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Rapid population growth and urbanization process have led to increasing
demand for wastewater treatment capacity resulting in a non-negligible
increase of wastewater treatment plants (WWTPs) in several cities around
the world. Bioaerosol emissions from WWTPs may pose adverse health risks
to the sewage workers and nearby residents, which raises increasing public
health concerns. However, there are still significant knowledge gaps on the
interplay between process-based bioaerosol characteristics and exposures
and the quantification of health risk which limit our ability to design effective
risk assessment and management strategies. This review provides a critical
overview of the existing knowledge of bioaerosol emissions from WWTPs
including their nature, magnitude and size distribution, and highlights the
shortcoming associated with existing sampling and analysis methods. The
recent advancements made for rapid detection of bioaerosols are then
discussed, especially the emerging real time detection methods to highlight
the directions for future research needs to advance the knowledge on
bioaerosol emissions from WWTPs.

KEYWORDS

bioaerosol, wastewater treatment plant, real time detection, emission
characteristics, in situ measurement

Introduction

Rapid population growth and urbanization increased industrial process and other
economic activities are all contributing to significant increase of wastewater generation,
which is associated with a growing number of wastewater treatment plants (WWTPs) in
cities. These WWTPs are often in close proximity to residential areas (Mateo-Sagasta et al.,
2015; IWA and OFID, 2018; OECD, 2019). Wastewater treatment generally undergoes
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pre-treatment, secondary treatment and advance treatment, while
sludge is normally treated by dewatering process followed by
stabilization prior to being used or disposed of in a WWTP
(Korzeniewska, 2011; Mateo-Sagasta et al., 2015). Activated sludge
and bio-membrane methods within WWTP infrastructures have
been widely applied to treat wastewater, which take advantage of
the aeration process during treatment.

Raw wastewater contains various microorganisms, such as
bacteria, virus, fungi, and some of them are pathogenic. During
the aeration process, these microorganisms can aerosolize from
wastewater to the air forming bioaerosols. These can impact on
human health by way of inhalation or ingestion, leading to a range
of health effects (allergenicity, toxicity, and infectivity) especially
in sewage workers and nearby communities (Gerardi and
Zimmerman, 2005; Fracchia et al., 2006; Korzeniewska et al.,
2008; Kim et al,, 2018) as well directly impacting regional air
quality (Upadhyay et al., 2013). Moreover, operations involving
mechanical agitation can accelerate the dispersal of bioaerosols
(Papke and Ward, 2004). Thus, WWTPs are considered to be an
important source of bioaerosol emissions (Michalkiewicz, 2019).
Figure 1 illustrates the bioaerosol dynamics from different typical
sources at WWTPs and describes how various factors affect
aerosolization, transport, dispersal, decay, exposure and potential
health effects from emissions at wastewater treatment plants. This
information is vital to understanding the processes and factors
affecting the WWTPs aerobiology to inform the development and
implementation of control measures.

A wide range of microbial species are found within bioaerosol
emissions from WWTPs, including heterotrophic/mesophilic
bacteria, fungi, and pathogenic organisms (Korzeniewska, 2011),
as well as their metabolic products such as endotoxins
(1,3)-B-D-glucan molecules and mycotoxins (Garcia-Alcega et al.,
2017; Mbareche et al., 2019). Moreover, norovirus and adenovirus
are significant viral species among bioaerosol emissions from
WWTPs (Masclaux et al., 2014). Furthermore, actinomycetes and
fecal coliform bacteria have also been investigated (Vitézovd et al.,
2012; Lietal,, 2013). Since the start of COVID-19 pandemic, there
has been growing interest in understanding the fate of
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SARS-CoV-2 virus in WWTPs and potential transmission
through fecal-oral and fecal-inhalation routes (Foladori et al.,
2020; Heller et al., 2020), and most importantly, the WWTP
associated bioaerosols was considered to hold the potential as the
early indicator for future pandemics (Singh et al., 2021).

