
Frontiers in Microbiology | www.frontiersin.org 1 July 2022 | Volume 13 | Article 956673

PERSPECTIVE
published: 07 July 2022

doi: 10.3389/fmicb.2022.956673

Edited by: 
Benno H. Ter Kuile,  

University of Amsterdam, 
Netherlands

Reviewed by: 
Jed F. Fisher,  

University of Notre Dame, 
United States

*Correspondence: 
Morigen  

morigenm@hotmail.com

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Antimicrobials, Resistance and 
Chemotherapy,  

a section of the journal  
Frontiers in Microbiology

Received: 30 May 2022
Accepted: 21 June 2022
Published: 07 July 2022

Citation:
Qiao J, Liang Y, Wang Y and Morigen 

(2022) Trimethylamine N-Oxide 
Reduces the Susceptibility of 

Escherichia coli to Multiple 
Antibiotics.

Front. Microbiol. 13:956673.
doi: 10.3389/fmicb.2022.956673

Trimethylamine N-Oxide Reduces the 
Susceptibility of Escherichia coli to 
Multiple Antibiotics
Jiaxin Qiao 1†, Yan Liang 2†, Yao Wang 1 and Morigen 1*

1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner 
Mongolia University, Hohhot, China, 2 College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China

Trimethylamine N-oxide (TMAO), an important intestinal flora-derived metabolite, plays a 
role in the development of cardiovascular disease and tumor immunity. Here, we determined 
the minimum inhibitory concentration (MIC) of antibiotics against Escherichia coli under 
gradient concentrations of TMAO and performed a bacterial killing analysis. Overall, TMAO 
(in the range of 10 ~ 100 mM) increased the MIC of quinolones, aminoglycosides, and 
β-lactams in a concentration-dependent manner, and increased the lethal dose of 
antibiotics against E. coli. It implies that TMAO is a potential risk for failure of anti-infective 
therapy, and presents a case for the relationship between intestinal flora-derived metabolites 
and antibiotic resistance. Further data demonstrated that the inhibition of antibiotic efficacy 
by TMAO is independent of the downstream metabolic processes of TMAO and the typical 
bacterial resistance mechanisms (mar motif and efflux pump). Interestingly, TMAO protects 
E. coli from high-protein denaturant (urea) stress and improves the viability of bacteria 
following treatment with two disinfectants (ethanol and hydrogen peroxide) that mediate 
protein denaturation by chemical action or oxidation. Since antibiotics can induce protein 
inactivation directly or indirectly, our work suggests that disruption of protein homeostasis 
may be a common pathway for different stress-mediated bacterial growth inhibition/cell 
death. In addition, we further discuss this possibility, which provides a different perspective 
to address the global public health problem of antibiotic resistance.

Keywords: trimethylamine N-oxide, antibiotics, urea stress, disinfectants, protein denaturation, cell death, 
intestinal flora metabolite, Escherichia coli

INTRODUCTION

Trimethylamine N-oxide (TMAO) is a bioactive molecule produced by gut microbial-derived 
metabolism (Ufnal et  al., 2015; Subramaniam and Fletcher, 2018; Gessner et  al., 2020). In 
humans, diets rich in TMA precursors (e.g., choline and L-carnitine) are the main source of 
TMAO (Zhang et  al., 1999; Wang et  al., 2011; Koeth et  al., 2013). The intestinal flora converts 
dietary nutrients to TMA, which is absorbed into the bloodstream through the intestinal 
mucosa and then converted to TMAO in the liver by flavin-containing monooxygenases (FMOs; 
Zeisel and Warrier, 2016; Subramaniam and Fletcher, 2018). In recent years, the relevance of 
TMAO to human diseases has been widely reported. Overall, elevated TMAO concentrations 
increase the risk of diseases such as diabetes (Tai et al., 2015), heart failure (Trøseid et al., 2015),  
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and atherosclerosis (Dalla Via et  al., 2019). TMAO has also 
been associated with mortality and hospitalization rates for 
cardiac and renal diseases such as atrial fibrillation (Tang et al., 
2014), acute myocardial infarction (Suzuki et  al., 2017), and 
chronic kidney disease (Tang et  al., 2015). In addition, TMAO 
has been reported to be strongly correlated with the development 
of inflammatory bowel disease (IBD) and Alzheimer’s disease 
(AD; Wilson et  al., 2015, 2016; Xu and Wang, 2016), and 
even with the outcome of immunotherapy in triple-negative 
breast cancer (Wang et al., 2022). However, the effect of TMAO 
on antibiotic efficacy is still unknown.

