Trend of Respiratory NDH-1 Genes

During Evolution

Consistent with the conserved pNDH-1 genes, the mutation rate
of respiratory NDH-1 (rNDH-1) genes was gradually decreased
but their selection pressure was maintained at a relatively
high level during evolution from methanogen to dicots (pink
in Figures 5A,B). However, the mutation rate and selection
pressure of rNDH-1 genes in Chlorophyceae and Pinaceae
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FIGURE 2 | The trend of mutation rate of pNDH-1 genes during evolution from cyanobacteria to dicots. The mutation rate is deduced from the values of
synonymous substitution rate (dg). The Scatter plot shows the respective dg values of conserved genes and oxygenic photosynthesis-specific (OPS) genes of
pNDH-1 in methanogen (A), cyanobacteria (B), bryophyta (C), monocots (D), and dicots (E). The pink dots represent conserved genes and the green triangles
represent OPS genes. Box plot shows the average dg values of conserved genes and OPS genes of pNDH-1 in methanogen, cyanobacteria, bryophyta, monocots,
and dicots (F). The box represents the values between the quartiles and the black lines inside the box represent the median value.

did not follow the trend of rNDH-1 during evolution from
methanogen to dicots (red in Figures 5A,B). It is reasonable
to infer that the transfer of chloroplast pNDH-1 genes of
Chlorophyceae and Pinaceae to their mitochondrial genomes
results in mitochondrial DNA rearrangement, thereby increasing
the mutation rate of INDH-1 genes and relatively decreasing
their selection pressure. This supports the conclusion that
these conserved pNDH-1 genes lost in chloroplast genomes

of Chlorophyceae and Pinaceae were transferred to their
mitochondrial genomes.

DISCUSSION

During the evolution from prokaryotic cyanobacteria to
eukaryotic angiosperm, organelle translocation is considered
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to be an important safety strategy that impedes mutation of
photosynthetic genes and maintain their household function
(Baldauf and Palmer, 1990; Gantt et al., 1991; Martin et al., 1998;
Adams and Palmer, 2003; Rokka et al., 2005). Such organelle
translocation is also found to be a universal safety strategy, for
example, the mitochondrial genome contains between 1 and
10% of chloroplast sequences in different seed plants (Stern and
Lonsdale, 1982; Joyce and Gray, 1989; Wang et al., 2007, 2012).
In eukaryotic photosynthetic organisms except Chlorophyceae,
Pinaceae, and Orchidaceae, OPS pNDH-1 genes are found to

transfer from chloroplast genome to the nucleus genome during
evolution (Rumeau et al., 2005; Ishikawa et al., 2008; Shimizu
et al.,, 2008; Suorsa et al., 2009; Yamamoto et al.,, 2011; Fan
et al., 2015), although conserved pNDH-1 genes still reside in
chloroplast genome (Ohyama et al., 1986; Shinozaki et al., 1986).

The results of this study found that two distinctly different
strategies have been developed by conserved and OPS pNDH-
1 genes to impede their mutations and maintain their functions
(Figures 2, 3 and Supplementary Figure 1). Conserved pNDH-
1 genes develop a safety strategy via decreasing their mutation
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FIGURE 4 | Comparison of Chlorophyceae and Pinaceae mitochondrial
genomes with Arabidopsis thaliana chloroplast pNDH-1 genes. The arrows
indicate coding regions. The arrowheads indicate the direction of the genes.

rate and increasing their selection pressure, while OPS pNDH-
1 genes develop another safety strategy via transferring them
from the chloroplast genome to a relatively safe nucleus genome
(Figures 2, 3 and Supplementary Figure 1). It is worthy of
note that according to Mahler’s ratchet effect (Muller, 1964),
gene recombination is lacked in chloroplast because of no
sexual reproduction. When a gene is successfully transferred
from chloroplast to nuclear, in other words, from asexual to
sexual, gene recombination is restored and provides a chance
to get rid of the fate crisis of gene mutation, reinforcing the
conclusion that the nucleus is much safer than the chloroplast.

Collectively, during evolution of photosynthetic organisms,
these two distinctly different strategies jointly maintain the
function of pNDH-1 as an important antioxidant mechanism
for efficient photosynthesis through impeding mutation of its
conserved and OPS genes.

Consistent with the previously reported Orchidaceae
(Lin et al., 2015, 2017), these conserved pNDH-1 genes
lost in Chlorophyceae and Pinaceae transferred
from chloroplast genome to the mitochondrial genome as
deduced from their common gene fragments (Figure 4 and
Supplementary Figures 2-4) and the abnormal mutation rate
and selection pressure of rNDH-1 genes (Figure 5). It has
been reported that Chlorophyceae green algae frequently meet
with various environmental challenges, such as fluctuations
in nutrient, light availability, and temperature, in their
natural habitat (Varshney et al, 2015). Consistent with this
situation, the chloroplast DNA and mitochondrial DNA
of Chlorophyceae underwent substantial changes in their
architecture (such as gene losses and genome expansion in
the case of mitochondrial DNA) during evolution (Turmel
et al., 2002; Wodniok et al., 2011). Under this background, it
is reasonable to infer that these conserved pNDH-1 genes of
Chlorophyceae are lost in chloroplast and are transferred to the
mitochondrial genome.

Compared with the land plants, Bryophyta and Pteridophyte,
the trees in Pinaceae grow quite high (Graham et al., 1995),
implying that they have an efficient photosynthesis and produce
more O,. Consistent with the hypothesis, Pinaceae underwent an
O,-rise phase (Savard et al., 1994; Berner, 2006) and may produce
abundant ROS in chloroplast but less ROS in mitochondria
under environmental stresses (Foyer and Noctor, 2003; Laloi
et al., 2004; Zhao et al, 2020). As a consequence, it appears

were

plausible that pNDH-1 genes lost in Pinaceae are transferred
from O,-enriched chloroplast to the O;-less mitochondria as
oxygen-consuming organelle.

Based on the aforementioned analysis, we propose that
translocation of pNDH-1 genes from chloroplast genome to
the nucleus genome or mitochondrial genome is important

06 -

04

0.2 -

FIGURE 5 | The trends of mutation rate and selection pressure of INDH-1 genes during evolution from chlorophyceae to dicots. The mutation rate and selection
pressure are deduced from the values of dg and dn/ds, respectively. Boxplots show the average ds (A) and dn/ds (B) values of INDH-1 in methanogen,
Chlorophyceae, bryophyta, Pinaceae, monocots, and dicots. The box represents the values between the quartiles and the black lines inside the box represent the

median value.
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to maintain the architecture and household function of
pNDH-1 during evolution. As a consequence, the function
of pNDH-1 as an important antioxidant mechanism can
reduce ROS production necessary for the survival of eukaryotic
photosynthetic organisms in aerobic environment.
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