Air samples collected around mechanical and biological
treatment sites in WW'TPs have shown microorganisms less than
2 pm in size (Bauer et al., 2002; Kowalski et al., 2017; Hsiao et al.,
2020). These fine size fractions of bioaerosols have longer airborne
residence time enabling their long-distance transport from their
sources and can potentially reach the alveolar region of the
respiratory tract. Specifically, pathogenic bacteria, fungi and yeast
such as Citrobacter, Enterobacter, Klebsiella, Serratia, Pantoea
were identified as being in inhalable range (Filipkowska et al.,
2002, 2007, 2008; Korzeniewska et al., 2007, 2008, 2009).

Since the late 1970s, it was reported that several typical
symptoms were frequently found on the WWTP’s employees,
named ‘sewage worker’s syndrome’ (Rylander et al., 1976; Clark,
1987; Hung et al, 2010; Stellacci et al, 2010). The main
characteristics of those symptoms are malaise, fatigue, weakness,
headache, dizziness, acute rhinitis, fever, respiratory diseases
(Hung et al., 2010; Stellacci et al., 2010). Studies have suggested
that there was a strong connection between ‘sewage worker’s
syndrome’ and bioaerosol emissions (Cyprowski and Krajewski,
2003; Patentalakis et al., 2008). Nonetheless, further investigation
will enhance the evidence base to strengthen the association
between casual agents of sewage worker’s exposure and ill health
outcomes (Van Hooste et al., 2010; Mbareche et al., 2022).
Consequently, concurrent with a growing number of WWTPs,
there have been increasing concerns over public and
environmental health risks associated with bioaerosol emissions
from WWTPs, and the risk assessment of bioaerosols from
WWTPs became significant to regulations of workplace safety and
community public health (Peccia et al, 2008). However, the
evidence base on nature and magnitude of bioaerosol emissions
from WWTPs and potential public health impacts remains
inconclusive primarily due to methodological constraints
associated with diverse sampling and analysis methods,
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insufficient dose-response data, and varied health endpoints (Tian
et al., 2020; Mbareche et al., 2022). Hence, both operators and
regulators are facing considerable challenges to devise
proportionate risk-based operation and policies to permit efficient
management of potential risks to human and environmental health.

This paper aims to review the existing state of knowledge on
emission characteristics of bioaerosols from WW'TPs, with a view
to highlight the shortcoming associated with existing methods,
discuss the recent advancements and identify future directions for
research to advance the knowledge on bioaerosols emissions
from WWTPs.

State of the art

Overall, the scientific literature on bioaerosol emissions from
WWTPs is limited. A review of the literature was conducted to
examine the progress on detection and characterization methods
of bioaerosols in WWTPs, using major citation databases (Scopus,
Web of Science, Google scholar). The studies were grouped
according to different sampling methods and analytical approach.
Table 1 provides a brief overview of representative studies
conducted to understand the nature, magnitude, and size
distributions of different analytes during varied sampling duration.

