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β-Lactams have been a clinical focus since their emergence and indeed

act as a powerful tool to combat severe bacterial infections, but their

e�ectiveness is threatened by drug resistance in bacteria, primarily by the

production of serine- and metallo-β-lactamases. Although once of less

clinical relevance, metallo-β-lactamases are now increasingly threatening.

The rapid dissemination of resistance mediated by metallo-β-lactamases

poses an increasing challenge to public health worldwide and comprises

most existing antibacterial chemotherapies. Regrettably, there have been no

clinically available inhibitors of metallo-β-lactamases until now. To cope with

this unique challenge, researchers are exploring multidimensional strategies

to combat metallo-β-lactamases. Several studies have been conducted to

develop new drug candidates or calibrate already available drugs against

metallo-β-lactamases. To provide an overview of this field and inspire more

researchers to explore it further, we outline some promising candidates

targeting metallo-β-lactamase producers, with a focus on Escherichia

coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter

baumannii. Promising candidates in this review are composed of new

antibacterial drugs, non-antibacterial drugs, antimicrobial peptides, natural

products, and zinc chelators, as well as their combinations with existing

antibiotics. This review may provide ideas and insight for others to explore

candidate metallo-β-lactamases as well as promote the improvement of

existing data to obtain further convincing evidence.

KEYWORDS

antibiotic resistance, metallo-β-lactamases, novel drug strategies, Escherichia coli,

Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii

Introduction

β-Lactams, mainly penicillins, cephalosporins, carbapenems, and monobactams,

are the most important and frequently used classes of antibiotics in medicine and

play a vital role in the treatment of severe gram-negative infections. They inhibit the

synthesis of bacterial cell walls by mimicking the natural substrates of transpeptidase
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and preventing cross-linking of adjacent peptidoglycan strands

(Bush and Bradford, 2016). In recent years, however, the

efficacy of antibiotics has been threatened by a global rise in

drug resistance, of which resistance to β-lactams is mainly

mediated by β-lactamases (Eurosurveillance Editorial, 2015).

Carbapenem-resistant Enterobacteriaceae, carbapenem-

resistant Pseudomonas aeruginosa (P. aeruginosa), and

carbapenem-resistant Acinetobacter baumannii (A. baumannii)

have been listed by the World Health Organization (WHO)

as pathogens that urgently need to be studied in research

aiming to develop new antibiotics because of the emergence of

these drug-resistant pathogens; due to the limited number of

treatments, these resistant bacteria pose a serious public health

problem (Tangden and Giske, 2015; WHO, 2017).

β-lactamases fall into four categories, namely, Ambler

classes A, B, C, and D. Classes A, C, and D feature active-

site serine β-lactamases (SBLs), and class B contains zinc-

dependent metallo-β-lactamases (MBLs) (Tooke et al., 2019).

MBLs require one or two zinc ions for enzyme activity and

are further divided into three subclasses (i.e., B1, B2, and B3),

based primarily on their metal content and the characteristics of

different active sites (Boyd et al., 2020). Among antimicrobial

resistance, the expression of β-lactamases, especially MBLs,

is of particular interest (Boyd et al., 2020). Most MBLs that

have been identified in clinical isolates thus far belong to

subclass B1, among which the New Delhi metallo-β-lactamase

(NDM), Verona imipenemase (VIM), and imipenemase (IMP)

families are the three most common types (Hansen, 2021).

MBLs are a particular challenge for several reasons: (i) They

have the ability to hydrolyze and develop resistance to virtually

all existing β-lactam antibiotics; (ii) there are almost no

clinically useful drug regimens for MBLs; (iii) there is a

rapid pace of isolation and discovery of new varieties; (iv)

their coding genes are easily transferred; and (v) they are

ubiquitous in hospitals and the natural environment. Over

the past decade, great progress has been made in antibiotic

development. Newly approved combinations of β-lactam/β-

lactamase inhibitors, such as ceftazidime-avibactam (CAZ-AVI),

have emerged as new options for the treatment of drug-

resistant bacterial infections related to β-lactamases (Shirley,

2018). However, these new antibiotics only have activity against

SBLs, not MBLs, making the fight against MBLs a challenging

public health problem (Boyd et al., 2020). Infections caused

by MBL-positive isolates not only contribute significantly to

increased patient morbidity and mortality, length of hospital

Abbreviations: P. aeruginosa, Pseudomonas aeruginosa; A. baumannii,

Acinetobacter baumannii; SBL, serine β-lactamases; MBL, metallo-

β-lactamases; NDM, New Delhi metallo-β-lactamase; VIM, Verona

imipenemase; IMP, imipenemase; CAZ, ceftazidime; AVI, avibactam; E.

coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae; FDA, Food

and Drug Administration; DBO, diazabicyclooctane; AMP, antimicrobial

peptides; AMA, Aspergillomarasmine A.

stay, and medical costs but also face limited therapeutic options

(Boyd et al., 2020). Moreover, the current COVID-19 pandemic

further aggravated this scenario (Falcone et al., 2021b;Westblade

et al., 2021). Several recent reports have described that COVID-

19 patients have an increased risk of MBL-CRE acquisition

compared with usual patients, adding to the challenge of

managing COVID-19 patients (Farfour et al., 2020; Nori et al.,

2020; Porretta et al., 2020). Nori et al. reported five cases

of NDM-producing Enterobacterales infections in New York

City COVID-19 patients, which may be the first reported

cases of NDM emergence in COVID-19 patients (Nori et al.,

2020). An outbreak of NDM-5-producing Escherichia coli (E.

coli) in a French hospital department dedicated to COVID-19

patients were described, which may be related to the following

factors: the multiple-bedroom configuration of the department,

uncomplete compliance for standard and contact precautions,

overwork due to the burden of the disease, lack of training

of staff for the care of ICU patients, and misuse of gloves

(Farfour et al., 2020). In an Italian hospital, COVID-19 patients

were found to have an increased risk of NDM-CRE acquisition

versus the usual patients (75.9 vs. 25.3 cases/10,000 patient days)

(Porretta et al., 2020).

Considering that no MBL inhibitors are clinically available

to date, there is an urgent and unmet medical need for the

development of therapies targeting MBL-producing pathogens.

In this study, we summarize the major advances in the

development of alternative drugs concerning B1 MBLs (mainly

NDM, VIM, and IMP) in Enterobacteriaceae and non-

fermenting gram-negative bacteria, with a focus on E. coli and

Klebsiella pneumoniae (K. pneumoniae) for the former, as well

as a focus on P. aeruginosa and A. baumannii for the latter.

The in vitro activity and in vivo efficacy of novel drugs or

compounds vs. MBL producers adapted are summarized in

Tables 1, 2, respectively.

Novel antibiotics and β-lactamase
inhibitors in preclinical stages

There are many ongoing efforts to overcome the resistance

mediated by MBLs, one of the most important of which

is developing new antibiotics or β-lactamase inhibitors. In

this context, attention is primarily given to introducing new

antibiotics and combinations of β-lactams and new β-lactamase

inhibitors, which exhibit active antibacterial effects against

MBL producers.

Cefiderocol

Cefiderocol, a new siderophore cephalosporin that forms

a complex with extracellular free iron, is transported through

the extracellular membrane and exerts its bactericidal activity
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TABLE 1 In vitro activity of novel drug strategies vs. metallo-β-lactamase producers adapted from references.

Target drugs or compounds a MIC b

(µg/mL)

IN c Strains and

numbers d
Genotypes of metallo-β-lactamase e

Cefiderocol (Jacobs et al., 2019) 8# NA Eb, n= 267/267 NDM

Cefiderocol (Ito et al., 2018) 0.125–2 NA PA, n= 173/452 IMP-1/-6, NDM-1+SBL

0.125–2 NA PA, n= 4/4 IMP-1, VIM-1/-2/-6

0.125 NA AB, n= 1/1 IMP-1

Cefiderocol (Kazmierczak et al., 2019) 0.12–8 NA Eb, n= 39/39 VIM, NDM

0.008–2 NA PA, n= 30/30 IMP, VIM

1 NA AB, n= 2/2 NDM

Cefiderocol (Dobias et al., 2017) 4# NA Eb, n= 134/134 NDM-1/-4/-5/-6/-7, VIM-1/-2-/-4/-19, IMP-1/-4/-8

2# NA PA, n= 30/30 IMP-1/-2/-10/-13/-15/-19/-29, VIM-1/-2, SPM-1, GIM-1

4# NA AB, n= 2 NDM-1, IMP-4

Cefiderocol (Ghebremedhin and

Ahmad-Nejad, 2021)

0.016–2

0.016–2

NA

NA

AB, n= 5/7

Eb, n= 6/11

GIM-1, NDM-1+NDM-6, NDM-2/-9, NDM-1+NDM-6+SBL

NDM-3/-5, NDM-1+NDM-6, NDM-1+NDM-6+NDM-16,

NDM-1+NDM-6+NDM-16+SBL, NDM-1+NDM-6+SBL,

NDM-5+NDM-20, NDM-7+NDM-19, VIM-1+SBL, VIM-1/-2/-4

0.19–2 NA PA, n= 9/9 VIM-2

Cefiderocol (Nakamura et al., 2019) 2–4 NA Eb, n= 3/5 NDM-1/-4

1–2 NA PA, n= 2/2 IMP-1, VIM-10

Cefiderocol (Matsumoto et al., 2017) 2 NA PA, n= 1 IMP-1

8 NA KP, n= 1 NDM-1

ATM+CAZ-AVI (Niu et al., 2020) ≤0.125+NA/4 NK Eb, n= 68 MBL, MBL+ SBL

ATM+CAZ-AVI (Feng et al., 2021) ≤0.5+NA/4 SYN Eb, n= 17/19 NDM-1/-5/-7/-9/-13+SBL

ATM+CAZ-AVI (Maraki et al., 2021) NA+NA/NA SYN KP, n= 39/40 NDM-1, NDM+SBL

ATM+CAZ-AVI (Emeraud et al., 2019) 0.032–4+NA/4 NK Eb, n= 43/50 NDM-1/-4/-5/-6/-7/+SBL, VIM-1/-2/-4/-9+SBL, IMP-8+SBL,

