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The diverse microbial community that colonizes the gastrointestinal tract 

has remarkable effects on the host immune system and physiology resulting 

in homeostasis or disease. In both scenarios, the gut microbiota interacts 

with their host through ligand-receptor binding whereby the downstream 

signaling processes determine the outcome of the interaction as disease or 

the counteractive immune responses of the host. Despite several studies on 

microbe-host interactions and the mechanisms by which this intricate process 

happens, a comprehensive and updated inventory of known ligand-receptor 

interactions and their roles in disease is paramount. The ligands which originate 

as a result of microbial responses to the host environment contribute to either 

symbiotic or parasitic relationships. On the other hand, the host receptors 

counteract the ligand actions by mounting a neutral or an innate response. 

The varying degrees of polymorphic changes in the host receptors contribute 

to specificity of interaction with the microbial ligands. Additionally, pathogenic 

microbes manipulate host receptors with endogenous enzymes belonging to 

the effector protein family. This review focuses on the diversity and similarity in 

the gut microbiome-host interactions both in health and disease conditions. 

It thus establishes an overview that can help identify potential therapeutic 

targets in response to critically soaring antimicrobial resistance as juxtaposed 

to tardy antibiotic development research.
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Introduction

Facultative anaerobic enteric bacteria form a part of the normal intestinal microbiota 
of humans and animals (Morales-López et al., 2019; Dougnon et al., 2020; Janda and 
Abbott, 2021). These bacteria which mostly belong to the Enterobacteriaceae family are 
responsible for shaping both the metabolic and physiological processes in addition to the 
development of the immune system in the host body (Martin et al., 2019; Bajinka et al., 
2020). A majority of gastrointestinal (GI) microbes form a complex bacterial community 

TYPE Opinion
PUBLISHED 
DOI 10.3389/fmicb.2022.960326

OPEN ACCESS

EDITED BY

Ibrahim M. Sayed,  
Assiut University,  
Egypt

REVIEWED BY

Soumita Das,  
California College San Diego, United States
Sidharth Prasad Mishra,  
University of South Florida, United States

*CORRESPONDENCE

Niyaz Ahmed  
niyaz.ahmed@uohyd.ac.in;  
ahmed.nizi@gmail.com

SPECIALTY SECTION

This article was submitted to  
Infectious Agents and Disease,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 02 June 2022
ACCEPTED 02 September 2022
PUBLISHED 

CITATION

Tiruvayipati S, Hameed DS and 
Ahmed N (2022) Play the plug: How 
bacteria modify recognition by host 
receptors?
Front. Microbiol. 13:960326.
doi: 10.3389/fmicb.2022.960326

COPYRIGHT

© 2022 Tiruvayipati, Hameed and Ahmed. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

14 October 2022

14 October 2022

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.960326%EF%BB%BF&domain=pdf&date_stamp=2022-10-14
https://www.frontiersin.org/articles/10.3389/fmicb.2022.960326/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.960326/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.960326/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.960326
mailto:niyaz.ahmed@uohyd.ac.in;
mailto:ahmed.nizi@gmail.com
https://doi.org/10.3389/fmicb.2022.960326
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Tiruvayipati et al. 10.3389/fmicb.2022.960326