Sampling and analytical methods

To assess the risk of bioaerosols from WWTPs, different
sampling and analytical methods have been applied for the
qualitative and quantitative studies of bioaerosols. Major sampling
methods involve bioaerosols collection through impaction,
impingement, filtration, and cyclone followed by a range of post
collection analysis methods. Broadly, those methods can
be divided into culture-based and culture-independent methods,
and the advantages and disadvantages of different sampling and
analytical approaches have been intensively discussed in literatures
(Mainelis, 2020; Kathiriya et al., 2021). Majority of studies on
emission characteristics of bioaerosols were based on cultivation
methods (Brandi et al., 2000; Bauer et al., 2002; Karra and
Katsivela, 2007; Vitézova et al., 2012; Li et al., 2013; Niazi et al.,
2015; Katsivela et al., 2017; Kowalski et al., 2017; Michalkiewicz,
2019). Typical processes of culture-based methods entail three
stages including (i) sampling, (ii) incubation and (iii) enumeration.
During the sampling stage, viable airborne microorganisms are
collected either by impaction, filtration or impingement and
transferred onto the culture medium (e.g., agar, depends on the
targeted microorganisms; Korzeniewska, 2011; Mainelis, 2020).
After sample collection, colonies of bacteria and fungi are
incubated on a defined solid media and temperature for a period
ranging between 2 and 7 days. The concentration of bioaerosols is
then determined by counting colony formed and expressed as
colony-forming units (CFUs) per 1 m’ (Korzeniewska, 2011;
Mainelis, 2020). The culture-based methods for bioaerosols are
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relatively sensitive and widely used in bioaerosols quantification
(Douwes et al., 2003), however, they have some disadvantages
such as low repeatability, relying on the incubation conditions and
poor time resolution. Further to this and most importantly, there
is a vast number of viable but non-culturable (VBNC)
microorganisms in the environment, and therefore culture-based
methods are leading to a significant underestimation of the actual
viable bioaerosol concentrations in air samples. In order to
improve quantitative and qualitative analysis of bioaerosols,
several culture-independent methods have been developed, such
as staining method, immunoassay method, molecular method
(e.g., polymerase chain reaction, PCR; Carducci et al., 2000;
Ranalli et al., 2000; Orsini et al., 2002; Thorn et al., 2002; Pascual
etal,, 2003; Cyprowski et al., 2011; Masclaux et al., 2014; Mbareche
et al,, 2017; Ferguson et al., 2019; Liu et al., 2020). These new
methods, specifically that utilize DNA/RNA based approaches
along with Next Generation Sequencing (NGS) technologies
showed great capability in improving the understanding of
identities, distribution, abundance, diversity and function of
airborne microbial communities in WWTPs. (Liang et al., 2012;
Brisebois et al., 2018; Han et al., 2019; Corpuz et al., 2020; Kabir
et al.,, 2020; Han et al., 2020b; Bhardwaj et al., 2021; Kathiriya et al.,
2021; Mbareche et al., 2022). To conclude, the existing evidence
base on bioaerosol emission from WWTPs stems from a range of
sampling and post-collection analysis methods ranging from
culture-based methods to immunoassay and advanced molecular
methods. Whilst these have advanced knowledge of bioaerosol
emission from WWTPs, harmonization of sampling methods,
sampling design and analytic methods is lacking. A decision tree
framework will help to evaluate the relevance and utility of
different sampling and analytical methods to a specific endpoint.

Nature and magnitude of bioaerosol
emissions

In a study by Niazi et al. (2015), the results showed that
Bacillus, Staphylococcus spp., and Micrococcus spp. were the most
frequently observed bacteria types in the bioaerosols emitted
from WWTPs, while the dominant fungi species were
Cladosporium spp. and Penicillium spp. Similarly, Michalkiewicz
et al. (2011) pointed out that Corynebacterium, Bacillus spp.,
Staphylococcus spp., Pseudomonas aeruginosa and Micrococcus
spp. were the prevalent bacteria in their study and these
potentially pathogenic infectious bacteria can pose a serious
hazard to onsite workers an nearby communities. Another study
done by Breza-Boruta and Paluszak (2007) showed that
Pseudomonas were the predominant bacteria species. The most
occurring species recorded by Kowalski et al. (2017) were Gram-
positive cocci and non-sporing Gram-positive rods. Moreover,
some by-products of airborne microorganisms’ agents such as
(1-3)-B-D glucans and bacterial endotoxin are being measured
because of their toxic potency, immunological and allergic
reactions through exposure (Thorn et al., 2002; Cyprowski et al.,
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2011). Additionally, viruses were also investigated as the
pathogenic viral particles in WWTP air that can partly explain
the work-related symptoms (Masclaux et al., 2014; Brisebois
et al, 2018; Corpuz et al,, 2020). Additionally, mesophilic
heterotrophic bacteria (total coliforms, fecal coliforms, and
enterococci), Escherichia coli (or E.coli) and staphylococci were
monitored in the surrounding air at different stages of wastewater
treatment since they are the indicators of fecal pollutants in the
wastewater (Michalkiewicz, 2019).