GIM-1+SBL, TMB-1+SB

6–8+NA/4 NK PA, n= 2/3 VIM-1+ SBL, IMP-1+SBL, IMP-2+SBL

ATM+CAZ-AVI (Khan et al., 2021) ≤0.25–4+NA/4 SYN Eb, n= 6/7 NDM-5, VIM, NDM, NDM+SBL

4–8+4 SYN PA, n= 0/6 NDM-1, VIM-2/-11, IMP-1

ATM+AVI (Karlowsky et al., 2017) ≤0.015–8+4 NK Eb, n= 267/267 MBL, MBL+ SBL

8+4 NK PA, n= 173/452 MBL

ATM+AVI (Zhang et al., 2020) 0.25–4+4 NK Eb, n= /161 MBL, MBL+ SBL

ATM+AVI (Biagi et al., 2019) ≤0.03–4+4 NK Eb, n= 7/8 NDM+SBL

ATM+AVI (Niu et al., 2020) ≤0.25–8+4 NK Eb, n= 68 MBL, MBL+SBL

ATM+AVI (Cervino et al., 2021) ≤0.25–4+4 NK Eb, n= 63/64 MBL (maily NDM)+SBL

ATM+AVI (Bhatnagar et al., 2021) 0.06–4/4 NK Eb, n= 55/64 NDM, NDM+SBL

ATM+AVI (Feng et al., 2021) ≤0.5–4+4 SYN Eb, n= 17/19 NDM-1/-5/-7/-9/-13+SBL

CFP+VNRX-5133 (Piccirilli et al., 2021) 0.12–2+4 NK Eb, n= 20/26 NDM-1/-5/-7, VIM-1/-2/-4/-19, IMP-1/-4+SBL, NDM-1+SBL

CFP+VNRX-5133 (Vazquez-Ucha et al.,

2022)

≤2+4 NK Eb, n= 42/56 MBL

CFP+VNRX-5133 (Hernandez-Garcia

et al., 2022)

≤8+4

≤8+4

NK

NK

Eb, n= 14/16

PA, n= 30/49

NDM, VIM, IMP

VIM

CFP+VNRX-5133 (Hamrick et al., 2020) 0.12–2+4 NK EC, n= 5/5 VIM-1/-2/-4, SPM-1, GIM-1

2+4 NK EC, n= 0/4 NDM-1/-5/-7, IMP-1

4+4 NK PA, n= 1/1 VIM

CFP+VNRX-5133 (Kloezen et al., 2021) 1+4# NK Eb, n= 11/11 VIM

32+4# NK PA, n= 9/9 VIM

(Continued)

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2022.959107
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2022.959107

TABLE 1 (Continued)

Target drugs or compounds a MIC b

(µg/mL)

IN c Strains and

numbers d
Genotypes of metallo-β-lactamase e

CFP+VNRX-5133 (Mushtaq et al., 2021) 0.25–2/4 NK Eb, n= 25/40 NDM

0.06–2+4 NK Eb, n= 37/40 VIM

2+4 NK Eb, n= 0/13 IMP

1–8+4 NK PA, n= 7/20 VIM

8+4 NK PA, n= 0/4 NDM, SPM

8+4 NK AB, n= 0/10 NDM

CFP+VNRX-5133 (Wang et al., 2020) 0.12–2+4 NK Eb, n= 29/87 NDM

MER+VNRX-5133 (Wang et al., 2020) 0.016–1+4 NK Eb, n= 59/87 NDM

ZID (Livermore et al., 2017) ≤1 NA Eb, n= the great

majority/35

MBL

8–32 NK PA, n= 9/10 MBL

32 NK AB, n= 0/5 MBL

CFP+ZID (Livermore et al., 2017) 2+0.06 NK Eb, n= 3/35 MBL

4+4 NK PA, n= 1/10 MBL

32+4 NK AB, n= 0/5 NDM

CFP+ZID (Vazquez-Ucha et al., 2022) ≤2+≤2 NK Eb, n= 54/56 MBL

CFP+ZID (Bhagwat et al., 2021) ≤0.06–2+≤0.06–2 NK Eb, n= 166/186 MBL

0.25–8+0.25–8 NK Pseudomonas,

n= 93/106

MBL

CFP+ZID (Karlowsky et al., 2020) 0.5–8+0.5–8# NK Eb, n= 214/214 NDM/VIM/IMP, NDM/VIM/IMP+SBL

16+16# NK PA, n= 94/94 NDM, VIM, IMP

CFP+ZID (Yang et al., 2020) ≤2+NA NK Eb, n= 39/47 NDM

CFP+ZID (Avery et al., 2020) 0.19–2+NA NK Eb, n= 15/15 NDM-1/-5/-6/+SBL, VIM-1+SBL, IMP-4+SBL

CFP+ZID (Monogue et al., 2019) 4–8+4–8 NK PA, n= 6/10 VIM-1/-2/-28, VIM-2/-49+SBL, NDM+SBL, VIM+SBL

CFP+ZID (Kidd et al., 2020) 4–8+4–8 NK PA, n= 5/9 VIM-1-/-2, VIM-2/-49+SBL, NDM+SBL, VIM+SBL

CFP+ZID (Moya et al., 2017) 4–16+4 SYN PA, n= 2/2 VIM-1/-2

CFP+ZID (Moya et al., 2019) ≤0.25–0.5+4 SYN KP, n= 4/6 VIM-1, NDM-1+SBL, NDM+SBL,

ATM+ZID (Moya et al., 2017) ≤0.5–2+4 SYN PA, n= 2/2 VIM-1/-2

ATM+ZID (Moya et al., 2019) ≤0.25–2+4 SYN KP, n= 4/6 VIM-1, NDM-1+SBL, NDM+SBL

OP0595 (Livermore et al., 2015) 4 NA Eb, n= 31/40 MBL

OP0595 (Mushtaq et al., 2019) 1–4 NA KP, n= 27/104 NDM

ATM+OP0595 (Livermore et al., 2015) 0.03–1+1 NK KP, n= 9/9 NDM, VIM, IMP

BIA+OP0595 (Livermore et al., 2015) ≤0.02–2+4 NK KP, n= 6/9

CFP+OP0595 (Livermore et al., 2015) ≤0.02–2+4 NK KP, n= 6/9

PIP+OP0595 (Livermore et al., 2015) ≤0.02–2+4 NK KP, n= 8/9

CAZ-AVI+OP0595 (Livermore et al.,

2015)

2/4 NK KP, n= 1/9

MER+OP0595 (Mushtaq et al., 2019) 1+4 NK KP, n= 60/104 NDM

CFP+OP0595 (Mushtaq et al., 2019) 2+4 NK KP, n= 73/104

ATM+OP0595 (Mushtaq et al., 2019) 1+4 NK KP, n= 104/104

CFP+WCK5153 (Moya et al., 2017) 1–4+4 SYN PA, n= 2/2 VIM-1/-2

ATM+WCK5153 (Moya et al., 2017) ≤0.5+4 SYN PA, n= 2/2

PIP+WCK5153 (Moya et al., 2017) 4+4 SYN PA, n= 1/2

IMI+WCK5153 (Moya et al., 2017) 2+4 NK PA, n= 0/2

MER+WCK5153 (Moya et al., 2017) ≤0.5–2+4 SYN PA, n==2/2

(Continued)
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TABLE 1 (Continued)

Target drugs or compounds a MIC b

(µg/mL)

IN c Strains and

numbers d
Genotypes of metallo-β-lactamase e

DOR+WCK5153 (Moya et al., 2017) ≤0.5+4 SYN PA, n= 1/2

CFP+WCK5153 (Moya et al., 2019) ≤0.25–0.5+4 SYN KP, n= 4/6 VIM-1, NDM-1+SBL, NDM+SBL

ATM+WCK5153 (Moya et al., 2019) ≤0.25–4+4 SYN KP, n= 5/6

MER+ANT2681 (Zalacain et al., 2021) ≤0.06–1+8 NK Eb, n= 1,003/1,687 MBL, MBL+SBL

MER+ANT2681 (Davies et al., 2020) 0.125–1+8 NK Eb, n= 8/11 NDM-1, NDM-1/-4/-5/-7+SBL, VIM-1/-2, VIM-1/-2/-4/-19+SBL

MER+ANT2681 (Das et al., 2020) 0.06–1+8 NK Eb, n= 4/6 NDM-1, NDM-1/-7+SBL

MER+QPX7728(Lomovskaya et al., 2022) 0.125+4# NK Eb, n= 36/36 MBL

MER+QPX7728(Nelson et al., 2020a) 1+8 NK Eb, n= 220/224 MBL

MER+QPX7728(Lomovskaya et al., 2021) ≤8+8 NK PA, n= 19/61 MBL

MER+QPX7728(Nelson et al., 2020b) ≤0.06–2+8 NK Acinetobacter,

n= 3/5

NDM

Eravacycline (Johnston et al., 2020) 2 NA EC, n= 64/64 NDM, VIM, IMP

Eravacycline (Zhang et al., 2016) 2# NA Eb, N= 9/9 NDM-1+SBL, VIM-1+SBL

Eravacycline (Maraki et al., 2022) 1–4# NA KP, n= 46/46 NDM, VIM

Plazomicin (Maraki et al., 2022) 0.75–1.5 NA KP, n= 46/46

Plazomicin (Johnston et al., 2021) 2 NA EC, n= 32/64 NDM, VIM, IMP

Plazomicin (Serio et al., 2019) 2 NA Eb, 373/488 NDM, VIM, IMP

LYS228(Blais et al., 2018) 4 NA Eb, 30/33 MBL

KBP-7072 (Huband et al., 2020b) 0.12–1 NA AB, n= 5/5 DNM-1+SBL, IMP-1+SBL

Captopril±MER (Zhao et al., 2021) 160–320+≤1 NK KP, n= 5/5 NDM-1, IMP-1/-26

A derivative of ebselen+MER (Jin et al.,

2020)