Recently, an interesting study has found that a high-fat diet 
leads to dysbiosis of intestinal flora and depletion of the 
microbial metabolite indole-3-acetic acid (IAA), leading to 
reduced antibiotic efficacy against bacterial infections (Liu et al., 
2021). The study by Oliver et  al. found that a diet high in 
fiber and low in animal protein established an association with 
antibiotic resistance by shaping the human gut microbiota, 
but the role played by the corresponding gut metabolites 
triggered by a specific diet needs further elucidation (Oliver 
et  al., 2022). The intestinal microbiota carries a large number 
of antibiotic resistance genes (Ruppé et  al., 2019; Forster et  al., 
2022), and those metabolites that reduce antibiotic susceptibility 
may exacerbate the emergence and spread of resistant bacteria. 
The inhibition of antibiotic efficacy by intestinal microbiota 
metabolites may drive the enrichment and evolution of antibiotic-
resistant bacteria (Becattini et al., 2016). If so, bacterial resistance 
will become even more problematic. Because the influence of 
diet on intestinal metabolites is extensive (Koh et  al., 2016; 
Sonnenburg and Bäckhed, 2016; Cani et  al., 2019), the dietary 
structure of different individuals is complex. This makes it 
particularly important to explore the effect of intestinal flora 
metabolites on antibiotic efficacy.

This work explored the effect of a gut microbial-associated 
metabolite, TMAO, on antibiotic efficacy in vitro. Interestingly, 
TMAO reduced the susceptibility of Escherichia coli to a variety 
of antibiotics. Further data suggest that TMAO does not rely 
on activation of the TMAO sense-regulatory system and the 
classical multidrug efflux system to mediate the inhibition of 
antibiotic efficacy. In addition, TMAO enhanced the survival 
of E. coli under lethal urea (protein denaturant) stress and 
also protected E. coli from killing by two disinfectants (ethanol 
and H2O2) that cause protein damage. In conclusion, our study 
suggests that TMAO has the potential to improve bacterial 
survival under anti-biotics and other lethal stresses through 
its protective effect against protein denaturation/damage.

RESULTS

Trimethylamine N-Oxide Increases  
the MIC of Antibiotics in a 
Concentration-Dependent Manner
To investigate the correlation between TMAO and antibiotic 
efficacy in vitro, we  added 5 ~ 100 mM TMAO to LB medium 
to determine the effect of different concentrations of TMAO 
on the minimum inhibitory concentration (MIC) of antibiotic. 

In the absence of TMAO, the MIC of ciprofloxacin against 
the wild-type strain (BW25113) was about 0.02 mg/l; under 
the condition of 10 mM TMAO, the MIC of ciprofloxacin was 
mostly 0.03 mg/l; however, when the concentration of TMAO 
was increased to 100 mM, the MIC of ciprofloxacin measured 
in six independent experiments was as high as 0.16 ~ 0.32 mg/l 
(Figure  1A). Similarly, TMAO also increased the MIC of 
moxifloxacin, another quinolone antibiotic, in a concentration-
dependent manner (Figure  1B). Next, we  measured the MIC 
of two aminoglycosides and two β-lactams under the same 
TMAO concentration gradient. The results showed that 10 mM 
TMAO more significantly increased the MIC of gentamicin 
and kanamycin against wild-type strain (Figures  1C,D), and 
the MIC promoted with increasing of TMAO concentrations. 
Differently, the effect of TMAO on the MIC of β-lactams 
required higher concentrations than that for the other two 
types of antibiotics. The MIC of meropenem increased to 
0.06 mg/l in three out of six MIC determinations under 20 mM 
TMAO, compared to 0.03 mg/l (2 times)/0.04 mg/l (4 times) 
in the absence of TMAO. And in 40 mM TMAO conditions, 
the MIC of meropenem increased to 0.06 ~ 0.08 mg/l (Figure 1E). 
The MIC of ampicillin only increased from 4 to 6 mg/l (1 
time)/8 mg/l (5 times) with 60 mM TMAO (Figure  1F). The 
above results suggest that TMAO increased the MIC of the 
three types of antibiotics against E. coli in a concentration-
dependent manner in the range of 10 ~ 100 mM. Furthermore, 
by measuring the growth curve, we  ruled out the possibility 
that TMAO affects bacterial growth and thus alters the 
susceptibility of E. coli to antibiotics (Supplementary Figure 1).