Bioaerosol emissions were found to exist in every stage of
wastewater treatment, and highly variable during different stages
of wastewater treatment (Li et al., 2013; Michalkiewicz, 2019; Han
et al., 2020a), with a concentration from 10 to 10* CFU/m? for
viable bacterial and fungal aerosols. Moreover, mechanical
agitation, aeration tanks and pre-treatment section were generally
considered to be the highest concentrations of bioaerosols (Li
et al,, 2016; Kowalski et al., 2017; Michalkiewicz, 2019). Though
many studies have been done to establish the risk assessment
procedure at WWTP such as quantitative microbiological risk
assessment (QMRA), however, there is no uniform standards for
assessing concentrations of airborne microorganisms on the
workplace especially for WWTPs. At present, there is only limited
regulations about the critical values people were exposed to
bioaerosol concentrations. In the United Kingdom Environment
Agency (2017), published a guidance about the environmental
monitoring strategy of bioaerosols at regulated facilities proposing
the use of culture based methods and sample collection by
impaction and filtration. Michalkiewicz (2019) pointed out that
there are no limit values for microorganisms and endotoxins in
the air on worksite in Poland. Overall, the bioaerosol emissions
from WWTPs are diverse (including bacteria, fungi, viruses, and
secondary metabolites), and concentrations are highly variable
depending upon multiple operational and meteorological
variables affecting the timing, intensity, spatial extent and duration
of emissions.

Size distribution of bioaerosol emissions

Dominant size ranges of airborne bacteria and fungi ranged
between 2.1 and 3.3 pm at clarifiers and sludge post-processing
stages, and between 3.3 and 4.7 pm near mechanical treatment and
aeration tanks (Kowalski et al., 2017). Li et al. (2013) revealed that
majority of bacteria, fungi and actinomycete aerosols were in
respirable size range (less than 3.3 pm), which have high potential
to cause adverse health effects. Recent work by Hsiao et al. (2020)
further indicated that submicron particles are major contributors
to both the number and volume concentration of particles in
the WWTP.

Bioaerosol particle morphological characteristics such as
size distribution, surface area and asymmetry factor (AF i.e.,
shape/aspect ratio, or sphere/rod) are also central to
understanding emissions and downwind dispersal from source
of particles (Vestlund et al, 2014). These morphological
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characteristics, especially size distribution, highly affect
bioaerosol particles behavior and are important factors in
predicting their dispersal (Madelin and Johnson, 1992). For
example, the deposition rates for bioaerosols and non-biological
particles are a function of particle size, rather than the nature of
the particle (Kaye et al., 2000; Ho, 2002; Kénemann et al., 2019).
However, the particle size distributions of bioaerosol emissions
are affected by multiple complex mechanisms as the particles
will disintegrate into smaller fragments or single spores due to
the disturbance/agitation activities of release mechanisms or
during the sampling campaign (Madelin and Johnson, 1992), In
addition, the emission characteristics of bioaerosols vary with
time and process. For instance, the dominant bioaerosol particle
size generated in the bubble bottom aeration is dominated by
particles less than 3.3 pm in size while the brush surface aeration
is particles larger than 3.3 um (Han et al., 2020b). Whilst the
knowledge on size distribution of bioaerosol emissions from
different operational stages of WW'TPs is limited, the available
evidence suggests the dominance of respirable size fraction. This
has implications for transport, dispersion, exposure, and
resultant health impacts.

Factors responsible for bioaerosol
emissions characteristics

Numerous studies indicated that the concentration of
bioaerosols in WWTPs were influenced by the sampling
location (Breza-Boruta and Paluszak, 2007), type of wastewater,
aeration method, climatic conditions, wastewater treatment
equipment, sunlight, wind speed, and relative humidity (Karra
and Katsivela, 2007; Michalkiewicz et al., 2011). Specifically, the
concentration of fungal aerosols was largely found at
pre-treatment, primary treatment and grit chamber stages
(Pascual et al., 2003; Kim et al., 2010; Niazi et al., 2015).
Michalkiewicz et al. (2011) also reported that several key factors
influenced bioaerosols emission from WWTP including: (a)
turbulence and tremor in wastewater, (b) wind speed and
direction and wind effect level, and (c) rainfall. In contrast to
mechanical aeration, the diffusion aeration system undergoes
less turbulence (Niazi et al., 2015). There was a significant
relationship  between environmental parameters and
concentrations of bacterial and fungal bioaerosols. Among the
different meteorological conditions recorded by Niazi et al.
(2015), significant correlations were found between bacteria
concentrations and temperature, and fungal concentrations and
relative humidity in air. Similarly, Jones and Harrison (2004)
reported that temperature and water availability will affect the
size and growth of the bioaerosol source material. For instance,
the water availability is critical to stimulate the release of fungal
spores. Similarly, wind speed can affect the bioaerosol
concentration through atmospheric mixing and removal of
biological materials from surfaces. In general, a range of
wastewater treatment processes along with meteorological and
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topographical conditions affect the emissions, fate and behavior
of bioaerosols.