4–32+4–32 SYN Eb, n= 3/3 NDM-1, VIM-1, IMP-4

Thanatin (Ma et al., 2019) 1–8 NA Eb, n= 7/7 NDM-1

Thanatin (Soren et al., 2015) 1–8 NA Eb, n= 7/7 NDM-1

Thanatin+IMI (Ma et al., 2019) NA+NA SYN/ADD Eb, n= 7/7 NDM-1

Thanatin+MER (Ma et al., 2019) NA+NA ADD Eb, n= 7/7

Novicidin+RIF (Soren et al., 2015) NA+NA SYN Eb, n= 7/7 NDM-1

AMA+MER (King et al., 2014) 8+2 NK Eb, Acinetobacter

and Pseudomonas,

n= 88–90% or

more strains

NDM, VIM

AMA+MER (Rotondo et al., 2020) 4–64+2 NK Eb, n= 33/35 NDM-1/-4/-5/-6/-7, VIM-1/-2/-7, CAM-1, DIM-1, IND-1, GIM-1,

AMA+DOR (Rotondo et al., 2020) 8–64+1 NK Eb, n33/35 IMP-1/-7/-27, SPM-1, CphA2, L1, AIM-1

AMA+AMP (Rotondo et al., 2020) ≤0.5–64+8 NK Eb, n= 13/35 NDM-1/-4/-5/-6/-7, VIM-1/-2/-7, CAM-1, DIM-1, IND-1, GIM-1,

IMP-1/-7/-27, SPM-1, CphA2, L1, AIM-1

AMA+ERT (Rotondo et al., 2020) 8–64+0.5 NK Eb, n= 20/27 NDM-1/-4/-5/-6/-7, VIM-1/-2/-7, CAM-1, DIM-1, IND-1, GIM-1,

AMA+IMI (Rotondo et al., 2020) ≤0.5–64+2 NK Eb, n= 24/27 IMP-1/-7/-27, SPM-1, CphA2, L1, AIM-1

AMA+CTX (Rotondo et al., 2020) ≤0.5–64+1 NK Eb, n= 13/27

Emerione A+MER (He et al., 2022) 8–16+2 NK Eb, n= 2/2 NDM-1

Emerione A+IMI (He et al., 2022) 16–32+1 NK Eb, n= 2/2

Emerione A+CTX (He et al., 2022) 64–128+1 NK Eb, n= 2/2

Emerione A+AMP (He et al., 2022) 64+8 NK Eb, n= 1/2

Rosmarinic acid+MER (Yu et al., 2018) 18+8 NK Eb, n= 1/1 VIM-2

(Continued)
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TABLE 1 (Continued)

Target drugs or compounds a MIC b

(µg/mL)

IN c Strains and

numbers d
Genotypes of metallo-β-lactamase e

Salvianolic acid A+MER (Yu et al., 2018) 25+4 NK Eb, n= 1/1

TPEN+MER (Azumah et al., 2016) 4–16+0.5–1 NK Eb, n= 9/12 NDM-1/-4, VIM-1, IMP-8

DPA+MER (Azumah et al., 2016) 8–32+0.5–1 NK Eb, n= 7/12

NOTA+MER (Somboro et al., 2015) 4+0.06–1 NK Eb, n= 14/14 NDM-1/-4, VIM-1, IMP-1/-8

NOTA+IMI (Somboro et al., 2015) 4+0.125–1 NK Eb, n= 7/14

TACN+MER (Somboro et al., 2019) 4–8+0.06–8 SYN Eb, n= 15/15 NDM-1/-4, VIM-1/-2, IMP-1/-8

Ca-EDTA+IMI (Yoshizumi et al., 2013) 32+1 NK Eb, n= 2/4 NDM-1

Ca-EDTA+MER (Yoshizumi et al., 2013) 32+1 NK Eb, n= 1/4

Ca-EDTA+IMI (Aoki et al., 2010) 32+1–2 NK PA, n= 3/16 VIM-2, IMP-1/-2/-7/-10

Ca-EDTA+AMK (Aoki et al., 2010) 32+16 NK PA, n= 1/16

NSPCs+NER (Farley et al., 2021) 2+≤0.25–0.5 NK Eb, n= 4/4 NDM-1

ML302+MER (Brem et al., 2014) 10+≤0.25–0.5 NK Eb, n= 3/3 IMP-1/-4

10+1 NK Eb, n= 0/2 NDM-1, VIM-4

KHP-3757 (Huband et al., 2020a) 0.06–0.5 NA PA, n= 7/7 NDM-1, VIM-1/−2/−4/−20, IMP-7

a ATM, aztreonam; CAZ, ceftazidime; AVI, avibactam; CFP, cefepime; MER, meropenem; ZID, zidebactam; BIA, biapenem; PIP, piperacillin; IMI, imipenem; DOR, doripenem; RIF,

rifampin; AMA, Aspergillomarasmine A; ERT, ertapenem; CTX, cefotaxime; AMP, ampicillin; TPEN, N, N
′

, N
′

-Tetrakis (2-pyridylmethyl) ethylenediamine; DPA, di-(2-picolyl) amine;

NOTA, 1, 4, 7-triazacyclononane-1, 4, 7-triacetic acid; AMK, amikacin; NSPCs, N-sulfamoylpyrrole-2-carboxylates.
b MIC, minimal inhibitory concentration; # represents MIC that inhibits 90% of the isolates (i.e. MIC90).
c IN, interaction interpretation; NA, not applicable; NK, not known; SYN, synergistic; ADD, additive. The fractional inhibitory concentration index (FIC) is calculated by comparing the

value of the MIC of each agent alone with the combination-derived MIC. FICs <0.5 are considered to be synergistic. FICs in the 0.5 to 1.0 range are considered to be additive (Doern,

2014).
d Eb, Enterobacteriaceae; PA, P. aeruginosa; AB, A. baumannii; KP, K. pneumoniae; EC, E. coli; n= A/B represents that the effective result was only found in A strains out of B strains.
e SBL, the unified name for all genotypes of serine-β-lactamase; all other letter combinations represent various genotypes of metallo-β-lactamase.

by inhibiting cell wall synthesis (Ito et al., 2018). Structurally,

cefiderocol is similar to ceftazidime and cefepime, and the

biggest highlight lies in the pyrrolidinium group on the C3 side

chain and the carboxypropyl-oxyimino group on the C7 side

chain, which confer its enhanced antibacterial activity and high

stability to numerous β-lactamases of Ambler classes A to D,

especially MBLs (Sato and Yamawaki, 2019).

A series of studies indicate that cefiderocol shows strong

antibacterial activity against MBL-carrying Enterobacteriaceae,

P. aeruginosa, and A. baumannii in vitro. Cefiderocol (0.016–

8µg/ml) has been proven to be effective against MBL-

Enterobacteriaceae (Dobias et al., 2017; Matsumoto et al.,

2017; Ito et al., 2018; Jacobs et al., 2019; Kazmierczak et al.,

2019; Ghebremedhin and Ahmad-Nejad, 2021). Compared

with MBL-carrying Enterobacteriaceae, cefiderocol has even

more powerful antibacterial activity against MBL-carrying P.

aeruginosa and MBL-carrying A. baumannii, with minimal

inhibitory concentrations (MICs) in the range of 0.008–

8µg/ml (Dobias et al., 2017; Matsumoto et al., 2017; Ito

et al., 2018; Jacobs et al., 2019; Kazmierczak et al., 2019;

Nakamura et al., 2019; Ghebremedhin andAhmad-Nejad, 2021).

Moreover, Ghebremedhin et al. found that the antibacterial

activity of cefiderocol against the same species of bacteria

carrying different MBLs seems to be significantly different

(Ghebremedhin and Ahmad-Nejad, 2021). NDM-1/-6-positive

isolates (K. pneumoniae and A. baumannii) can be inhibited

by cefiderocol at a concentration of ≤2µg/ml, but this is

not the case for NDM-5/-20, NDM-7/NDM-19, or NDM-9

(K. pneumoniae and A. baumannii), which exhibit MIC levels

>16µg/ml for cefiderocol (Ghebremedhin and Ahmad-Nejad,

2021). However, given the small number of strains involved

in the study by Ghebremedhin et al., their results need to be

interpreted with caution and studied further.

Animal models have also been used to evaluate the

antibacterial activity of cefiderocol in vivo (Zhanel et al., 2019).

In mouse models of neutropenic thigh and lung infection,

cefiderocol (24–800 mg/kg, q24 h) was found to be effective

against NDM-1-positive K. pneumoniae and IMP-1-positive P.

aeruginosa at 24 h of treatment (Nakamura et al., 2019). In

an immunocompetent rat respiratory infection model infected

with NDM-1-positive K. pneumoniae and IMP-1-positive P.

aeruginosa, cefiderocol (2 g q8 h, 1- or 3-h infusion) was

reduced by >3 log10 CFU/lung below that in no drug

therapy and ceftazidime (1 g q8 h, 0.5-h infusion) monotherapy

(Matsumoto et al., 2017). These results indicate that cefiderocol

has potent in vivo efficacy correlated with the in vitro activity

against Enterobacteriaceae, P. aeruginosa, and A. baumannii

producing MBLs.
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TABLE 2 In vivo e�cacy of novel drug strategies vs. metallo-β-lactamase producers adapted from references.