Higher Doses of Antibiotics Are Required 
to Kill Escherichia coli Cells in the 
Presence of TMAO
Then, we examined the effect of TMAO on antibiotic sterilization 
in E. coli. Since ampicillin showed a significant increase in 
MIC under the 60 mM TMAO condition (Figure  1F), the 
concentration was used for subsequent experiments, and one 
of each of the three types of antibiotics tested was chosen as 
a representative. In the absence of TMAO, treatment with 
0.08 mg/l (4 × MIC) ciprofloxacin (Figure 2A) or 6 mg/l (2 × MIC) 
gentamicin (Figure 2B) for 2 h reduced the survival of log-phase 
wild-type E. coli by approximately three orders of magnitude; 
treatment with 0.32 mg/l (8 × MIC) meropenem (Figure  2C) 
for 6 h reduced the survival of wild-type E. coli by about four 
orders of magnitude. In contrast, under 60 mM TMAO condition, 
neither ciprofloxacin, gentamicin, nor meropenem at equivalent 
absolute concentrations exhibited lethality against the wild-type 
strain because of the elevated MIC (Figures 2A–C, comparison 
of the second column with the first column). Ciprofloxacin 
and gentamicin demonstrated better bactericidal efficacy when 
sterilized with a standardized MIC (Figures 2A,B, fourth column 
compared to the first column). With 60 mM TMAO, meropenem 
required a higher multiple of MIC (10 × MIC) to achieve the 
bactericidal level of 8 × MIC meropenem in the absence of 
TMAO (Figure  2C, fourth column compared to the first 
column). Overall, the presence of TMAO requires higher 
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concentrations of antibiotics for growth inhibition or 
bacterial killing.

TorSTR Signaling Pathway and Typical 
Resistance Mechanisms Are Not Involved 
in the TMAO Effect on Antibiotic Sensitivity
TorSTR signaling pathway senses TMAO and activates 
downstream pathways in E. coli (Baraquet et  al., 2006). TorZ 
(TMAO reductase), and the torCAD operon under positive 
regulation of TorR can reduce TMAO to TMA (Gon et  al., 
2000, 2001). To investigate the mechanism by which TMAO 
inhibits antibiotic susceptibility of E. coli, we  determined the 
MIC of ciprofloxacin on mutant strains related to the TorSTR 
signaling pathway. The results showed that the MIC of 
ciprofloxacin against ∆torT, ∆torR, ∆torC, ∆torZ, and wild-
type strains with or without 60 mM TMAO was essentially 
the same (Supplementary Figure  2). In addition, neither the 
addition of 60 mM nor 100 mM TMA changed the MIC of 
the above six antibiotics against the wild-type strain 
(Supplementary Table  1). Another TMAO-binding protein 
(Pietrzyk-Brzezinska and Cociurovscaia, 2022), RcdA in E. coli, 
is suggested to be  involved in regulating many stress response 
genes (Shimada et al., 2012). The rcdA mutation also considerably 

increased the MIC of ciprofloxacin against E. coli 
(Supplementary Figure  2). This suggests that the activation 
of intracellular TMAO-related downstream pathways does not 
serve as a condition to reduce the susceptibility of E. coli 
to antibiotics.