Key barriers to advance
bioaerosols detection and
characterization

As summarized in Table 1, a range of sampling/collection and
analysis methods have been applied for the identification and
quantification of bioaerosols. Each method has its own advantages
and disadvantages. Depending on different analytes and health
endpoint, appropriate sampler and analysis approach should
be chosen to improve the efficiency of bioaerosols collection for
subsequent analysis (Haddrell and Thomas, 2017). However, there
are major limitations that impeded our understanding of
bioaerosol emissions from WWTPs. For both culture-based and
culture-independent methods, the collection efficiency and bio
efficiency of different sampling methods are variable and relatively
low (Pohlker et al., 2012). This can largely affect the viability,
cultivability, size, and representativeness of sampled particles,
which leads to the underestimation of the bioaerosols and limit
our understanding of bioaerosol emissions. Besides, those
methods can only provide snapshot data with low temporal
resolution, which is difficult to capture the true nature and
magnitude of bioaerosol emissions from WWTPs (Mainelis, 2020;
Santl-Temkiv et al, 2020). Additionally, poor repeatability
(affected by the culture environment, e.g., temperature, relative
humidity), selectivity to certain species, and labor intensiveness
are also the disadvantages of cultivation method (Griffiths and
DeCosemo, 1994; Heidelberg et al., 1997; Chi and Li, 2007;
Korzeniewska, 2011).

To summarize, those existing methods are limited in
providing the information on the size, fate and behavior of
bioaerosol particles. Therefore, there is a need for improving the
understanding of the temporal variation of the nature, magnitude
and size distribution regarding to different processes in WWTPs,
which can greatly contribute to the risk analysis modelling thus
improving public health applications and management.

Real time detection and
characterization of bioaerosol
emissions

In recent years, significant technological advancements have
been made to develop rapid detection and characterization
methods for bioaerosols, such as flow cytometry in conjunction
with fluorescent technique (FCM/FL), laser induced breakdown
spectroscopy (LIBS), laser/light-induced fluorescence (LIF),
biochemistry and molecular biology analysis, aerosol mass
spectrometry (MS) focusing on physical, chemical, and biological
characterization of bioaerosols (Chen and Li, 2007; Steele et al.,
2008; Ghosh et al., 2015; Druckenmiiller et al., 2017; Fennelly
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et al., 2017; Nasir et al., 2018; Zhang et al., 2019; Negron et al,,
2020; Santl-Temkiv et al., 2020; Bhardwaj et al., 2021). Typically,
each method offers different information on the complex mixture
of atmospheric bioaerosls. For instance, LIBS and MS provides
elemental composition of the particles in comparison to direct
analysis of biochemical composition by different biochemistry and
molecular biology analysis. Whilst LIBS and MS can rapidly
record the elemental composition of single particles, detection and
discrimination of biological materials is limited. Similarly,
biochemical analysis can offer high sensitivity and selectivity but
these are labor intensive and provide data with low temporal
resolution. However, among these techniques, fluorescence
spectroscopy has shown great potential to detect and broadly
classify bioaerosols non-destructively in real time. Instruments
based on LIF and/or elastic scattering have shown their capability
and utility to detect and characterize bioaerosols in real-time in a
range of ambient environments and sources (Nasir et al., 2019).

Briefly, the LIF based instruments interrogates the
characteristic intrinsic fluorescence emission of particles and
record the size, shape, and fluorescence spectra of single particles
with high time resolution. These have been deployed into both
laboratory and field studies. For example, Ultraviolet Aerodynamic
Particle Sizer (UV-APS), Wideband Integrated Bioaerosol Sensor
(WIBS) series (Healy et al., 2014; Oconnor et al., 2014; Perring
et al., 2015; Crawford et al., 2016), Rapid-E (Sikoparija, 2020),
Swisens Poleno (Sauvageat et al., 2020) and Spectral Intensity
Bioaerosol Sensor (SIBS), have been employed in the bioaerosol
monitoring in different environments (Nasir et al., 2018, 2019).