Target regimens a Strains

(MBL-producing)

and numbers b

Disease types, study objects, and

numbers c
Positive efficacy

indicators

Cefiderocol (2 g*q8 h, 1-h or 3-h infusion)

continually at 1 or 2 h-94 h post infection

(Matsumoto et al., 2017)

PA (IMP-1) and KP

(NDM-1), n= 2

Respiratory tract infection, male Sprague-Dawley

rats (∼200 g), n= 49

94-h log10 CFU/lung

CAZ-AVI (32 mg/kg-8 mg/kg q8 h, s.c.)+ ATM

(32mg /kg q8 h, s.c.) continually at 2 h-22 h post

infection (Marshall et al., 2017)

KP (NDM-1+SBL), n= 1 Neutropenic thigh infection, female Hsd: ICR

(CD-1) mice, n= 90

22-h log10 CFU/thigh

CAZ-AVI (2.5 g q8 h)+ ATM (2 g q8 h)

continually depending on clinical situation

(Falcone et al., 2021a)

Eb (NDM, VIM), n= 102 Bloodstream infection, humans, n= 102 30-day all-cause mortality,

clinical failure rate at day 14

CAZ-AVI (2 g-0.5 g t.i.d.)+ ATM (2 g t.i.d.)

continually for 7 days after switching therapy

(Emeraud et al., 2019)

EC (NDM-5+SBL), n= 1 Acute pyelonephritis, man (70-year-old), n= 1 48-h body temperature, 48-h

inflammatory syndrome, 48-h

renal function

CAZ-AVI (2 g-0.5 g t.i.d.)+ ATM (2 g t.i.d.)

continually for 10 days after switching therapy

(Davido et al., 2017)

KP (NDM-1+SBL), n= 1 Catheter-related infection with suppurated

thrombophlebitis complicated with persistent

bacteremia, man (69-year-old), n= 1

3-h blood cultures

CAZ-AVI (2.5 g q12 h)+ ATM (2 g b.i.d.)

continually for 6 weeks after switching therapy

(Davido et al., 2017)

PA (NDM+SBL), n= 1 Pneumonia featuring large abscesses, man

(55-year-old), n= 1

Clinical recovery

CAZ-AVI (50 mg/kg, q8 h, 3-h infusion)+ ATM

(50 mg/kg q8 h) continually for 2 weeks after

switching therapy (Yasmin et al., 2020)

EH (NDM-1+SBL), n= 1 Infection caused by stem cell, boy (4-year-old with

B cell precursor acute lymphoblastic leukemia),

n= 1

Clinical recovery and

microbiologic removal

CFP (2 g* q8 h, 1-h infusion, s.c.)+ ZID (1 g*

q8 h, 1-h infusion, s.c.) continually at 2–22 h post

infection (Monogue et al., 2019)

PA (VIM, VIM+SBL,

NDM+SBL), n= 6/10

Neutropenic thigh infection, female ICR mice

(weighing 20 to 22 g), n= 150

22-h log10 CFU/thigh

CFP (2 g* q8 h, 1-h infusion, s.c.)+ ZID (1 g*

q8 h, 1-h infusion, s.c.) continually at 2–24 h post

infection (Kidd et al., 2020)

PA (VIM, VIM+SBL,

NDM+SBL), n= 6/9

Neutropenic lung pneumonia,

specific-pathogen-free female CD-1 mice (mean

weight 22.7 g; range 19.1 to 26.9 g), n= 270

24-h log10 CFU/lung

CFP (100 mg/kg q2 h, s.c.)+ zidebactam (75

mg/kg q2 h, s.c.) continually at 2–24 h post

infection (Moya et al., 2019)

KP (NDM+SBL), n= 3 Neutropenic thigh infection, male/female Swiss

Albino mice (25–27 g), n= 108

24-h log10 CFU/thigh

ATM (75 mg/kg q2 h, s.c.)+ ZID (75 mg/kg, q2 h,

s.c.) continually at 2–24 h post infection (Moya

et al., 2019)

KP (NDM+SBL), n= 3 Neutropenic thigh infection, male/female Swiss

Albino mice (25–27 g), n= 108

24-h log10 CFU/thigh

CFP (100 mg/kg q2 h, s.c.)+WCK5153 (75 mg/kg

q2 h, s.c.) continually at 2–24 h post infection

(Moya et al., 2019)

KP (NDM+SBL), n= 3 Neutropenic thigh infection, male/female Swiss

Albino mice (25–27 g), n= 108

24-h log10 CFU/thigh

ATM (75 mg/kg q2 h, s.c.)+WCK5153 (75 mg/kg

q2 h, s.c.) continually at 2–24 h post infection

(Moya et al., 2019)

KP (NDM+SBL), n= 3 Neutropenic thigh infection, male/female Swiss

Albino mice (25–27 g), n= 108

24-h log10 CFU/thigh

MER (50 mg/kg q4 h s.c.)+ANT2681 (89 mg/kg

q4 h, i.v.) (Das et al., 2020)

EC (NDM-1), n= 1 Neutropenic thigh infection, male CD1 mice

(∼25–30 g), n= 9

24-h log10 CFU/thigh

LYS228 (90 mg/kg q4 h, s.c.) (Weiss et al., 2019) KP (NDM-1), n= 1 Neutropenic thigh infection, female CD-1 mice

(18–20 g), n= 30

24-h log10 CFU/thigh

Captopril (25 mg/kg, injected to haemocoel)+

MER (10 mg/kg, injected to haemocoel) at 2 h post

infection (Zhao et al., 2021)

KP (NDM-1, IMP-4), n=

1/2

Haemocoel infection, Galleria mellonella larvae

(300–350mg), n= 154

94-h survival rate and 24-h

CFU/larva

(Continued)
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TABLE 2 (Continued)

Target regimens a Strains

(MBL-producing)

and numbers b

Disease types, study objects, and

numbers c
Positive efficacy

indicators

Thanatin (1, 3, or 6 mg/kg, i.p.) at 1 and 6 h post

infection (Ma et al., 2019)

EC (NDM-1), n= 1 Sepsis, male BALB/c mice (weighing 18–22 g),

n= 136

167-h survival rate, 23-h log10

CFU/tissues (blood, lung,

liver, and spleen), 23-h

pathological damages

Thanatin (0.1 mg/kg, i.p.)+MER (10 mg/kg, i.p.)

at 1 h post infection (Ma et al., 2019)

EC (NDM-1), n= 1 Sepsis, male BALB/c mice (weighing 18–22 g),

n= 112

167-h survival rate, 23-h

CFU/spleen, 23-h CFU/liver

Ca-EDTA (200 mg/kg q.d., s.c.) or Ca-EDTA (300

mg/kg q.d., intranasal administration)+ IMI (50

mg/kg q.d., s.c.) continually at 2–28 h post

infection (Aoki et al., 2010)

PA (IMP-1), n= 1 Pneumonia, female BALB/c mice, n= 68 118-h survival rate and 2-h

log10 CFU/lung

Ca-EDTA (200 mg/kg, s.c.)+MER/CS (25 mg/kg,

s.c.) at 2 h post infection (Yoshizumi et al., 2013)

EC (NDM-1), n= 1 Acute lethal septicemia, mice, n= 20 2-h CFU/liver

Ca-EDTA (100 mg/kg, s.c.)+ IMI/CS (10 mg/kg,

s.c.) at 2 h post infection (Yoshizumi et al., 2013)

EC (NDM-1), n= 1 Neutropenic sepsis, mice 2-h CFU/liver and 2-h

CFU/blood

a s.c., subcutaneous injection; i.v., intravenous injection; i.p., intraperitoneal injection; q.d.: one a day; b.i.d.: twice a day; t.i.d.: three a day; CAZ-AVI, ceftazidime-avibactam; ATM,

aztreonam; CFP, cefepime; ZID, zidebactam; MER, meropenem; IMI, imipenem; CS, cilastatin sodium; * represents that real drug doses used for animals are equivalent to these marked

clinical doses.
b PA, P. aeruginosa; KP, K. pneumoniae; Eb, Enterobacteriaceae; EC, E. coli; EH, Enterobacter hormaechei; n= A/B represents that the effective result was only found in A strains out of B

strains; SBL: the unified name for all genotypes of serine-β-lactamase; NDM, VIM, and IMP represent various genotypes of metallo-β-lactamase.
c Time points refer to the times after the initial therapy or switching therapy, with an exception for three indexes (30-day all-cause mortality, clinical failure rate at day 14, and length of

stay), whose time points refer to the time after bloodstream infection onset.

Currently, cefiderocol has been approved by the Food

and Drug Administration (FDA) and European Medicines

Agency against different species of Enterobacteriaceae and non-

fermenting gram-negative bacteria (Giacobbe et al., 2020). In

summary, cefiderocol represents an interesting new option for

multidrug resistance (MDR) gram-negative bacteria, and its

structural stability makes it the most attractive new antibiotic

currently available for the treatment of MBL producers.

Aztreonam+CAZ-AVI and
aztreonam+AVI

Aztreonam was approved by the FDA in 1986 and is the

only clinically available monocyclic lactam antibiotic against

MBLs due to its structural stability in the presence of MBLs

(Ramsey andMacGowan, 2016). However, the majority of MBL-

carrying isolates coproduce one or more SBLs, which limits its

usefulness as a monotherapy (Cervino et al., 2021). CAZ-AVI

is a drug in phase 3 clinical trials and has been recommended

by the Infectious Diseases Society of America in combination

with aztreonam for the treatment of severe infections caused by

MBL-carrying Enterobacteriaceae (Tamma et al., 2021).

As shown in Table 1, in vitro, aztreonam (≤0.03–

4µg/ml)+CAZ-AVI (4µg/ml of the AVI component) exerts

potent synergistic effects against most tested MBL-producing

Enterobacteriaceae and few MBL-producing P. aeruginosa,

which is superior to aztreonam alone or in combination with

other drug combinations, such as aztreonam +amoxillin-

clavulanate and aztreonam+ceftolozane-tazobactam (Emeraud

et al., 2019; Niu et al., 2020; Khan et al., 2021;Maraki et al., 2021).

