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Due to global change, increasing nutrient input to ecosystems dramatically

a�ects the nitrogen cycle, especially the nitrification process. Nitrifiers

including ammonia-oxidizing archaea (AOAs), ammonia-oxidizing bacteria

(AOBs), nitrite-oxidizing bacteria (NOBs), and recently discovered complete

ammonia oxidizers (comammoxs) perform nitrification individually or in

a community. However, much remains to be learned about their niche

di�erentiation, coexistence, and interactions among those metabolically

distinct nitrifiers. Here, we used synthetic microbial ecology approaches to

construct synthetic nitrifying communities (SNCs) with di�erent combinations

of Nitrospira inopinata as comammox, Nitrososphaera gargensis as AOA,

Nitrosomonas communis as AOB, and Nitrospira moscoviensis as NOB.

Our results showed that niche di�erentiation and potential interactions

among those metabolically distinct nitrifiers were determined by their

kinetic characteristics. The dominant species shifted from N. inopinata to N.

communis in the N4 community (with all four types of nitrifiers) as ammonium

concentrations increased, which could be well explained by the kinetic

di�erence in ammonia a�nity, specific growth rate, and substrate tolerance

of nitrifiers in the SNCs. In addition, a conceptual model was developed to

infer niche di�erentiation and possible interactions among the four types of

nitrifiers. This study advances our understanding of niche di�erentiation and

provides new strategies to further study their interactions among the four types

of nitrifiers.
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synthetic nitrifying community, niche di�erentiation, interaction, ammonia a�nity,

specific growth rate, substrate tolerance
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Introduction

Nitrification is an important process in the nitrogen

cycle, and it was widely believed as a two-step process for

more than one century with ammonia oxidized to nitrite

by ammonia-oxidizing bacteria (AOBs) or ammonia-oxidizing

archaea (AOAs) (Könneke et al., 2005), and subsequently nitrite

oxidization to nitrate by nitrite-oxidizing bacteria (NOBs).

Complete ammonia oxidizers (comammoxs) were initially

proposed according to optimal pathway length analysis (Costa

et al., 2006), functionally enriched and finally isolated in recent

efforts (Daims et al., 2015; van Kessel et al., 2015; Kits et al.,

2017; Sakoula et al., 2021). The identification of comammox

raises questions on their diversity and distribution in the

environment. Metagenome and marker gene sequencing data

analyses have demonstrated that newly discovered comammox

populations are widely distributed in natural and engineered

systems (Palomo et al., 2016; Pinto et al., 2016; Wang et al., 2017;

Annavajhala et al., 2018; Orellana et al., 2018; Xia et al., 2018;

Yang et al., 2020), which are highly overlapped with the habitat

of AOAs, AOBs, and NOBs (Hatzenpichler, 2012; Prosser and

Nicol, 2012; Stahl and de la Torre, 2012; Daims et al., 2016;

Lawson and Lucker, 2018). These results indicate comammox

is a common nitrifier in the environment, raising further

questions about their niche differentiation and interactions in

the environment (Daims et al., 2016; Santoro, 2016).

Niches of nitrifiers are highly overlapped as they could share

similar habitats and substrates in the environment (Martens-

Habbena et al., 2009). Cultivation studies of niche differentiation

could reveal mechanisms about the origin and maintenance

of species biodiversity, community assembly (HilleRisLambers

et al., 2012), coexistence (File et al., 2012), species physiology

(Hatzenpichler et al., 2008; Hatzenpichler, 2012), and habitat

preferences (Bauer et al., 2018). For example, the high ammonia

affinity of comammox indicated their prevalence at oligotrophic

environments (Kits et al., 2017) and the cooperation possibility

between anammox and AOAs determined by their ammonia

affinity according to a biofilm model (Straka et al., 2019).

As ammonia and nitrite are key substrates of nitrification

(Falkowski et al., 2008; Canfield et al., 2010; Stein, 2015), of

particular interest is niche differentiation among nitrifiers in

response to ammonium concentrations, which may provide new

insights into the biodiversity, ecophysiology, and evolution of

metabolically distinct nitrifiers in the environment.

To identify patterns of niche differentiation and interactions

of nitrifiers driven by ammonium, synthetic microbial

ecology theories and approaches may provide a new strategy.

Synthetic microbial communities are designed and built by

microorganisms with known genome information, physiology,

and metabolic characteristics in a well-defined medium (Johns

et al., 2016). Natural environmental communities are generally

complex and subjected to the influence of a multitude of

environmental factors, making them difficult, if not impossible,

to identify drivers of niche differentiation. While a major

drawback of laboratory studies on pure cultures is the inherited

inability to study population interactions and underlying

mechanisms, which is critical to the manifestation of niche

differentiation. To bridge such a gap, syntheticmicrobial ecology

has recently been developed (Dolinsek et al., 2016; Lindemann

et al., 2016; Zomorrodi and Segre, 2016; Lawson et al., 2019),

and synthetic microbial communities have been used as a

powerful tool to simplify natural microbial communities with

reduced complexity and a controlled environment (Shou et al.,

2007; Momeni et al., 2011; De Roy et al., 2014; Grosskopf and

Soyer, 2014), which is promising to address niche differentiation

of nitrifiers and their interactions in the environment.