The LIF based devices present spectral resolution in the form
of excitation-emission matrix (EEM; Pohlker et al., 2012). There
are three-excitation wavelength bands, which are the most
commonly, used for distinguishing bioaerosol particles (Huffman
and Santarpia, 2017). The excitation at approximately 255-285 nm
band has been utilized to distinguish certain amino acid residues
(Pohlker et al., 2012). The excitation at approximately 340-370 nm
band has been shown to promote fluorescence from the ubiquitous
biological coenzyme biofluorophore NADH (Kaye and Hirst,
2011). Some LIF devices also use 450 nm to excite riboflavin and
a variety of flavoproteins in bioaerosol particles (Pan, 2015).

The use of dual-wavelength excitation (e.g., 285 or 280 nm,
and 370nm) and the measurement of fluorescence in broad
emission detection bands along with size and shape of single
particles in real time is most prevailing approach. However, it is
difficult to discriminate between different types of bioaerosols
based on broad fluorescence emission detection bands (Pohlker
etal,, 2012). The detection systems comprised of dual wavelength
excitation and generating highly resolved spectral information of
single particles in real time have been developed to overcome this
challenge. For instance, SIBS is able to provide highly resolved
spectral information (measuring fluorescence emission spectra in
16 wavelength bands) as compared to broad emission bands in the
WIBS and other LIF based devices (Nasir et al., 2018, 2019;
Konemann et al, 2019). Table 2 presents a comparison of
parameters for different LIF based bioaerosol detection systems.
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The application of these in field measurements in WWTPs
are rare. Li et al. (2016) and Hsiao et al. (2020) both employed
UV-APS for the detection of fluorescent particles and reported
that the peak concentration of fluorescent particles was centered
at 3-4pm, which suggests the contribution from bacterial
aggregates or fungal spores. Whilst, Tian et al. (2020) found the
predominant size range is 0.5-1 pm by utilizing a SIBS. This is
probably due to the differences in the excitation and emission
bands. The UV-APS has 355nm excitation wavelength and
records emission at 420-575nm to detect fluorescent particles
in comparison to dual wavelength excitation and multi-channel
emission measurements of SIBS. The highly resolved
fluorescence spectra provided by SIBS may have the potential to
elucidate the contribution of bioaerosols to total particles, the
impact of various processes specific activities and the biological
materials associated with airborne particles at WWTPs. Such
investigations of bioaerosol emissions characteristics from
WWTPs are of great value to better understand the size
distribution and composition of emission profiles. This is
critical for advancing and improving modelling methods to
simulate dispersion of bioaerosols from WWTPs and the
resultant health and environmental impacts.

To summarize, the high temporal resolution of size and
number concentration data could greatly enhance the
understanding of fate and behavior of bioaerosols, and likely
deposition in the human respiratory tract. In combination with
dose response studies, it has potential to better unravel the health
effects of bioaerosols. Concurrently, high time resolution data
could improve the understanding of transient emission dynamics,
diurnal and annual cyclical variability of bioaerosol emissions,

thus informing management strategies for bioaerosol emissions.

Challenges for real time detection
and characterization of
bioaerosols

Whilst LIF based instruments have the potential to
instantaneously detect airborne biological materials and provide
an overall contribution of bioaerosols to total particles, there are
still challenges with regards to confidence in their ability to
discriminate biological and non-biological particles and categories
biological particles. To begin with, fluorescent particles are not
equivalent to viable bioaerosols, though live unculturable
microorganisms can be detected, however the dead but
morphologically intact microorganisms can also be quantified by
fluorescence-based methods (Burdsall et al.,, 2021). Similarly,
fluorescence from interfering non-biological compounds also
make the discrimination of particles challenging. Hence, the
development of more effective fluorescence threshold strategies
will enable to filter the interfering particles and maximize the
proxy for bioaerosols. There is also a need for developing standard
reference materials for fluorescence measurements and
intercomparison of LIF based measurements.
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TABLE 2 Comparison of parameters for different LIF based bioaerosol detection systems.