With further research, the synergistic effect of aztreonam+CAZ-

AVI on MBL producers was proven to be mainly caused by the

combination of aztreonam and AVI (Feng et al., 2021). AVI

is a novel β-lactamase inhibitor that effectively inhibits class

A and C carbapenems (Das et al., 2019). The theoretical basis

for the inactivation of class A, C, or D β-lactamases by AVI to

restore aztreonam susceptibility is supported by its high efficacy

in patients with severe infections and without conventional

treatment options (Li et al., 2015). Therefore, aztreonam+AVI

is considered an attractive combination for the treatment of

MBL-positive Enterobacteriaceae. A series of in vitro studies

on the combined effects of aztreonam+AVI against MBLs have

been carried out. Aztreonam+AVI (≤0.015–4+4µg/ml) has

strong antibacterial activity on Enterobacteriaceae producing

MBLs alone or both MBLs and SBLs (Karlowsky et al., 2017;

Biagi et al., 2019; Niu et al., 2020; Zhang et al., 2020; Bhatnagar

et al., 2021; Cervino et al., 2021; Feng et al., 2021). Karlowsky

et al. found that aztreonam+AVI (4 µg/ml+4µg/ml) also

has a good inhibitory effect on a small portion of MBL-P.
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aeruginosa isolates (63/452) (Karlowsky et al., 2017). To

date, no in vitro data have been found on the inhibition of

MBL-carrying A. baumannii.

Although a phase 3 clinical trial of aztreonam+AVI is

underway (ClinicalTrials.gov:NCT 03329092), in vivo studies of

aztreonam+AVI are mainly performed by two FDA-approved

drugs, i.e., aztreonam and CAZ-AVI. In vivo efficacy studies

in human or animal models validate the solid in vitro data

documenting the potential of aztreonam+CAZ-AVI (Table 2).

In the neutropenic thigh mice infection model caused by

NDM-1+SBLs positive K. pneumoniae, CAZ-AVI (32 mg/kg−8

mg/kg q8 h) plus aztreonam (32 mg/kg q8 h) reduced 24-h log10

CFU/thigh by ∼2–4 log10 CFU below that in no drug therapy,

CAZ-AVI (32 mg/kg−8 mg/kg q8 h), and CAZ+aztreonam

(64 mg/kg q8 h) monotherapy (Marshall et al., 2017). In a

relatively large clinical study for patients with bloodstream

infections due to NDM- or VIM-producing Enterobacteriaceae,

30-day all-cause mortality was 19.2% for CAZ-AVI (2.5 g q8 h)

plus aztreonam (2 g q8 h) vs. 44% for regimens of other active

antibiotics, including colistin (4.5M UI q12 h), tigecycline

(100mg b.i.d.), fosfomycin (4–6mg q6 h), gentamicin (3–5

mg/kg q.d.), and meropenem (2 g q8 h); clinical failure rate

at day 14 was 25% for CAZ-AVI+aztreonam vs. 52% for

regimens of other active antibiotics (Falcone et al., 2021a).

For a 70-year-old man with acute pyelonephritis and infection

caused by NDM-5+SBL-positive E. coli, body temperature,

resolution of the inflammatory syndrome, and improvement of

renal function were found 48 h after antimicrobial treatment

was switched from a regimen comprising colistin, fosfomycin,

and gentamicin for 7–10 days to CAZ-AVI (2 g−0.5 g t.i.d.)

plus aztreonam (2 g t.i.d.) (Emeraud et al., 2019). Several clinical

case reports also show the potent in vivo efficacy of CAZ-AVI

plus aztreonam against MBL-producing Enterobacteriaceae

and P. aeruginosa. For a 69-year-old man with catheter-related

infection due to NDM-1+SBL-positive K. pneumoniae, blood

cultures became negative at 3 h after antimicrobial treatment

was switched from a regimen comprising colistin, imipenem,

fosfomycin, levofloxacin, and amikacin for 26 days to CAZ-AVI

(2 g−0.5 g t.i.d.) plus aztreonam (2 g t.i.d.) (Davido et al.,

2017). For a 55-year-old man with pneumonia featuring large

abscesses caused by NDM+SBL-positive P. aeruginosa, clinical

recovery was gained quickly after antimicrobial treatment was

switched from a regimen comprising amikacin and colistin

to CAZ-AVI (2.5 g q12 h) plus aztreonam (2 g b.i.d.) (Yasmin

et al., 2020). For a 4-year-old leukemia boy infected by NDM-

1+KPC-4 positive Enterobacter hormaechei due to stem cell,

clinical recovery and microbiologic removal were gained at

2 weeks after antimicrobial treatment being switched from a

regimen comprising piperacillin-tazobactam+vancomycin

or meropenem+vancomycin to CAZ-AVI (50 mg/kg,

q8 h, 3-h infusion) plus aztreonam (50 mg/kg q8 h)

(Yasmin et al., 2020).

Overall, available data support the combination of

aztreonam and AVI (sometimes CAZ-AVI) against MBL-

producing Enterobacteriaceae and P. aeruginosa in vitro as well

as in vivo, although data on MBL-producing A. baumannii

are scarce.

Cefepime+VNRX-5133

VNRX-5133 (taniborbactam) is a new type of β-lactamase

inhibitor in clinical development that inhibits important MBLs,

including NDM-1 IMP-1 and VIM-1/2 (Krajnc et al., 2019;

Lang et al., 2020). It should be noted that VNRX-5133

inhibited IMP less than NDM and VIM (Krajnc et al.,

2019). Several in vitro studies have found that VNRX-5133

at 4µg/ml can restore the antibacterial activity of cefepime

against most Enterobacteriaceae producing NDM and VIM

(Hamrick et al., 2020; Kloezen et al., 2021; Mushtaq et al.,

2021; Piccirilli et al., 2021; Hernandez-Garcia et al., 2022;

Vazquez-Ucha et al., 2022). However, cefepime+VNRX-5133

(0.12–8 µg/ml+4µg/ml) has very weak or no antibacterial

activity against Enterobacteriaceae-producing IMP (Hamrick

et al., 2020; Wang et al., 2020; Kloezen et al., 2021; Mushtaq

et al., 2021; Piccirilli et al., 2021; Hernandez-Garcia et al.,

2022; Vazquez-Ucha et al., 2022). In addition, cefepime+VNRX-

5133 (4–32 µg/ml+4µg/ml) showed elevated MIC values

against MBL-P. aeruginosa and its antibacterial effect against

P. aeruginosa, with an emphasis on VIM producers, not

NDM or SPM (Hamrick et al., 2020; Kloezen et al., 2021;

Mushtaq et al., 2021; Hernandez-Garcia et al., 2022). No

antibacterial activity was found for cefepime+ VNRX-5133

on MBL-producing A. baumannii (Mushtaq et al., 2021).

In addition to being used in combination with cefepime,

VNRX-5133 (4µg/ml) can also be used in combination with

meropenem (0.016–1µg/ml) to play a considerable antibacterial

role against the most MBL-positive Enterobacteriaceae (Wang

et al., 2020).

Although there are no in vivo studies of cefepime+VNRX-

5133 against MBLs in animal models, VNRX-5133 in

combination with cefepime is currently in phase 3 clinical

trials for the treatment of complex urinary tract infections

(Dowell et al., 2021). We look forward to the formal clinical

application of cefepime+VNRX-5133 in the near future.

Diazabicyclooctanes alone and in
combination with antibiotics

In the mid-1990s, chemists first studied diazabicyclooctanes

(DBOs) as β-lactamase analogs and demonstrated that they

were a rich source of β-lactamase inhibitors (Coleman, 2011).

First, DBOs inhibit most or all class A and C β-lactamases, as
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well as some class D β-lactamases (Mushtaq et al., 2019). AVI

is the sole analog of DBOs thus far licensed for clinical use

and is combined with CAZ to treat complex intraperitoneal

infections and complex urinary tract infections associated with

gram-negative bacteria (Shirley, 2018). Since then, DBOs have

been promising non-β-lactam inhibitors of β-lactamases (Shlaes,

2013).

Surprisingly, DBOs have also been reported to have anti-

MBL activity in recent years (Livermore et al., 2015, 2017).

Some novel DBOs not only have synergistic activity with certain

antibiotics but also have direct antibacterial activity against

MBL producers (Livermore et al., 2017). Several developmental

DBOs, notably zidebactam, nacubactam, and WCK5153, have

significant affinity for PBP2 of many gram-negative species

(Livermore et al., 2015, 2017; Moya et al., 2017). This allows

for the antibiotics to exert both a direct antibacterial effect and

an “enhancer” mechanism, potentiating partner β-lactams that

bind to other PBPs (Livermore et al., 2015, 2017; Moya et al.,

2017). This dual function of direct and enhancer-based activity

means that combinations of MBL-labile β-lactams with DBOs

can retain activity against MBL producers (Mushtaq et al., 2019).

These DBOs are reviewed in the following pages.

Zidebactam alone and in combination with
antibiotics

Zidebactam, as a new DBO, exerts a dual function

involving selectively high affinity for gram-negative bacterial

PBP2 binding and β-lactamase inhibition (Bhagwat et al.,

2019). By binding to PBP2 binding, zidebactam exhibits

antibacterial activity against various Enterobacteriaceae and P.

aeruginosa isolates (Sader et al., 2017). In a study conducted

by Livermore et al., zidebactam alone at ≤1µg/ml and

at 8–32µg/ml exerted in vitro antibacterial activity against

most of the tested MBL-producing Enterobacteriaceae and

MBL-producing P. aeruginosa (Livermore et al., 2017). For

MBL-carrying Enterobacteriaceae and P. aeruginosa isolates,

zidebactam not only has an antibacterial effect but can also

be used as a synergistic agent with antibiotics. Then, more

attention was given to zidebactam application as an antibiotic

sensitizer, and several studies were carried out to evaluate

the in vitro antibacterial activity of cefepime+zidebactam,

often described as “WCK5222.” Cefepime+zidebactam (≤0.06–

8 µg/ml+≤0.06–8µg/ml) was proven to be effective against

most of the tested MBL-producing Enterobacteriaceae isolates

in vitro (Livermore et al., 2017; Moya et al., 2019; Avery et al.,

2020; Karlowsky et al., 2020; Yang et al., 2020; Bhagwat et al.,

2021; Vazquez-Ucha et al., 2022). Similar results were shown for

MBL-producing P. aeruginosa isolates. Cefepime+zidebactam

(≤0.25–16 µg/ml+4–16µg/ml) can inhibit most of the tested

MBL-producing Pseudomonas (mainly P. aeruginosa) isolates

(Livermore et al., 2017; Moya et al., 2017; Monogue et al., 2019;

Karlowsky et al., 2020; Kidd et al., 2020; Bhagwat et al., 2021).