The typical mechanisms that cause larger MIC for antibiotics 
include: (1) the mar (multiple antibiotic resistance) motif, 
in which MarA can alter the expression of multiple genes 
to confer bacterial resistance (Cohen et  al., 1993; Barbosa 
and Levy, 2000; Duval and Lister, 2013) and (2) a more 
direct way of causing bacterial resistance is the efflux pump, 
and eight efflux pump complexes have been reported in 
E. coli, and they all contain TolC proteins (Koronakis et  al., 
2000; Koronakis, 2003). The results showed that deletion 
of the marA gene did not alter the MIC of ciprofloxacin 
or meropenem, and the increase in MIC of ciprofloxacin 
or meropenem against the ∆marA strain in the presence 
of 60 mM TMAO was not significantly different from that 
against the wild-type cells (Supplementary Figures 3A,B left). 
Deletion of the tolC gene reduced the MIC of ciprofloxacin 
from 0.02 to 0.0025 mg/l and that of meropenem from 0.04 
to 0.0075 mg/l against E. coli, but TMAO significantly increased 
the MIC of ciprofloxacin or meropenem against the ∆tolC 
strain (Supplementary Figures  3A,B right).

A C E

B D F

FIGURE 1 | Effect of Trimethylamine N-oxide (TMAO) on minimum inhibitory concentration (MIC) of antibiotics. (A–F) MIC was determined by the 2-fold broth 
dilution method. Cultures incubated to OD600 = 0.2 were diluted to ~105 cells/ml, mixed with various amounts of drug, and incubated at 37°C for 12 h. As needed, 
different concentrations of TMAO were added to the LB medium. Six individual experiments were performed. Each data plotted value represents mean ± SD. 
Significance determined by paired t-test. *p < 0.05; **p < 0.01; ***p < 0.001.
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Trimethylamine N-Oxide Reduces the 
Lethality of Urea, Ethanol, and H2O2 
Against Escherichia coli
After excluding the role of the above factors in the inhibition 
of antibiotic efficacy by TMAO, we  focused on the biological 
activity of TMAO. It is known that TMAO is present in high 
concentrations in some aquatic organisms and counteracts the 
denaturing effects of urea and salt (Lin and Timasheff, 1994; 
Seibel and Walsh, 2002). Under laboratory conditions, TMAO 
has likewise been shown to protect protein stability under 
urea stress (Zou et al., 2002), and TMAO may stabilize proteins 
by acting as a heterogeneous surfactant for folded proteins 
(Liao et  al., 2017). Four molar urea is commonly used as a 
high-intensity protein denaturant, and our experiments revealed 
that treated with 4 M urea for 20 min, different concentrations 
of TMAO (60 ~ 100 mM) showed 1 ~ 2 orders of magnitude of 
protection against the wild-type strain (Figure 2D), and treated 
with 4 M urea for 40 min, 60 mM TMAO also demonstrated 
significant protection, and the degree of protection by TMAO 
is positively correlated with the concentration of TMAO 
(Supplementary Figure  4A).

Further, we  selected a common disinfectant, ethanol, to 
verify the role of the property of TMAO to stabilize proteins 
in protecting bacterial survival. Ethanol denatures proteins by 
breaking the hydrogen bonds originally present in the protein 
(Thomas and Dill, 1993). The data showed that 14% ethanol 
decreased the survival of the wild-type strain by two orders 
of magnitude or more than three orders of magnitude for 45 
or 60 min treatment, respectively (Figure  2E; 
Supplementary Figure 4B), for both 45 and 60 min treatment, 
60 ~ 100 mM TMAO showed protective effects. H2O2, a reactive 
oxide, denatures proteins through covalent modification of 
specific amino acid side chains, resulting in oxidative damage 
(Dahl et  al., 2015). Multiple antibiotics have the effect of 
inducing protein aggregation (Cardoso et  al., 2010; Tran et  al., 
2011; Wu et  al., 2015). If TMAO can improve the survival of 
E. coli under H2O2 stress, it may also suggest that protection 
against protein denaturation could be  a potential mechanism 
for TMAO to inhibit the efficacy of different antibiotics. 
Surprisingly, as shown in Figure 2F; Supplementary Figure 4C, 
60 mM TMAO significantly increased the survival of E. coli 
under 20 mM H2O2 stress, and the protection of TMAO to 