In this study, we aimed to study niche differentiation

among four types of nitrifiers and their underlying mechanisms

in response to ammonium concentrations using synthetic

nitrifying communities (SNCs). We used a bottom-up approach

to construct SNCs with different combinations of Nitrospira

inopinata (comammox), Nitrososphaera gargensis (AOA),

Nitrosomonas communis (AOB), and Nitrospira moscoviensis

(NOB) and examined their responses to comparable or beyond

environmentally ammonium concentrations (0.2 to 20mM).

Our results showed that the niche differentiation of nitrifiers

was largely driven by their ammonia affinity, specific growth

rates, and ammonium/nitrite tolerance. This study advances

our understanding of niche differentiation, coexistence, and

interactions driven by ammonium among metabolically distinct

nitrifiers in the environment.

Materials and methods

Selection of nitrifiers for synthetic
nitrifying community construction

Synthetic microbial ecology theories and approaches (De

Roy et al., 2014; Dolinsek et al., 2016; Johns et al., 2016) were

used to select nitrifying strains. Genome information, function,

representativeness, and physiology (e.g., growth medium,

growth temperature, activity, and substrate concentration) of

nitrifying strains (Prosser and Nicol, 2012) were considered for

SNC construction. The isolate of comammox (N. inopinata,

JCM 31988) was chosen as the representative of complete

nitrifiers (Daims et al., 2015). Most AOAs were enriched

and isolated from thermophilic and hyper-thermophilic

environments (Hatzenpichler et al., 2008), while optimal

temperatures for most AOBs were between 25 and 30◦C (Itoh

et al., 2013). To compromise the growth temperature for all

nitrifiers, a moderately thermophilic AOA (N. gargensis, JCM

31473) was chosen (Hatzenpichler et al., 2008). Considering the

growth temperature and substrate concentrations for culturing,

we chose N. communis (DSMZ 28436) as AOB (Koops et al.,

1991) as it is a less eutrophic AOB and could grow well at 37◦C
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TABLE 1 Characteristics of four nitrifiers.

Characteristics N. inopinata N. gargensis N. communis N. moscoviensis

Sources of strain An oil exploration well Hot spring Soil Heating water system

Cell morphology Spiral-shaped cell with a

flagellum

Round cell with a flagellum Short rods or ellipsoidal with

round ends

Irregularly shaped cells or

spiral-shaped rods

Cell dimension (width×

Length, µm)

0.18–0.3× 0.7–1.6 Around 0.3× 0.3 1.0–1.4× 1.7–2.2 0.2–0.4× 0.9–2.2

Optimal Temperature (◦C) 37 46 28 39

Saturation constant for

activity (Km)

0.65a ; 372b 5.6a Around 1,000a 9b

Maximum specific activity

(Vmax)

12.8c ;16.9d 28.7c ND 18d

Saturation constant for

growth (Ks)

ND ND ND ND

Maximum specific growth

rate (µmax)

0.032 h−1 0.028 h−1 0.084 (0.055)e 0.031 h−1

a
µM (NH3+NH+

4 ).
b
µMNO−

2 .
c
µMN per milligram protein per hour.

d
µMNO−

2 per milligram protein per hour.
ethe growth of N. communis was denoted by OD600 after 3 days (1 day).

ND, not determined; characteristics were collected from previous articles (Ehrich et al., 1995; Spieck et al., 2006; Hatzenpichler et al., 2008; Spang et al., 2012; Daims et al., 2015; Nowka

et al., 2015; Kits et al., 2017).

(Wu et al., 2013), and similarly, N. moscoviensis (provided by

Eva Spieck from Hamburg University) was selected as NOB

(Ehrich et al., 1995). The characteristics of those nitrifiers are

summarized in Table 1.

Cultivation of nitrifiers

We took a step-by-step strategy to culture four nitrifiers

individually, with a specific combination, or together. First, N.

inopinata (37◦C), N. gargensis (47◦C), N. communis (28◦C),

and N. moscoviensis (37◦C) were grown individually in their

specific medium adding 1mM, 1mM, and 10mM ammonium

and 5.7mM nitrite as their substrates, respectively, as previous

studies described (Koops et al., 1991; Nowka et al., 2015;

Palatinszky et al., 2015; Kits et al., 2017). Second, to determine

the optimal temperature for culturing SNCs, nitrifier at a

logarithmic phase was inoculated to its fresh medium over a

wide range of temperatures (28 to 47◦C for N. inopinata and

N. gargensis, 16.5 to 40◦C for N. communis, and 22 to 42.5◦C

forN. moscoviensis) (see Section Cultivation and construction of

synthetic nitrifying communities). Since nitrifiers were sensitive

to pH changes (He et al., 2012) and natural environment mainly

is slightly alkaline, after several attempts at typical medium of

nitrifiers, a mineral medium (Daims et al., 2015) with CaCO3

as buffer (pH = 7.8 after autoclaving) was selected for all SNCs

culturing. Nitrifiers at the exponential phase were inoculated

into a unified medium in 37◦C with different substrates, and

their performances were examined (see Section Cultivation

and construction of synthetic nitrifying communities). Finally,

nitrifiers at the exponential phase were inoculated to construct

SNCs with an equal number of total cells (4 × 104 cells/ml,

see Section qPCR analysis of nitrifier dynamics of synthetic

nitrifying communities). The medium with minor revision per

liter, except the substrate (NH4Cl or NaNO2), contains 54mg

KH2PO4, 75mg KCl, 50mg MgSO4·7H2O, 584mg NaCl, 4 g

CaCO3, 1ml of specific trace element solution (TES), and 1ml

of selenium–wolfram solution (SWS), as described previously

(Daims et al., 2015). The pH was around 7.8 after autoclaving

and during the growth as most undissolved CaCO3 in the

medium was serving as the buffer solution. Nitrifiers were

all grown in 100-ml bottles with 50ml medium in the dark

without shaking.