SIBS

WIBS-5

WIBS-4A

10.3389/fmicb.2022.958514

Rapid-E

Measured parameters 1. Particle size

2. Asphericity

3. Fluorescence spectra
Particle size range ~0.5-30pm
285 and 370nm

1. Particle size

2. Asphericity

3. Integrated fluorescence in
three channels

~0.5-30pm

280 and 370 nm

1. Particle size

2. Asphericity

3. Integrated fluorescence in
three channels

~0.5-31pm

280 and 370 nm

1. Particle size

2. Particle shape (scattering
images)

3.Fluorescence spectra
0.5-100 pm

320nm

Fluorescence excitation (4.,)

Fluorescence emission bands

(Aem)

Amean =302-721 nm (16-channels)

310-400 nm and 420-650 nm

310-400 and 420-650 nm 350-800nm (32 channels)

Following on, to enhance selectivity and discrimination of
bioaerosol emissions, the highly resolved fluorescence intensity
measurements (such as with SIBS) can help to discriminating
between different biological particle types depending on their
biofluorophore signatures due to significantly resolved spectral
resolution. However, the key limitation is the information
provided by resolved emission spectra requires meaningful
interpretation (Kénemann et al., 2019; Nasir et al., 2019). The
assignment of fluorescence to specific biological fluorophores
within atmospheric particles is challenging due to the complexity
of the molecular environment (Pan, 2015) and the overlap of
mixed signals from different fluorophores (e.g., mineral dust,
polycyclic aromatic hydrocarbons, humic-like interferences;
Pohlker et al.,, 2012). Advanced data analysis ecosystems need to
be developed to improve the discrimination and processing speed
of analysis along with lab studies to improve certainty and
validation of assigning spectral signatures to atmospherically
relevant biological fluorophores.

Conclusion and future directions

Overall, bioaerosol emissions from WWTPs presents a
multicomponent/heterogeneity in nature, and highly variable in
magnitude and particle size distribution with reference to different
wastewater treatment unit and processes, which is of increasing
health concern of nearby residential and occupational settings
along with the urbanization process and population growth.

The advancements in real-time detection methods have
shown the potential to overcome the methodological constraints
enabling to detect and characterize the temporal variability of
bioaerosols. However, long-term field investigations will help to
better understand the dynamics of bioaerosol emissions from
WWTPs and efficiently resolve public health issues relating to
wastewater and bioaerosols. Depending on the treatment methods
and type of wastewater, the categories and level of bioaerosol
emissions could vary greatly. Hence, it is vital to conduct
laboratory studies with biofluorophores, biological and
non-biological particles in conjunction with other complementary
methods (such as fluorimetry, gas chromatography, molecular
methods) as well as in situ measurement to develop and validate
library/network, database, and selective assignment of spectral
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responses to bioaerosol classes, for better discriminating
bioaerosol particles and identifying the hazards with regards to
various emission sources. In addition, studies on inter-technique
comparability of fluorescence-based detection with advanced
molecular methods will help to evaluate their reliability and utility
to inform bioaerosol risk management at WWTPs. Simultaneously
significant progress is required in the development of data
thresholds
discrimination between different biological particles.

analytics for optimizing fluorescence and

Moreover, long-term in situ measurements will help to probe
the temporal variation in the concentration and size distribution
of bioaerosols to inform regulations concerning with occupational
exposure and take measures to effectively mitigate bioaerosol
emissions (e.g., avoid exposing to the time period with higher
concentrations of emissions). A holistic system approach, involving
multiple disciplines such as environmental science, engineering,
microbiology, aerosol science, toxicology and epidemiology will
pave the way to advance the knowledge on the factors and
mechanisms influencing bioaerosol emissions and resultant health
impacts. Process-based quantitative microbial risk assessment
(QMRA) and dose response studies will also advance the evidence
base on the exposure risk of bioaerosols released from WWTPs.
Additionally, studies focusing on investigating the interaction of
bioaerosols with abiotic components including other air pollutants
will help to better understand the transformation, and the
governing influences on viability, toxicity, and infectivity during
airborne transport. This will inform the studies on exposure
assessment and mechanism of toxicity enhancing the evidence base
to better understand the dose-response relationships.

Advancement in detection and characterization of bioaerosols
is critical in gaining insights into physicochemical and biological
characteristics of emissions from WWTPs and elucidating their
impacts in the context of public health (allergenicity, toxicity, and
infectivity). This new knowledge will underpin the development
of proportionate risk assessment and management policies and
strategies to protect public health while ensuring the development
of wastewater treatment infrastructure.
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