What we want to emphasize is that no obvious inhibitory effect

of zidebactam or cefepime+zidebactam was found on MBL-

producing A. baumannii isolates (Livermore et al., 2017; Yang

et al., 2020). In addition to cefepime, zidebactam (4µg/ml)

can also combine with aztreonam (0.25–2µg/ml) against MBL-

producing K. pneumoniae and MBL-producing P. aeruginosa

isolates, which once again proves the potential of zidebactam as

an antibiotic sensitizer against MBLs (Moya et al., 2017, 2019).

In vivo studies using animal models also demonstrated

the efficacy of cefepime+zidebactam or aztreonam+zidebactam

against MBLs. In a neutropenic thigh mouse infection model

caused by P. aeruginosa producing VIM, VIM+SBL, or

NDM+SBL, 22-h log10 CFU/thigh for cefepime (2 g q8 h,

1-h infusion) plus zidebactam (1 g q8 h, 1-h infusion) was

significantly lower than that for no drug therapy, cefepime (2 g

q8 h, 1-h infusion) monotherapy, and zidebactam (1 g q8 h, 1-h

infusion) monotherapy (Monogue et al., 2019). In neutropenic

lung pneumonia mice infected with P. aeruginosa producing

VIM, VIM+SBLs, or NDM+SBLs, 24-h log10 CFU/lung for

cefepime (2 g q8 h, 1-h infusion) plus zidebactam (1 g q8 h,

1-h infusion) was significantly lower than that for no drug

therapy, cefepime (2 g q8 h, 1-h infusion, s.c.) monotherapy,

and zidebactam (1 g q8 h, 1-h infusion, s.c.) monotherapy

(Kidd et al., 2020). In a neutropenic mouse thigh infection

model caused byNDM+SBL-positiveK. pneumoniae, 24-h log10

CFU/thigh for cefepime (100 mg/kg q2 h) plus zidebactam (75

mg/kg q2 h) was significantly lower than that for no drug

therapy, meropenem-cilastatin (37.5 mg/kg q4 h) monotherapy,

cefepime (100 mg/kg q2 h) monotherapy, and zidebactam (75

mg/kg q2 h) monotherapy; 24-h log10 CFU/thigh for aztreonam

(75 mg/kg q2 h) plus zidebactam (75 mg/kg, q2 h) was

significantly lower than that for no drug therapy, meropenem-

cilastatin (37.5 mg/kg q4 h) monotherapy, aztreonam (75

mg/kg q2 h) monotherapy, and zidebactam (75 mg/kg q2 h)

monotherapy (Moya et al., 2019).

These results support the clinical development of cefepime

in combination with antibiotics for the treatment of bacterial

infections caused by MBL-producing Enterobacteriaceae and P.

aeruginosa. Additionally, the cefepime/zidebactam combination

(intravenous dose regimen: q8 h, 1-h infusion) is slated to enter

phase 3 studies for infections caused by MDR gram-negative

bacteria (Bhatia and Wockhardt, 2022).

OP0595 (Nacubactam) alone and in
combination with antibiotics

Nacubactam, another new DBO, is also reported to show

in vitro antibacterial activity against Enterobacteriaceae with

MBLs either alone or in combination with PBP3-targeted β-

lactams. Livermore et al. found that OP0595 at 4µg/ml not

only inhibited most MBL-producing Enterobacteriaceae but

also achieved ≥8-fold potentiation of piperacillin, cefepime,

and biapenem for MBL-producing K. pneumoniae isolates
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(Livermore et al., 2015). However, OP0595 at 4 mg/L achieved

no significant potentiation of aztreonam, biapenem, piperacillin,

or cefepime against the MLB-producing P. aeruginosa and A.

baumannii (Livermore et al., 2015). In another study, OP0595 at

4µg/ml potentiated meropenem (1µg/ml), cefepime (2µg/ml),

and aztreonam (1µg/ml) in most of the tested NDM-producing

K. pneumoniae isolates, respectively (Mushtaq et al., 2019). No in

vivo study of OP0595 against MBL producers in animal models

was found.

WCK5153 in combination with antibiotics

No positive inhibitory effect on MBLs was reported

for WCK5153 alone, a novel DBO. Nevertheless, WCK5153

has been proven to be effective against MBL-producing

K. pneumoniae and P. aeruginosa isolates in vitro when

used in combination with several antibiotics. Moya et al.

found that WCK5153 (4µg/ml) can enhance the effectiveness

of several antibiotics against MBL-producing P. aeruginosa

in vitro, including cefepime, aztreonam, piperacillin, imipenem,

meropenem, and doripenem (Moya et al., 2017). Moya et al.

confirmed the in vitro efficacy of cefepime (≤0.25–0.5µg/ml)

or aztreonam (≤0.25–4µg/ml)+WCK5153 (4µg/ml) on MBL-

producing K. pneumoniae using a microdilution broth method

(Moya et al., 2019). These authors also confirmed the in

vivo efficacy of these two combinations using a neutropenic

mouse thigh infection model caused by NDM+SBL-positive K.

pneumoniae. Briefly, the 24-h log10 CFU/thigh for cefepime (100

mg/kg q2 h) plus WCK5153 (75 mg/kg q2 h) was significantly

lower than that for no drug therapy, meropenem-cilastatin

(37.5 mg/kg q4 h) monotherapy, cefepime (100 mg/kg q2 h)

monotherapy, and WCK5153 (75 mg/kg q2 h) monotherapy;

the 24-h log10 CFU/thigh for aztreonam (75 mg/kg q2 h) plus

WCK5153 (75 mg/kg q2 h) was significantly lower than that

for no drug therapy, meropenem-cilastatin (37.5 mg/kg q4 h)

monotherapy, aztreonam (75 mg/kg q2 h) monotherapy, and

WCK5153 (75 mg/kg q2 h) monotherapy (Moya et al., 2019).

Meropenem +ANT2681

ANT2681 is a specific, competitive inhibitor of MBLs with

particularly potent activity against NDM, progressing to clinical

development in combination with meropenem (Zalacain et al.,

2021). Zalacain et al. verified the in vitro potent activity of

meropenem+ANT2681 against NDM producers in a large

population of Enterobacteriaceae strains (Zalacain et al., 2021).

Meropenem+ANT2681 (≤0.06–1 µg/ml+8µg/ml) can inhibit

80.7% of Enterobacteriaceae strains producing NDM, which is

much higher than that producing VIM (29.1%) or IMP (10.2%).

In addition, the antibacterial activity of meropenem+ANT2681

(≤0.06–1 µg/ml+8µg/ml) against Enterobacteriaceae strains

producing NDM+SBLs (10.6%) was much lower than that

only producing NDM (80.7%), which likely indicated that

meropenem+ANT2681 showed specific antibacterial activity

against NDM-only Enterobacteriaceae. However, the specific

potent antibacterial activity for NDM-only producers was not

found in another study involving eleven Enterobacteriaceae

strains, which may be related to the deviation of test results

caused by too few strains (Davies et al., 2020). No study on

meropenem+ANT2681 against MBL-producing P. aeruginosa

or A. baumannii was found.

Regarding the in vivo efficacy, meropenem+ANT2681

was found to be effective against the NDM producer in a

murine thigh infection model, which provides the underpinning

evidence for meropenem+ANT2681 in clinical development.

Specifically, in the neutropenic mouse thigh infection model

caused by NDM-1-positive E. coli, the reduction of 24-h log10

CFU/thigh by meropenem (50 mg/kg q4 h) plus ANT2681 (89

mg/kg q4 h) was more than 1.5 log10 CFU/thigh in comparison

to that by no drug therapy (Das et al., 2020).

Meropenem+QPX7728

QPX7728 is a recently discovered ultra-broad-spectrum β-

lactamase inhibitor from a class of cyclic boronates, with potent

activity against MBLs (Hecker et al., 2020). It has been proved

to be effective against MBL-producing gram-negative bacteria

in vitro when in combination with meropenem. QPX7728 (4–

8µg/ml) restores sensitivity to meropenem for almost all tested

MBL-positive Enterobacteriaceae strains (Nelson et al., 2020a;

Lomovskaya et al., 2022). It was also found that QPX7728

(8µg/ml) restored sensitivity to meropenem for some NDM-

positive Acinetobacter strains (Nelson et al., 2020b). Compared

with Acinetobacter, this combination may have a weaker

effect on MBL-positive P. aeruginosa. Meropenem+QPX7728

(≤8+8µg/ml) was found to be effective in only one-third of the

MBL-positive P. aeruginosa strains (Lomovskaya et al., 2021).

No in vivo study of this combination against MBL producers in

animal models was found.

Eravacycline

Eravacycline is a novel and fully synthetic fluorocycline

antibacterial agent. Its structure is similar to that of tigecycline,

with two modifications to the D-ring of its tetracycline core:

a fluorine atom replaces the dimethylamine moiety at C-

7, and a pyrrolidinoacetamido group replaces the 2-tertiary-

butyl glycylamido at C-9 (Zhanel et al., 2016). Recently,

eravacycline has been approved for use in complicated intra-

abdominal infections, including infections caused by MBL

producers (Solomkin et al., 2019). Eravacycline at 1–4µg/ml

exerts potent antibacterial activity on all or most of the tested

Enterobacteriaceae strains producing MBLs (Zhang et al., 2016;
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Johnston et al., 2020; Maraki et al., 2022). However, no relevant

studies have been conducted to test its antibacterial activity in

MBL-producing P. aeruginosa or A. baumannii thus far.

Plazomicin

Plazomicin is an aminoglycoside developed from a

sisomicin scaffold via chemical modification to evade the

most common aminoglycoside resistance mechanisms in

Enterobacteriaceae, such as β-lactamases, including MBLs, as

well as fluoroquinolone and colistin resistance mechanisms

(Castanheira et al., 2018). For this reason, plazomicin maintains

its activity against many MDR Enterobacteriaceae and was

approved in 2018 by the FDA for the treatment of complicated

urinary tract infections related to E. coli, K. pneumoniae,

Enterobacter cloacae, and Proteus mirabilis (Serio et al., 2019).