Determination of optimal temperature
and unified medium for synthetic
nitrifying communities

To determine the optimal temperature for culturing, the

dynamics of ammonium, nitrite, nitrate, and cell number

were measured during the growth of N. inopinata, N.

gargensis, N. communis, and N. moscoviensis at different

temperature gradients under their optimal substrate
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concentrations, as described in Section Cultivation of

nitrifiers (measurement methods in Section qPCR analysis

of nitrifier dynamics of synthetic nitrifying communities

and Section Determination of ammonium, nitrite, and

nitrate concentrations). Specific ammonium/nitrite oxidation

activity and growth rates were calculated for comparison

(see Section Kinetics and statistical analysis). Similarly,

performance of nitrifiers was determined at the unified medium

under 37◦C.

Construction of synthetic nitrifying
communities and analysis of their growth

We constructed one pure culture (i) N1 with N. inopinata

only, and four SNCs (ii) N2A (N. gargensis andN. moscoviensis),

(iii) N2B (N. communis and N. moscoviensis), (iv) N2C (N.

inopinata and N. moscoviensis), and (v) N4 with all four

types of nitrifiers. Cultivation was carried out at 37
◦

C in a

gradient of five ammonium concentrations (0.2, 1.0, 2.0, 10.0,

and 20.0mM). Samples from four biological replicates (n =

4) were taken every 12/24 h until ammonium was completely

consumed or nitrification ceased (this longest experiment last

36 days, Supplementary Figure S1), followed by centrifugation

(6,000 x g, 5min, 4◦C). The supernatant was stored at

−20◦C for ammonium, nitrite, and nitrate quantification; the

pellets were washed with PBS two times, suspended with

PBS solution, stored at −20 ◦C, and used for determining

the dynamics of individual nitrifiers by real-time quantitative

PCR (qPCR).

qPCR analysis on nitrifier dynamics of
synthetic nitrifying communities

The abundance of N. inopinata, N. gargensis, N. communis,

and N. moscoviensis was determined by qPCR using newly

designed gene-specific primer pairs (Supplementary Table S1).

Reported genes like amoA and nxrB were not specific enough to

distinguish them; therefore, we expand their whole genome to

find single-copy specific gene for quantification. Strain-specific

regions were obtained and filtered (Marcais and Kingsford, 2011;

Tu et al., 2013), and then single copy genes were selected for

primer design. Further specificity was checked by PCR, gel

electrophoresis (Supplementary Figure S2), and qPCR analysis.

Here, specificity means that a nitrifier in all SNCs could

only be identified by its own primers. The relative abundance

of nitrifiers was obtained by taking the maximum total cell

number of SNCs under each ammonium concentrations at the

endpoint as 100%. For example, the sum cell number of N4

under 0.2mM at the endpoint was greater than that of other

SNCs; thus, the relative abundance of each nitrifier at SNCs

under 0.2mM was converted by dividing its cell number by

the maximum number, as well as for nitrifiers in SNCs under

other concentrations.

Plasmids were obtained by PCR amplification of the

target gene from DNA of pure cultures and cloning the

product into a pEASY TA vector (TransGen, China),

and were used as the standard for qPCR analysis, and

the concentration of standards was determined by Qubit

4.0 (Thermo Fisher Scientific, USA). The amplification

efficiency was between 90% and 110%, and the correlation

coefficient (r2) of the standard curve was greater

than 0.99.

The qPCRs were run with three technical replicates in a

Bio-Rad C1000 CFX96 Real-Time PCR System (USA). Each

qPCR was performed in a 12-µl reaction mix containing

6 µl SYBR Green Supermix (Bio-Rad, USA), 2.4 µl of

the suspension, 0.3 µl of each primer (10µM), and 3.3

µl of autoclaved double-distilled ultrapure water. Cells were

lysed, and DNA was released for 3min at 98◦C, followed

by 40 cycles of 15 s at 98◦C, 30 s at 57.5◦C, and 30 s

at 72◦C.

Determination of ammonium, nitrite, and
nitrate concentrations

Samples were collected during the experiment and

centrifuged, and supernatants were used for ammonium,

nitrite, and nitrate determination on a Skalar San++

Continuous Flow Analyzer (Netherlands) according to the

manufacturer’s instructions.