Frontiers in Microbiology 02 frontiersin.org

and maintain a commensal relationship with the host. Some 
bacterial species of the genera Escherichia, Shigella, Salmonella, 
Proteus and Yersinia constantly invade the host GI tract, the blood 
and vascular system and the genitourinary tract thereby causing 
and spreading infection (Dekker and Frank, 2015; Hamilton et al., 
2018; Gu et al., 2019; Aljahdali et al., 2020; Ramos et al., 2020; 
Yang et  al., 2020). Among various defense mechanisms, the 
formation of a mucus layer by the host cells in the gut acts as a 
natural barrier blocking foreign pathogens from invading the 
intestinal epithelial lining. This mucus membrane acts as a major 
component of the innate immunity (Okumura and Takeda, 2017; 
Sicard et al., 2017). A large number of intestinal microbes inhabit 
the outer mucus layer. The constant degradation and 
replenishment of the mucin layer helps resist colonization and 
promote commensalism with the gut microbiota (Josenhans et al., 
2020; Fang et al., 2021). Nevertheless, invasive bacterial strains 
residing in the intestine have evolved strategies to adhere to or 
swim out of the mucus barrier by the production of adhesins, 
flagella, and fimbriae, leading to a chronic and sometimes 
symptomatic colonization in the gut. A compromised mucus 
barrier can lead to various pathological conditions (Cornick et al., 
2015; Paone and Cani, 2020). In response to mucin degradation, 
the host responds with a myriad of defensive measures against the 
microbial attack. Among them is the escalation of the host 
immune response through recognition of pathogen- or damage-
associated molecular patterns (PAMPs or DAMPs) by the pattern 
recognition receptors (PRRs). The PAMPs can be polymers of 
carbohydrates, proteins or even nucleic acids that are essential for 
microbial survival and hence their modifications could 
be detrimental (Patten and Collett, 2013). The PRRs are specialized 
immune receptors on the host epithelial cells which act upon 
binding with microbial PAMPs. The most abundant PRRs are the 
toll-like receptors (TLRs) that are germ line-encoded in the 
immune system (Akira et al., 2006; Nie et al., 2018). Downstream 
to PAMP–PRR interaction both on the cell surface or in the 
intracellular environment, several proinflammatory and anti-
microbial responses are triggered by the activation of a wide range 
of intracellular signaling pathways (Akira et al., 2006). Phagocytic 
and antigen-presenting cells (APCs) then mediate the innate 
immune responses. Furthermore, the PRR-induced signaling 
pathways result in the synthesis of molecules such as chemokines, 
cytokines, cell adhesion molecules, and immunoreceptors 
underpinning an early host response to infection (Iwasaki and 
Medzhitov, 2004; Kogut et  al., 2020). To counteract reactions 
elicited by these receptors, microbes express effector proteins 
which have the ability to perturb host defense mechanisms. These 
effector proteins facilitate microbial infection whilst deriving 
nutrients from the host (Santos, 2015; Popa et al., 2016). In turn, 
the immune system monitoring the microbial communities acts 
by inducing inflammation against potential pathogens while 
retaining tolerance towards commensals in the gut (Tel et  al., 
2016; Zheng et al., 2020). To this end, many studies have reported 
on how different microbial ligands modulate microbial sensing of 
the host. While studies have focused rather exclusively on a few 

host receptors, a summarized information on the diversity of the 
host receptors and microbial ligands is limited. This review 
focuses on consolidating the diversity of enterobacterial 
interactions with microbial sensors to gain an understanding on 
how bacteria could possibly modify recognition by host receptors. 
Furthermore, a brief outlook into the potential therapeutic values 
of the host-microbiome interactions and the players involved in 
this process are also addressed.

Human host receptors

The gut mucosa has the ability to readily identify and 
neutralize microbial infections in addition to distinguishing a 
microbial attack by pathogens from symbiotic relationship of 
non-pathogens. Human host receptors of the innate immune 
system, namely the toll-like receptors (TLRs), nucleotide-binding 
and oligomerization domain (NOD)-like receptors (NLRs), 
C-type lectin receptors (CTLRs) and the retinoic acid-inducible 
gene I (RIG-I)-like receptors (RLRs) play a crucial role in host-
microbiota communication (Delbridge and O’Riordan, 2007; 
Kawai and Akira, 2011; Dierking and Pita, 2020). These receptors 
differ from two other PRRs, i.e., G-protein coupled receptors 
(GPCRs) and peptidoglycan (PG) recognition proteins (PGRPs) 
by their specificity to recognize distinct microbial molecules 
(Dierking and Pita, 2020). The specificity with which PRRs bind 
with the ligands from pathogenic microbes (PAMPs) are based on 
different molecular structures and composition of these ligands. 
Furthermore, different structures of these PAMPs are essential for 
microbial viability and are specific to microorganisms. Thus, the 
host PRRs have evolved to distinctly communicate with 
commensal microbes and pathogens (Chu and Mazmanian, 2013; 
Li and Wu, 2021).