Several studies in vitro have confirmed its antibacterial activity

on MBL-producing Enterobacteriaceae at a concentration of

0.75–2µg/ml (Serio et al., 2019; Johnston et al., 2021; Maraki

et al., 2022). No study on its antibacterial activity against

MBL-producing P. aeruginosa or A. baumannii was found.

KBP-7072

KBP-7072 is an effective, broad-spectrum, third-generation

tetracycline (aminomethylcycline) antimicrobial agent under

development (oral and intravenous formulations) for the

treatment of community-acquired pneumonia, overcoming

many common mechanisms of tetracycline resistance (Lepak

et al., 2019). KBP-7072 shows excellent antibacterial activity

against MBL-positive A. baumannii isolates with MIC

values ranging from 0.12 to 1µg/ml in vitro, which is

significantly better than that of the comparator agents

(MIC: 0.5–32µg/ml), including tigecycline, ceftazidime,

gentamicin, levofloxacin, and meropenem (Huband et al.,

2020b). No other study on its antibacterial activity against

MBL-producing Enterobacteriaceae or P. aeruginosa

was found.

LYS228

LYS228 is a novel monobactam with potent antibacterial

activity against carbapenem-resistant Enterobacteriaceae and is

stable to MBLs. LYS228 at ≤0.06–4µg/ml exerts potent in vitro

antibacterial activity on most of the tested Enterobacteriaceae

strains producing MBLs, which is obviously more active than

aztreonam, ceftazidime, ceftazidime/avibactam, cefepime, and

meropenem (Blais et al., 2018). Weiss et al. confirmed its

in vivo efficacy using a neutropenic mice thigh infection

model caused by NDM-1 positive K. pneumoniae. In

brief, 24-h log10 CFU/thigh for LYS228 (90 mg/kg q4 h)

was significantly lower than that for no drug therapy

(Weiss et al., 2019). No study on its antibacterial activity

against MBL-producing P. aeruginosa or A. baumannii

was found.

Non-antibacterial drugs

Studies have shown that some non-antibacterial drugs also

have antibacterial activity. According to a study published

in JAMA Cardiol, the conventional antiplatelet dose of

ticagrelor had good antibacterial activity against gram-positive

bacteria (Lancellotti et al., 2019). Its bactericidal effect against

methicillin-resistant Staphylococcus aureus and methicillin-

resistant Staphylococcus epidermidis was better than that of

vancomycin, and its bactericidal effect against methicillin-

resistant S. aureus and vancomycin-resistant Enterococcus was

similar to that of daptomycin (Lancellotti et al., 2019). Beyond

that, non-antibacterial drugs with antibacterial activity to MBL

producers have also been reported in recent years.

Captopril, a classical antihypertensive drug, chelates

prosthetic groups and destroys the catalytic activity of MBL

(Heinz et al., 2003). Captopril is reported to effectively inhibit

NDM-1 with an IC50 value of 7.9µM (Li et al., 2014). An

in vitro study showed that captopril (10–320µg/ml) potentiated

meropenem activity and restored its efficacy against MBL-

producing K. pneumoniae (Zhao et al., 2021). In Galleria

mellonella infected by IMP-4-positive K. pneumoniae, the

survival rate for captopril (25 mg/kg) plus meropenem (10

mg/kg) was significantly higher than that for no drug therapy,

captopril (25 mg/kg) monotherapy, and meropenem (10 mg/kg)

monotherapy; 24-h CFU/larva for captopril plus meropenem

was significantly lower than that for no drug therapy and

meropenem monotherapy (Zhao et al., 2021). Especially,

captopril analogs based on a series of structure-guided designs

that can inhibit the activity of MBLs are being discovered (Li

et al., 2014; Yusof et al., 2016; Ma et al., 2021).

Ebselen is a drug used to treat cerebral ischemia and stroke

in human clinical trials. Chiou et al. found that ebselen is

capable of covalently binding to the Cys221 residue in the

active site of the NDM-1 enzyme, which ultimately results

in the loss of one zinc ion (Chiou et al., 2015). In vitro,

ebselen alone has low intrinsic antibacterial activity but can

reduce the MICs of ampicillin and meropenem by 16- and

128-fold, respectively, against NDM-1-positive E. coli (detailed

data not presented) (Jin et al., 2020). Compared with ebselen,

a 2-substituted 1,2-benzisothiazol-3(2H) derivative of ebselen

exhibited much stronger activity against NDM-1 isolates. This

derivative (4–32µg/ml) in combination with meropenem (4–

32µg/ml) demonstrated potent synergistic activity against

NDM-1-positive Enterobacteriaceae (Jin et al., 2020).
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Antimicrobial peptides

Antimicrobial peptides (AMPs), also known as host

defense peptides, can be found virtually in every life

form, from prokaryotes to humans. To date, there have

been many databases of natural AMPs, consisting of

more than 2,000 peptides and exhibiting remarkable

functional diversity (Wang, 2015). They not only possess

direct and broad-spectrum antimicrobial activity but also

are capable of modulating innate immunity in higher

organisms to protect hosts from infectious diseases

(Hancock and Sahl, 2006; Pasupuleti et al., 2012).

Currently, AMPs have been reported to be effective against

MBL-producing Enterobacteriaceae.

Thanatin is a 21-residue antimicrobial peptide with

a disulfide bond between Cys11 and Cys18 that exerts

potent activity against NDM-1-producing bacteria by a dual

mechanism of action: disrupting the outer membrane of NDM-

1 producers and inhibiting the enzymatic activity of NDM-1

by displacing zinc ions from the active site (Ma et al., 2019).

It was found that thanatin (1–8µg/ml) could exhibit a potent

inhibitory effect on NDM-1-producing Enterobacteriaceae

strains in vitro (Soren et al., 2015; Ma et al., 2019). The

in vivo therapeutic effects of thanatin were confirmed in a

sepsis model. In the sepsis mouse model caused by NDM-

1-positive E. coli, the survival rates for thanatin (1, 3, or

6 mg/kg) increased by 30–100% compared with that for

no drug therapy; 23-h log10 CFU/tissues (blood, lung, liver,

and spleen) for thanatin was significantly lower than that

for no drug therapy; obvious rescued pathological damages

were found for thanatin, in comparison to no drug therapy

(Ma et al., 2019). In addition, thanatin (concentration not

described) exerted synergistic or additive effects with imipenem

and meropenem against the NDM-1-producing K. pneumoniae

strain in vitro (Ma et al., 2019). Similarly, the in vivo

therapeutic effects of thanatin+meropenem were confirmed

in a sepsis model. In the sepsis mouse model caused by

NDM-1-positive E. coli, the survival rate for thanatin (0.1

mg/kg) plus meropenem (10 mg/kg) increased by 49–100%

compared with that for no drug therapy, thanatin (0.1 mg/kg)

monotherapy, and meropenem (10 mg/kg) monotherapy; 23-

h log10 CFU/tissues (spleen and liver) in target regimen was

significantly lower than that for no drug therapy, thanatin

monotherapy, and meropenem monotherapy (Ma et al.,

2019).

Novicidin, a novel 18-residue cat-ionic antimicrobial

peptide, exerts bactericidal effects by disrupting the bacterial

membrane (Dorosz et al., 2010; Nielsen and Otzen, 2010). The

combination of novicidin with rifampin was shown to have

synergistic activity against all tested NDM-1 Enterobacteriaceae

strains in vitro (Soren et al., 2015).

Natural products

Natural products from microorganisms and plants

have been a rich source of starting materials in the

search for new drugs. Natural products may represent

potential lead compounds for anti-MBL drug development.

Natural products serve as natural antibiotics to make

multidimensional strategies against MBLs more intact,

which is of clinical importance.

Aspergillomarasmine A (AMA) is a fungal natural product

considered a rapid and potent MBL inhibitor that electively

sequesters Zn2+ (King et al., 2014; Sychantha et al., 2021).

AMA itself is not antimicrobial but works in combination with

β-lactam antibiotics or carbapenems against MBL producers,

with an emphasis on VIM or NDM. King et al. found that

AMA (8µg/ml) fully restored the activity of meropenem

against >88% of Enterobacteriaceae, Acinetobacter spp. and

Pseudomonas spp. strains possessing either VIM or NDM (King

et al., 2014). Rotondo et al. found that AMA (≤0.5–64 g/ml)

could be used not only with carbapenems but also with β-

lactam antibiotics against MBL producers Enterobacteriaceae,

similar to an emphasis on VIM or NDM (Rotondo et al.,

2020). Iminodiacetic acid, as the metal-binding pharmacophore

core of AMA, has been used for fragment-based drug

discovery of NDM-1 inhibitors (Chen et al., 2020). Emerione

A, identified from fungal products by in silico screening,

is the second fungal metabolite reported to exhibit NMD-

1 inhibitory activity after AMA. Emerione A (8–128µg/ml)

potentiates the activity of four β-lactam antibiotics against

two kinds of NDM-1-producing Enterobacteriaceae (He et al.,

2022).

Rosmarinic acid is widely identified in the plant kingdom,

such as the plant families Lamiaceae, Boraginaceae, and

Marantaceae. Kinetic assays revealed that rosmarinic acid is

a fully reversible, substrate-competitive VIM-2 inhibitor (Yu

et al., 2018). Salvianolic acid A, a derivative of RA, manifests

potent inhibition of VIM-2, more interestingly, which also

shows inhibitory activity against NDM-1 (Yu et al., 2018). Both

rosmarinic acid and salvianolic acid A resulted in a 2- to 4-fold

MIC reduction of meropenem against VIM-2-producing E. coli

(Yu et al., 2018).