Kinetics and statistical analysis

Specific ammonium/nitrite oxidation activity was

determined by calculating the slope of log-transformed inverse

ammonium (N. inopinata, N. gargensis, and N. communis) or

nitrite (N. moscoviensis) concentrations against time (Kits et al.,

2017). The specific ammonium/nitrite oxidation rate, growth

rate, substrate affinity, free NH3 (FA) and free HNO2 (FNA),

the Monod equation, and Haldane model were calculated

(Supplementary Table S2) (Prosser and Nicol, 2012; Straka

et al., 2019). Microbial community dissimilarity was analyzed

by principal co-ordinates analysis (PCoA) with Bray–Curtis

dissimilarity estimates, and the significance was tested by using

the multiple-response permutation procedure (MRPP), analysis

of similarities (ANOSIM), and permutational multivariate

analysis of variance (ADONIS) (Martiny et al., 2011). The t-test,

one-way analysis of variance (ANOVA), two-way ANOVA,

and linear regression were performed by IBM SPSS 22 (SPSS

Inc., USA).
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FIGURE 1

Determination of the optimal temperature for culturing four types of nitrifiers. For comammox (N. inopinata) and AOA (N. gargensis), the

temperatures were 28, 32, 37, 42.5, and 47◦C, respectively; for AOB (N. communis), the temperature range was from 16.5 to 40◦C; for NOB (N.

moscoviensis), the temperature was controlled from 22 to 42.5◦C. Data points show mean ± SE (standard error, n = 4). If not visible, error bars

are smaller than symbols.

Results

Cultivation and construction of synthetic
nitrifying communities

To determine an appropriate temperature for culturing all

SNCs, the specific ammonium or nitrite oxidation activity of

four individual nitrifiers was measured with their specific media

and optimal substrate (ammonium or nitrite) concentrations

under a wide range of temperatures (Figure 1). Based on the

sum of specific ammonium/nitrite oxidation activity of the

four nitrifiers, we selected 37◦C to culture those nitrifiers.

Also, we unified the medium with a typical medium for

ammonia oxidizers after several attempts by evaluating their

performance (i.e., substrate consumption and nitrite/nitrate

production) over time at 37◦C. The results showed that

four nitrifiers functioned in their corresponding nitrification

processes (Figure 2), and their specific ammonium oxidation

activity did not show differences with their optimal media at

37◦C (Supplementary Table S3). To test niche differentiation of

nitrifiers driven by ammonium based on the completeness of

nitrification process, we constructed the N4 community (N.

inopinata, N. gargensis, N. communis, and N. moscoviensis) and

four other SNCs: N1 (N. inopinata), N2A (N. gargensis and N.

moscoviensis), N2B (N. communis and N. moscoviensis), and

N2C (N. inopinata andN.moscoviensis) for cross-validation, and

those SNCs were cultivated at 37
◦

C under the unified medium

with a wide range of ammonium concentrations (0.2, 1, 2, 10,

and 20mM) in this study.

Composition and structure shift of SNCs
as a function of ammonium
concentrations

The abundance of each nitrifier in the SNCs at the

endpoint was quantified by qPCR to understand their niche

differentiation driven by ammonium concentrations. Generally,

principal co-ordinates analysis (PCoA) of those SNCs showed

they significantly (P < 0.05) differed, except for N1 and

N2C, when all ammonium concentrations were considered

(Supplementary Figure S3; Supplementary Table S4), and N4

was significantly (P < 0.05) different from N1, N2A, N2B, and

N2C under the gradient of ammonium concentrations, except

N4 and N2B, when ammonium concentrations were 2 and

20mM (Supplementary Figure S3; Supplementary Table S5).

We further analyzed the abundance dynamics of each

nitrifier in the N4 community with the maximum cell

(copy) number of four nitrifiers under each ammonium

concentration as 100% (Figure 3; Supplementary Figure S4).

The mean maximum total cell numbers under five ammonium

concentrations were 1.22 × 105, 3.77 × 106, 1.89 ×

107, 1.53 × 108, and 3.79 × 107 copies/ml, respectively

(Supplementary Table S6). All four nitrifiers coexist when

ammonium concentration was 0.2mM, and their cell number

generally increased over time. At the final time point, N.

inopinata was dominant (48.42%), followed by N. gargensis and

N. communis with similar proportions (21.96% and 21.55%,

respectively) and thenN. moscoviensis (8.07%) (Figure 3). When

the ammonium concentration increased to 1mM, N. inopinata
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FIGURE 2

Ammonium or nitrite consumption and nitrite or nitrate production by nitrifiers grown at the unified medium at 37◦C. (A) comammox (N.

inopinata); (B) AOA (N. gargensis); (C) AOB (N. communis); (D) NOB (N. moscoviensis) at the exponential stage without quantifying the cell

number were inoculated to fresh medium. The substrate concentrations were 1, 1, 10, and 5.7mM, respectively. Data points are shown as mean

± SE (n = 5). If not visible, error bars were smaller than symbols.

had a similar relative abundance with N. communis (47.70%

and 44.44%, respectively), followed by N. gargensis (7.41%)

and N. moscoviensis (0.44%) (Figure 3). When the ammonium

concentration was 2mM or higher, N. communis dominated

the N4 community (95.61%−99.63%) (Figure 3). Therefore, the

results indicated that N. inopinata was more competitive in the

N4 community when ammonium concentrations were between

0.2 and 1mM, while N. communis overwhelmed other nitrifiers

when ammonium concentrations exceeded 2mM, suggesting

the importance of ammonium concentrations in the niche

differentiation between N. inopinata and N. communis.

Determinants of niche di�erentiation of
nitrifiers

Given the population dynamics in response to ammonium

concentrations in N4, it could be hypothesized that niche

differentiation of nitrifiers would be driven by ammonia affinity,

specific growth rate, and substrate tolerance as a function of

ammonium concentrations, which could differentially impact

each of those nitrifiers or SNCs. To test this hypothesis,

we measured the dynamics of ammonium/nitrite/nitrate

concentrations and abundances of nitrifiers. Furthermore,

specific growth rates and ammonium/nitrite oxidation

rates were analyzed and fitted by using the Haldane model

(Supplementary Table S3; Figure 4).