A B C

D E F

FIGURE 2 | Trimethylamine N-oxide protects Escherichia coli from killing by antibiotics or other lethal stressors. Survival of wild-type strain incubated with 0 or 
60 mM TMAO, after ciprofloxacin treatment for 2 h (A), gentamicin treatment for 2 h (B), or meropenem treatment for 6 h (C) was measured. And survival of wild-type 
strain incubated with different concentrations of TMAO, after treatment with 4 M urea for 20 min (D), 14% ethanol treatment for 45 min (E), or after 20 mM H2O2 
treatment for 40 min (F) was measured. TMAO was added to the corresponding bacterial culture for co-incubation 30 min before antibiotic addition. Experiments 
were performed independently for three times. Each data plotted value represents mean ± SD.
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bacteria against H2O2 was more concentration-dependent for 
60 min of H2O2 treatment. Since TMAO is a weak oxidant, 
this suggests that the contribution of TMAO to bacterial survival 
under H2O2 is not directly by antioxidant effect.

DISCUSSION AND FUTURE DIRECTIONS

In this work, we  report the inhibitory effect of TMAO on the 
efficacy of various antibiotics and disinfectants. The concentration 
of TMAO showed a positive correlation with the MIC of 
quinolones, aminoglycosides, and β-lactams (Figure  1), and 
the lethal dose of different antibiotics against E. coli increased 
accordingly when TMAO was included (Figures  2A–C). 
Unexpectedly, the effect of TMAO on antibiotic MIC did not 
depend on downstream metabolic regulatory pathways 
(Supplementary Figure  2), mar motif, and efflux pump 
(Supplementary Figure  3). Similar to the direct protection of 
E. coli under urea stress (Figure  2D), TMAO also improved 
the survival of E. coli after treatment with two disinfectants, 
ethanol and hydrogen peroxide (Figures  2E,F).

Protein Inactivation Is a Potentially 
Common Pathway for Different 
Stress-Mediated Bacterial Cell Death
What is the mechanism by which TMAO helps E. coli cope 
with different stresses? Understanding this question will help 
in the development of antimicrobial strategies and guide the 
development of novel antimicrobial agents or adjuvants. Quinolones 
act on DNA replication, aminoglycosides target ribosomal subunits, 
β-lactams inhibit cell wall synthesis, urea and ethanol mediate 
protein denaturation, and hydrogen peroxide can cause oxidative 
damage. Our data suggest that TMAO can reduce the stress of 
E. coli by these different stressors. One of the possible explanations 
is that TMAO has an unknown wide range of biological activities 
to modulate stress processes under different stresses, like the 
universal molecule metformin (Lv and Guo, 2020). The reports 
of TMAO in humans involved in different diseases such as 
cardiovascular or tumor (Janeiro et  al., 2018; Yang et  al., 2019; 
Gatarek and Kaluzna-Czaplinska, 2021) may support this opinion.

However, we  prefer an alternative explanation, which is the 
direction of our coming studies, that TMAO may help bacteria 
to cope with different external stresses in a pervasive way, such 
as by stabilizing proteins (Krywka et  al., 2008; Ganguly et  al., 
2020). Many conditions including temperature, osmotic pressure, 
ionic strength, and pH, can denature proteins (Anfinsen and 
Scheraga, 1975), or oxidative stress occurring from hydrogen 
peroxide exposure can damage proteins through covalent 
modification of specific amino acid side chains (Dahl et  al., 
2015). In terms of antibiotics, sublethal concentrations of kanamycin 
induce protein aggregation by reducing ribosome fidelity and 
causing protein misfolding (Tamás et  al., 2018; Schramm et  al., 
2019), and these mistranslated proteins can further exacerbate 
aggregation by promoting the production of reactive oxygen 
species and lead to oxidation-sensitive protein damage (Ling 
et  al., 2012). More importantly, several antibiotics can induce 
protein aggregation (Cardoso et  al., 2010; Tran et  al., 2011; Wu 