Some other natural products, which have been reported

to have anti-MBL activity at the enzymatic level but have

not been studied at the cellular level, will not be described

here, such as alcohol extracts of Schisandra chinensis and

baicalin (Shi et al., 2019; Duan et al., 2021; Salari-Jazi et al.,

2021). In addition, natural products with very limited anti-

MBL activity are no longer described here, such as the aquo-

ethanolic extract of Camellia sinensis (Thakur et al., 2016)

and the methanolic extract of Punica granatum (Dey et al.,

2012).
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Zinc chelators

The zinc-dependent activity of MBL allows its inhibition by

zinc-chelating agents. Several compounds have potential usage

to treat MBL producers in combination with existing antibiotics.

Two zinc chelators, N, N, N
′

, N
′

-tetrakis (2-pyridylmethyl)

ethylenediamine (TPEN) and di-(2-picolyl) amine (DPA), were

able to inhibit MBLs and render MBL producers susceptible to

meropenem (Azumah et al., 2016). TPEN at 46–32µg/ml and

DPA at 8–32µg/ml regain susceptibility to meropenem for most

tested Enterobacteriaceae strains harboringMBL (Azumah et al.,

2016). 1,4,7-Triazacyclononane-1,4,7-triacetic acid (NOTA) is

a superior chelator of copper and gallium (Boros et al., 2010;

Zhang et al., 2011). It is found to chelate zinc, which may

be due to zinc having a size between that of copper and

gallium (Somboro et al., 2015). NOTA (4µg/ml) was able to

restore the activities of carbapenems against most tested MBL-

producing Enterobacteriaceae strains. TACN, a cyclic organic

compound within NOTA derived from cyclononane by the

replacement of three equidistant CH2 groups with NH groups,

significantly reduced the MIC of meropenem against MBL-

producing Enterobacteriaceae strains (Somboro et al., 2019).

In brief, the combination of meropenem (0.06–8µg/ml) +

TACN (4–8µg/ml) was synergistic for all testedMBL-producing

Enterobacteriaceae strains.

Ca-EDTA, a metallo-chelator, was created as an injectable

form of chelator with low toxicity, which has been approved

for the treatment of lead intoxication (Lin-Tan et al., 2007).

Aoki et al. and Yoshizumi et al. successively reported the

efficacy of Ca-EDTA as an inhibitor of MBL (Aoki et al.,

2010; Yoshizumi et al., 2013). The addition of Ca-EDTA

(32µg/ml) drastically reduced the MICs of carbapenems

(imipenem, meropenem, and amikacin) in a small proportion

of MBL-positive Enterobacteriaceae and P. aeruginosa in vitro

(Aoki et al., 2010; Yoshizumi et al., 2013). The in vivo

efficacy of combining Ca-EDTA (200–300 mg/kg q.d.) with

IPM (50 mg/kg/day) against MBL-positive P. aeruginosa was

confirmed in a pneumonia mouse model. In the mouse model

of pneumonia caused by IMP-1-positive P. aeruginosa, the

survival rate for mice treated with Ca-EDTA (200 mg/kg

q.d. or 300 mg/kg q.d.) plus imipenem (50 mg/kg q.d., s.c.)

increased by ∼70–100% compared with that for mice given no

drug therapy, Ca-EDTA (200 mg/kg q.d or 300 mg/kg q.d.)

monotherapy, and imipenem (50 mg/kg q.d.) monotherapy;

the reduction in bacterial burden by Ca-EDTA plus imipenem

was more than 1 log10 CFU/lung in comparison to that by

no drug therapy and imipenem monotherapy (Aoki et al.,

2010). Moreover, these in vivo data suggest the therapeutic

potential of Ca-EDTA not only by blocking MBLs but also

by neutralizing tissue-damaging metalloproteases in infections

caused by P. aeruginosa (Aoki et al., 2010). In the acute

lethal mouse septicemia model caused by NDM-1-positive E.

coli, CFU/liver (not CFU/blood) was significantly reduced by

Ca-EDTA (200 mg/kg) plus imipenem/cilastatin sodium (25

mg/kg) compared with that by no drug therapy, Ca-EDTA

(200 mg/kg) monotherapy, and imipenem/cilastatin sodium (25

mg/kg) monotherapy (Yoshizumi et al., 2013). Furthermore, in

a more severe model of infection (neutropenic sepsis mouse

model) caused by NDM-1-positive E. coli, both CFU/liver and

CFU/blood were significantly reduced by Ca-EDTA (100mg/kg)

plus imipenem/cilastatin sodium (10 mg/kg) compared with

that by no drug therapy, Ca-EDTA (100 mg/kg) monotherapy,

and imipenem/cilastatin sodium (10 mg/kg) monotherapy

(Yoshizumi et al., 2013).

Other compounds with MBL
inhibitory activity

As mentioned above, antibiotic resistance as a global threat

has aroused widespread concern, indicating that we have entered

the “postantibiotic era.” To combat resistance crises, it is crucial

to adopt multidimensional strategies.

Farley et al. synthesized nine N-sulfamoylpyrrole-2-

carboxylates (NSPCs), which exert particularly potent activity

against NDM-1 and IMP-1 (Farley et al., 2021). Crystallography

reveals that the N-sulfamoyl NH2 group of NSPCs displaces

the dopamine bridging hydroxide/water of the B1 MBLs. At

a fixed concentration of 2µg/ml, any one of the nine NSPCs

reduced the meropenem MIC from 256 to ≤0.25–5µg/ml in

NDM-1 Enterobacteriaceae.

ML302 is a rhodamine-based MBL inhibitor. Mechanistic

studies show that ML302 undergoes hydrolysis to yield a

thioenolate fragment (ML302F), which triggers the formation

of a ternary complex among the MBL, intact ML302, and

ML302F by zinc chelation to potentiate antibiotic efficacy

through collaborative strategies. ML302 (10µg/ml) conferred

meropenem sensitivity on IMP producers of Enterobacteriaceae,

not NDM or VIM producers (Brem et al., 2014).

KHP-3757 is the most recent LpxC inhibitor of the

hydroxamate class currently being evaluated in preclinical

development studies (Huband et al., 2020a). Huband et al.

demonstrated that KHP-3757 (0.06–0.5µg/ml) had potent

in vitro activity against all tested MBL-producing P. aeruginosa

isolates, outperforming nine comparator agents, including

amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin,

colistin, imipenem, meropenem, and piperacillin-tazobactam

(Huband et al., 2020a).

Khan et al. have reported the discovery of four novel non-

β-lactam inhibitors (M1, M17, M21, and M61) against NDM-1

by a multi-step virtual screening approach (Khan et al., 2017).

For E. coli producing NDM-1, the lower MICs were obtained

when each of these inhibitors was combined with ceftazidime,

cefoxitin, meropenem, and imipenem. The MICs were lowered
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from 8 to 4µg/ml (ceftazidime), 16 to 8µg/ml (cefoxitin), and 2

to 1µg/ml for meropenem and imipenem.

Discussion and future perspectives

Bacterial infections are one of the leading causes of human

death worldwide. International antibacterial treatments mainly

use antibiotics to inhibit the reproduction and growth of bacteria

and can achieve efficient sterilization effects. β-Lactams have

long played a vital role in the treatment of pathogenic bacterial

infections. However, widespread and improper use of antibiotics

for decades in turn has led to resistance in bacteria. The

major resistance mechanism is the emergence of β-lactamases,

especially the most relevant MBLs, which can hydrolyze the

β-lactam ring. Thus, MBLs are capable of inactivating almost

all β-lactams, with the exception of aztreonam. Nevertheless,

the use of aztreonam was also limited by the fact that MBL-

producing strains carried SBLs, which requires broad-spectrum

inhibitors (Cervino et al., 2021). Therefore, the development of

new drugs against MBL or MBL +SBL producers has become a

global biomedical research hotspot.

This article reviews the current research progress on

novel drugs, compounds, and drug combinations against MBL

producers. As shown in Table 1, many novel drugs, compounds,

and drug combinations with anti-MBL activity have not been

studied in detail. For example, antimicrobial activity studies

of some novel drugs have not included P. aeruginosa and A.

baumannii that produce MBLs, and most compounds in this

review have not been studied in vivo. It must be noted that

the traditional development of antibiotics inevitably leads to

the emergence of new resistant strains, making new drugs

quickly ineffective. Developing a single inhibitor of MBLs is

also technically too difficult, and overcoming in vivo toxicity

due to cross-reactions with human metalloenzymes has been

a concern. Therefore, restoring the therapeutic potential of

existing antibiotics through drug combinations may be a very

attractive strategy to solve clinically challenging MBLs. In this

study, several drugs or compounds in this review that have not

been studied for their synergistic effects on existing antibiotics

should be complemented with further experimental data.

In addition, some of these novel drugs, compounds,

and drug combinations have many desirable antimicrobial

properties for the treatment of MBL-associated infections, but

more in vivo efficacy and safety data are needed to fully

determine their role in the treatment of infectious diseases.

Therefore, further experimental data should be improved based

on Table 2 to obtain stronger evidence of the efficacy and safety

of MBL producers for these novel drugs, compounds, and drug

combinations. Indeed, we are still encountering many setbacks

on these roads, such as complicated preparation processes,

uncertain PK and PD properties, and differential efficacy in vitro

and in vivo.

Nevertheless, the evolution ofMBLs never ends, which urges

us to conduct continuing research. The field of antimicrobial

resistance is a dynamic and rapidly evolving field, and the

treatment of antimicrobial resistance will continue to challenge

clinicians. The application of bioinformatics software tools

and compound databases also holds great promise for the

production of effective inhibitors against MBLs, which is not

described in detail in this review.

Limitations to this study include that most of the drugs

involved in this study only performed MIC measurements.

Except for a few drugs tested for affinity against the MBLs,

scarcely any of the other drugs have been studied for

the mechanism of drug resistance against MBL producers.

Therefore, we did not show the mechanisms, but it is hoped that

this study will inspire more researchers to study the mechanism

of these drugs.

In conclusion, these novel drugs, compounds, and

their combinations with anti-MBL activity provide more

therapeutic alternatives against complicated infections

caused by MBLs, although further rigorous optimization

is required for their clinical development. It is hoped that

this review can provide ideas and enlightenment for others

to study the methods against metalloenzymes and improve

the existing research data to obtain convincing evidence.
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