(i)Comammox (N. inopinata) predominance at low

ammonium concentrations. In the N4 community, the

maximum specific growth rate of N. inopinata (0.119 h−1)

was much higher than that of N. gargensis (0.063 h−1) and

N. communis (0.030 h−1) when ammonium concentration

was 0.2mM (Figure 5A), which was consistent with their

relative abundances (48.42%, 21.96%, and 21.55%, respectively)

(Figure 3). Specifically, the maximum specific growth rate of N.

inopinata and N. gargensis was significantly (P < 0.05) higher in

N4 than that in N1 (0.119 vs. 0.064 h−1) or in N2A (0.063 vs.

0.039 h−1), respectively; the maximum specific growth rate of

N. communis in N4 was much lower than that in N2B (0.030 vs.

0.075 h−1). Such growth differences suggested possible complex

interactions among those nitrifiers in N4. Also, we used the
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FIGURE 3

Relative abundances of four nitrifiers in the N4 community at end time point analyzed by qPCR. a. 0.2mM; b. 1mM; c. 2mM; d. 10mM; e.

20mM. The end time point of each treatment was chosen when ammonium was completely consumed, or nitrification ceased. Data are

presented as mean ± SE (n = 4).

Haldane model to fit their maximum specific ammonium

oxidation rates with ammonium concentrations and calculated

the mean Km(app) of nitrifiers (Figure 4; Table 2). The value

of Km(app) was inversely proportional to ammonia affinity,

showing that N. gargensis had the lowest Km(app) (42µM

NH+
4 , R

2 = 0.778), followed by N. inopinata (282µM NH+
4 ,

R2 = 0.976) and N. communis (2,553µM NH+
4 , R

2 = 0.971),

indicating that N. gargensis had the highest ammonia affinity,

followed by N. inopinata and then N. communis. These results

indicated that the competitiveness of comammox in the N4

community at 0.2mM could be largely due to its high maximum

specific growth rate and high ammonia affinity.

(ii)AOB predominance at high ammonium concentrations.

In the N4 community, the dominant species was shifted from

N. inopinata to N. communis as ammonium concentrations

increased (Figure 3). The specific growth rate of N. communis

was higher than that of other nitrifiers when ammonium

concentrations were 2mM or above. Specifically, the maximum

specific growth rate of N. communis (0.053 h−1) was much

higher than that of N. inopinata (0.039 h−1) or N. gargensis

(0.041 h−1) at 2mMammonium. As ammonium concentrations

increased to 10 and 20mM, the maximum specific growth

rate of N. communis (0.034–0.036 h−1) was significantly (P <

0.05) higher than that of N. inopinata (0.011–0.014 h−1) or N.

gargensis (0.007–0.009 h−1) (Figure 5A). The dramatic decrease

in the growth of N. inopinata and N. gargensis indicated the

effect of substrate inhibition, which was consistent with their

relatively lower specific maximum ammonium oxidation rates

at 10 and 20mM ammonium (Figure 4). These results were

consistent with the predominance of AOB (N. communis) in

N2B at ammonium concentrations of 2mM or above, likely

due to high maximum specific growth rates of AOBs and a

lack of inhibition by ammonium in the range of ammonium

concentrations tested.

(iii)Weak competitiveness and ammonium inhibition of

AOA. In the N4 community, the specific growth rate of

N. gargensis decreased with the increase in ammonium

concentrations (Figure 5A), which was consistent with the

specific growth rates and ammonium oxidation rates observed

for AOAs in N2A (Figure 4). At ammonium concentrations

of 0.2mM to 1mM, ammonium was completely converted

to nitrate, and the relative abundance of N. gargensis

was 34.51% and 92.99%, respectively, while its abundance

dramatically decreased to <1% when ammonium was 2mM

(Supplementary Figure S5). However, the maximum specific

growth rate of N. gargensis in N2A was relatively low (0.015–

0.019 h−1) (Figure 5A), and the concentrations of FA and

FNA increased to 16.51mg NH3-N/L and 0.040mg HNO2-

N/L, respectively, when the ammonium concentration was

10mM. Therefore, these results indicated that the relatively slow

growth of N. gargensis in the N4 community could be due to

its unfavorable competition with N. inopinata (0.2 to 2mM)

and N. communis (2mM), and ammonium inhibition at high

ammonium concentrations (≥10 mM).