et  al., 2015), and Kohanski et  al. (2007) found that ROS is a 
common pathway for the lethality of different antibiotics and 
that antibiotic-induced oxidative damage is part of the lethal 
effects of antibiotics (Dwyer et al., 2014). Proteins are responsible 
for accomplishing most cellular functions and protein activity is 
closely related to cell death. Acute external stresses can interfere 
with protein quality control mechanisms, leading to extensive 
protein denaturation and aggregation, which further leads to the 
loss of protein function, impairment of critical cellular functions 
required for growth and survival, and ultimately cell death (Mogk 
et  al., 2018). For example, in the recently discovered new mode 
of cell death, cuproptosis, lipid acylated protein aggregation, and 
loss of iron–sulfur cluster proteins can trigger proteotoxic stress 
and ultimately cell death (Tsvetkov et  al., 2022). These studies 
on protein homeostasis and cell death strengthen our confidence 
in the second explanation mentioned above and suggest that 
problem of antibiotic resistance caused by TMAO can be alleviated 
by finding adjuvants that promote protein denaturation. 
Alternatively, other possible mechanisms in TMAO-mediated 
antibiotic resistance events cannot be  excluded. In addition, the 
discovery of common pathways that can respond to different 
lethal stresses contributes to a better understanding of the interaction 
of antibiotic resistance with adverse environments, where the 
emergence of resistance is not only limited to the drug itself.

Dietary-Mediated Changes in Intestinal 
Flora Metabolites May Influence the 
Effectiveness of Clinical Anti-infective 
Therapy
Different diets can alter the composition of the intestinal flora 
and the levels of microbiome-dependent intestinal metabolites 
(Sonnenburg et  al., 2016; Frame et  al., 2020; Mayneris-Perxachs 
et  al., 2022). In particular, decreased levels of the tryptophan 
metabolite IAA in the intestine of mice fed a high-fat diet 
could antagonize the treatment of Methicillin-resistant 
Staphylococcus aureus (MRSA) or E. coli with several antibiotics 
(Liu et  al., 2021). TMAO, as an intestine-derived metabolite, is 
formed by specific intestinal microorganisms that metabolize 
dietary choline and betaine into precursor TMA, which is oxidized 
to TMAO in the liver (Wang et  al., 2011). A diverse diet rich 
in carnitine and choline from red meat, eggs, and shellfish (Li 
et  al., 2018), betaine present in plants (Zeisel et  al., 2003), may 
influence TMAO levels. Rath et al. (2021) showed that microbial 
flora and diet were associated with high levels of trimethylamine 
N-oxide in the plasma of senior individuals.

In vitro, our results suggest that TMAO reduces the susceptibility 
of E. coli to a variety of antibiotics in the range of 10 ~ 100 mM. After 
setting up the test concerning the concentration range of TMAO 
in normal human plasma, TMAO did not demonstrate an inhibitory 
effect on antibiotic efficacy (Supplementary Table  2). It might 
be a matter of concentration effects. Our results imply that TMAO 
may be a detrimental factor in anti-infective therapy. Considering 
the practical differences that exist between laboratory conditions 
and clinical situations, further clinical data are needed on what 
concentration of TMAO in humans interferes with antibiotic 
efficacy. Whether microbial flora and diet may influence 
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anti-infective treatment efficacy by modulating TMAO levels in 
clinical situations also needs to be  elucidated in large cohort 
studies that take into account individual differences and other 
factors. Moreover, our study and that of Liu et  al. (2021) and 
Oliver et al. (2022) suggest that more possible intestinal metabolites 
should be included when testing for effects on antibiotic susceptibility 
and that promising protocols to counteract the inhibition of 
antibiotic efficacy by metabolites should be  sought to inform 
clinical practice. If a regulated pathway of “diet-flora-metabolites-
antibiotic resistance” is widespread, the control of bacterial resistance 
will require greater engineering.
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