(iv)Competition for nitrite and ammonium/nitrite

inhibition of NOB. The copy number was used to visualize the
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FIGURE 4

Specific ammonium/nitrite oxidation rates of four nitrifiers were fitted by using the Haldane model. The consumption of ammonium/nitrite

against time in N1, N2A, N2B, and N2C communities at 0.2, 1, 2, 10, and 20mM ammonium concentrations was extracted, and specific

ammonium/nitrite oxidation rates were calculated and further fitted by using the Haldane model. The scatters mean the measured values with

four replicates, while the solid lines show the fitted curve.

population dynamics of this NOB as the relative abundance of

N. moscoviensis in the N4 community was too low to be visible

in Supplementary Figures S4B–E. Ammonium oxidation to

nitrite and increased maximum specific nitrite oxidation rates

were observed in N2A and N2B at 0.2–1mM and 0.2–2mM

ammonium, respectively (Supplementary Figures S1, S6),

indicating that N. moscoviensis functioned well from 0.2 to

2mM ammonium. The results were also supported by the

increase in N. moscoviensis from 0.2mM to 1mM (2.18 × 104-

9.76 × 104 copies/ml) in N2A and from 0.2mM to 2mM (1.66

× 104-1.39 × 105 copies/ml) in N2B (Figure 5B). However, the

cell number of N. moscoviensis was much lower (1.16–1.98×104

copies/ml) in N2C, especially in N4, than that in N2A or N2B

from 0.2 to 2mM, indicating a possible competition for nitrite

between N. moscoviensis and N. inopinata. Also, the cell number

of N. moscoviensis decreased significantly (P < 0.05) from 10

to 20mM in N4, and similar results were observed in N2A and

N2B (Figure 5B), suggesting ammonium/nitrite inhibition of N.

moscoviensis growth at high ammonium concentrations. These

results indicated the niche differentiation of N. moscoviensis was

compromised by N. inopinata at 0.2 to 2mM ammonium and

inhibited by high ammonium/nitrite concentrations.

Discussion

Understanding the niche differentiation, interaction, and

coexistence of nitrifiers and their associated mechanisms is

a central issue in microbial ecology. Our current knowledge

of nitrifiers is generally based on limited monocultures

and environmental studies, and their coexistence, niche

differentiation, and interactions in the environment are

extremely difficult or impossible to address. As various

differences in physiology ofmonocultures exist, it is well inferred
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FIGURE 5

Maximum specific growth rates or cell numbers of nitrifiers in di�erent SNCs. (A) Comparation of the maximum specific growth rate of N.

inopinata, N. gargensis, and N. communis in di�erent SNCs (N2A, N2B, N2C, and N4). (B) Cell numbers of N. moscoviensis in di�erent SNCs

(N2A, N2B, N2C, and N4). Data are presented as mean ± SE (n = 4). Di�erent capital letters mean a statistical significance (P < 0.05) among the

five ammonium concentrations for the same community, and di�erent small letters mean a statistical significance (P < 0.05) among di�erent

communities under the same ammonium concentration.
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TABLE 2 Kinetic parameters of nitrifiers.

rm KS2 KI Vm Km(app) R
2

N. inopinata 34.93a 857b 3,002b 16.88a 282b 0.976

N. gargensis 5.97a 58b 6,191b 5.00a 42b 0.778

N. communis 111.84a 8,310b 23,826b 51.28a 2,553b 0.971

N. moscoviensis 42.32a 763c 2,004c 18.94a 228c 0.732

The experimental data were calculated and modeled by using the Haldane model in N1, N2A, N2B, and N2C communities to show the relationship between specific ammonium/nitrite

oxidation rates and ammonium concentrations.
a
µM ammonium or nitrite h−1 .

b
µM total ammonium.

c
µM nitrite.

that substrate (ammonium and nitrite), temperature, pH, and

H2O2 detoxification are considered the main drivers of niche

differentiation among metabolically distinct nitrifiers (Prosser

and Nicol, 2012; Hu and He, 2017; Kits et al., 2017). The

physiology and diversity of cultivated AOAs indicated that they

had a wider range of temperature and pH adaption than most

AOBs (Lehtovirta-Morley et al., 2011; Zhang et al., 2017; Prosser

et al., 2020; Picone et al., 2021); α-keto acids (e.g., pyruvate)

which were reported to enhance the growth of some AOAs

(Tourna et al., 2011; Qin et al., 2014) were further confirmed

as H2O2 scavengers (Kim et al., 2016). Recently, several studies

further indicated that nitrifiers were metabolically versatile

beyond the N cycle and involved in hydrogen and sulfide

oxidation (Lehtovirta-Morley et al., 2011; Tourna et al., 2011;

Stahl and de la Torre, 2012; Daims et al., 2016). Among such

many drivers, we gave priority to answering niche differentiation

to ammonium as it is the energy source for nitrifiers.

Thus, in this study, we applied synthetic microbial ecology

theories and approaches to construct SNCs under unified

medium and temperature and tested niche differentiation with

comammox and other three types of metabolically distinct

nitrifiers under a gradient of environmentally comparable

ammonium concentrations to reflect the performance of

nitrifiers in the environment. We found that those nitrifiers

could coexist at low ammonium concentrations, and their

niches differentiated under different ammonium concentrations

with possible mechanisms, including ammonia/nitrite affinity,

specific growth rate, and ammonium/nitrite tolerance. In

addition, the results allowed us to explore possible interactions

among those nitrifiers. Specifically, N. inopinata was the most

competitive population at low ammonium concentrations, and

N. communis was dominant at high ammonium concentrations.

While N. gargensis and N. moscoviensis were less competitive

than N. inopinata and N. communis for ammonium and N.

inopinata for nitrite, respectively, at our tested ammonium

ranges, the growth of N. inopinata, N. gargensis, and N.

moscoviensis were inhibited at high ammonium concentrations.

First, ammonia/nitrite affinity of nitrifiers is the most

important theoretical basis of niche differentiation at low

ammonium environments (Hatzenpichler, 2012; Prosser and

Nicol, 2012; Kits et al., 2017). For ammonia affinity, how

AOAs and AOBs establish their niches and function in the

environment has been discussed for decades, and comammox

has recently joined in this debate. Previous laboratory studies

showed that N. inopinata had the highest ammonia affinity,

followed by non-marine AOAs and AOBs (Kits et al., 2017),

which was reflected in the apparent half-saturation constant

value [Km(app)] of N. inopinata, N. gargensis, and Nitrosomonas

AOBs at 0.65, 5.6, and∼1,000µM total ammonium, respectively

(Martens-Habbena et al., 2009; Kits et al., 2017). Comammox

populations have been considered as oligotrophs and could be

prevalent at low ammonium environments, which is evidenced

by many studies with microbial enrichments or environmental

samples from oligotrophic environments, such as drinking water

systems, rapid gravity sand filter, and groundwater-fed rapid

sand filter (Palomo et al., 2016; Kits et al., 2017; Pjevac et al.,

2017; Fowler et al., 2018; Xia et al., 2018). Also, AOAs were

reported to have an advantage over AOBs in oligotrophic

environments like open ocean (Könneke et al., 2005; Prosser

and Nicol, 2008; Santoro et al., 2008; Walker et al., 2010),

while eutrophic environments (e.g., fertilized agricultural soils)

favored AOBs (Jia and Conrad, 2009; Prosser and Nicol, 2012;

Hink et al., 2018). In this study, we found that the dominant

species in N4 was N. inopinata, followed by N. gargensis and

N. communis at low ammonium concentrations. N. gargensis

exhibited the lowest Km(app), followed by N. inopinata and N.

communis (282 and 2,553µM total ammonium, respectively).

Such relatively high numerical values of Km(app) observed

may be due to higher ammonium concentrations used in this

study than in previous physiological studies, and the contrast

of Km(app) between N. inopinata and N. gargensis could also

result from the low activity and growth of N. gargensis in our

experiments, thus affecting the degree of model fitting. These

results generally support the predominance of comammox at

low ammonium concentrations due to its high ammonia affinity,

which is consistent with previous studies that comammox

preferred oligotrophic lifestyle (Palomo et al., 2016; Pinto et al.,

2016; Kits et al., 2017; Fowler et al., 2018; Xia et al., 2018). For
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FIGURE 6

Conceptual framework for kinetics-driven niche di�erentiation of four nitrifiers (N. inopinata, N. gargensis, N. communis, and N. moscoviensis)

in response to ammonium or nitrite. (A) Kinetics of nitrifiers including ammonia a�nity, maximum specific growth rate or activity, and substrate

inhibition under a wide gradient of ammonium concentrations. Words in red represent extracellular or environmental substances, and words in

yellow represent intracellular metabolic pathways for nitrification processes with ammonium as substrate. The solid lines with arrows show the

direction of pathways, and the dotted line with arrows and a question mark means uncertain. The red solid lines represent the growth or activity

of nitrifiers in response to substrate concentrations, and the dotted part of line of AOB is a theoretical extension for potential inhibition at high

ammonium concentrations as no obvious inhibition was observed in this study. (B) Niche di�erentiation of N. inopinata, N. gargensis, and N.

communis in response to a wide gradient of ammonium concentrations based on our study. (C) Niche di�erentiation of N. inopinata and N.

moscoviensis in response to nitrite with ammonium as substrate. KS was represented by Km(app) in Table 2 (282, 42, 2,553, and 228µM total

ammonium or nitrite, respectively); KI of N. inopinata and N. communis was from Table 2, and KI of N. gargensis and N. moscoviensis was

obtained from the literature and modified (Hatzenpichler et al., 2008; Nowka et al., 2015). The specific growth rates of nitrifiers from N1, N2A,

and N2B communities (0.064, 0.039, 0.078, and 0.048 h−1) were used for the Haldane model.

nitrite affinity, known NOBs are affiliated with seven genera

(Daims et al., 2016), of which Nitrospira NOBs are considered

as K strategists and Nitrobacter NOBs as r-strategists (Nowka

et al., 2015), and coincidently, all known comammoxs belong

to Nitrospira. Nevertheless, the Km(app) of N. inopinata to

nitrite was 372µM, close to that of Nitrobacter NOB (Kits et al.,
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2017), which was higher than Nitrospira NOB. In this study,

we found that the Km(app) of N. moscoviensis was 228µM

nitrite, which was lower than that of N. inopinata, indicating a

niche of N. inopinata and N. moscoviensis in nitrite oxidation;

thus, N. inopinatamay prefer higher nitrite concentrations than

N. moscoviensis.

Second, the ammonium/nitrite inhibition of nitrifiers

may play important roles in their niche differentiation

(Prosser and Nicol, 2012) as the growth and activity of

nitrifiers were inhibited by different concentrations of FA

and FNA (Anthonisen et al., 1976; Liu et al., 2019). A

previous study showed that FA inhibition concentrations

of AOB and NOB were 10–150mg NH3-N/L and 0.1–

1.0mg NH3-N/L, respectively (Anthonisen et al., 1976).

Also, the oxidation rate of Nitrosomonas and Nitrobacter

decreased when FNA concentrations reached 0.10 (Vadivelu

et al., 2006) and 0.011mg HNO2-N/L, respectively, and

was completely inhibited at the FNA concentration of

0.40mg and 0.023mg HNO2-N/L, respectively (Vadivelu

et al., 2007), which are consistent with the results of

this study, showing that high ammonium concentrations

inhibited the growth of N. inopinata and N. moscoviensis,

but no obvious inhibition was observed for N. communis.

In addition, we found 2mM ammonium would inhibit

both ammonium oxidation and growth of AOA, which

agrees with a previous study that shows an inhibition

concentration of 3.08mM ammonium (Hatzenpichler

et al., 2008). Therefore, our results indicated that the

ammonium/nitrite tolerance was different among these

nitrifiers, which could explain the dominance of AOBs at high

ammonium concentrations.

Third, the specific growth rate of nitrifiers under different

ammonium concentrations may provide new insights into our

understanding of niche differentiation. Generally, the growth

rate of nitrifiers against substrate concentrations is described

by the Monod equation (Prosser and Nicol, 2012). Previous

studies showed that AOBs had higher specific growth rates

than AOAs (Prosser and Nicol, 2012; Terada et al., 2013), and

comammox nitrifiers were predicted to have a lower specific

growth rate than canonical ammonia oxidizers (Costa et al.,

2006). Kits et al. (2017) reported that the maximum specific

ammonia oxidation activity of N. inopinata and N. gargensis

was 0.032 h−1 (37◦C) and 0.028 h−1 (46◦C), respectively, and

the specific ammonia oxidation activity of N. gargensis was

0.014 h−1 at 37◦C. In this study, we found that N. communis

had the highest maximum specific growth rate, followed by

N. inopinata, N. moscoviensis, and N. gargensis from N1, N2A,

and N2B, respectively, which was different from the prediction

of comammox (Costa et al., 2006). However, the maximum

specific growth rates of nitrifiers were different in N4, with

the highest maximum specific growth rate for N. inopinata,

followed by N. communis, N. gargensis, and N. moscoviensis,

indicating complex interactions among metabolically distinct

nitrifiers. Such interactions and underlying mechanisms need to

be further explored in future.

Based on the aforementioned results and current knowledge,

we developed a conceptual model to understand kinetics-

driven niche differentiation among those nitrifiers. It may be

generally assumed that comammox had the highest ammonia

affinity, followed by non-marine AOAs and AOBs, and NOBs

had higher nitrite affinity than comammox when ammonium

was used as the substrate. AOBs had the highest maximum

specific growth rate or activity, followed by comammoxs,

NOBs, and AOAs. The growth or activity of nitrifiers was

inhibited by ammonium for AOAs, comammoxs, and AOBs

sequentially, and NOBs appeared to tolerate higher nitrite

than comammoxs. It is also noted that nitrite produced by

N. inopinata (comammox) may be converted in the periplasm

(Daims et al., 2015), and nitrite may leak out of comammox

cells for NOB growth, as observed in this study, which

may relieve its ammonium/nitrite inhibition and entail NOB

abundance, which were higher in N4 at high ammonium

concentrations (Figure 5B). Also, we used the aforementioned

kinetics parameters (e.g., ammonia affinity, maximum specific

growth rate, and ammonium oxidation rate) to construct the

niche differentiation model of nitrifiers (Figure 6A), predicting

that comammox might be dominant at low and moderate

ammonium concentrations, and AOBs at high ammonium

concentrations, which was different from our hypothesis.

However, the chosen temperature was not optimal for AOAs,

and the tested ammonium concentrations appeared not to be

sufficiently low, preventing us from observing the predominance

of AOAs at the lowest ammonium concentration tested in

this study (Figure 6B). Our results showed that NOBs would

utilize nitrite leaked by comammox when ammonium was

high (e.g., 2mM). The niche differentiation of comammoxs

and NOBs for nitrite oxidation with ammonium as substrate

was predicted (Figure 6C), and NOBs would also take leaked

nitrite from comammox for growth, indicating their complex

interactions. These results indicated that ammonia affinity,

substrate inhibition, and specific growth rates could drive niche

differentiation and potential interactions among metabolically

distinct nitrifiers in response to ammonium concentrations in

the environment.

Conclusion

In summary, we constructed SNCs with four types of

nitrifiers to understand niche differentiation in response to

ammonium concentrations and found that niche differentiation

was driven by ammonia affinity, specific growth rate, and

ammonium/nitrite tolerance under a gradient of ammonium

concentrations among those nitrifiers. In the N4 community,

the dominant species was shifted from comammoxs to

AOBs as ammonium concentrations increased. Comammox
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predominated at low ammonium concentrations due to its high

ammonia affinity and high maximum specific growth rates.

AOB predominated at high ammonium concentrations due

to its high maximum specific growth rate, high ammonium

oxidation rate and no obvious inhibition by ammonium. AOA

had constantly low growth rates due to its weak competitiveness

with comammox (0.2 to 1mM) and AOB (2mM), and

inhibition by high ammonium concentrations (≥10mM).

Niche differentiation of NOBs could be compromised by

comammox at 0.2 to 2mM ammonium and inhibited by high

ammonium/nitrite concentrations. Although the mechanism

of nitrifier interactions and trade-offs between ammonium

concentration and abundance detection sensitivity needs to be

further explored, this study advances our understanding of

niche differentiation of nitrifiers in response to ammonium

concentrations in the environment, and it has important

implications for exploring interactions among metabolically

distinct nitrifiers using the established SNCs and multi-

omics technologies.
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