Toll-like receptors and NOD-like receptors
Among the aforementioned receptors, the TLRs and NLRs 

distinctly recognize microbe-associated molecular patterns 
(MAMPs) which are generally expressed by the resident microbes, 
and the PAMPs usually expressed by the invasive microbes (Gao 
et al., 2017; Negi et al., 2019). Upon recognition of these molecular 
patterns, the TLRs trigger signaling from the surface of the cell or 
endosomes, whereas the NLRs are activated in the cytosol by 
molecules derived from bacteria, such as flagellins, toxins, RNA 
and PG (Delbridge and O’Riordan, 2007).

Functionally, the TLRs are categorized into cell membrane 
TLRs and intracellular TLRs (nucleic acid sensors). For 
example, the heterodimers of TLR2 in conjunction with TLR1 
or TLR6  besides TLR4, TLR5, and TLR10, express on the cell 
surface and belong to the cell membrane TLRs category (Gay 
et al., 2014). Whereas TLR3, TLR7, TLR8, and TLR9 which are 
localized to the intracellular compartments of the cell such as 
endosomes and lysosomes are the intracellular TLRs (Kawasaki 
and Kawai, 2014; Sellge and Kufer, 2015). TLRs produce 
pro-inflammatory cytokines upon binding with PAMPs (Vidya 
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et al., 2018). The TLR is activated by PAMPs, leading to nuclear 
translocation of a pro-inflammatory transcription factor called 
activator protein 1 (AP-1), interferon regulatory factor (IRF) 3, 
and the nuclear factor kappa-B (NF-kB) by the recruitment of 
adapter proteins. These adapter proteins subsequently recruit 
interleukin-1R (IL-1R)-associated protein kinases (IRAK) 1, 2, 
4, M, transforming growth factor-β-activated kinase (TAK) 
1-binding proteins (TAB) 2 and tumor necrosis factor receptor-
associated factor 6 (TRAF6; El-Zayat et al., 2019). Specific genes 
are then transcribed by these transcription factors encoding a 
different set of proteins such as chemokines [C-X-C motif 
chemokine ligand (CXCL 8 and CXCL10), type 1 interferons 
(IFN-α, β)], pro-inflammatory cytokines [tumor necrosis factor 
alpha (TNF-α), IL-1β and IL-6], and even antimicrobial 
peptides (El-Zayat et al., 2019).

NLR classification and its activity is divided into four 
subfamilies based on their domains: an acidic domain—NLRA, a 
baculovirus inhibitor of apoptosis repeat (BIR) domain—NLRB, 
a caspase activation and recruitment domain (CARD)—NLRC, 
and a pyrin domain (PYD)—NLRP. With the exception of NLRX1 
comprising a non-identified CARD-related X effector domain 
(Parlato and Yeretssian, 2014), NLRs are responsible for the 
formation of inflammasomes and lead to the activation of IRF, 
mitogen-activated protein kinase (MAPK), and NF-κB pathways 
initiating a robust immune response during pathogen attack 
(Zhong et al., 2013).

C-type lectin receptors and RLRs
C-type lectin-like domain proteins (CTLD) are CTLRs which 

function by binding glycans on the surface of microbial pathogens 
to regulate both innate and adaptive immune responses. Other 
CTLRs play a regulatory role in immune homeostasis by binding 
endogenous ligands (self-antigens; Mayer et al., 2017; Dierking 
and Pita, 2020). CTLRs contribute to the homing of immune cell-
trafficking, leukocytes, pathogen recognition and subsequent T 
cell activation (Mayer et al., 2017). RLRs in turn are cytoplasmic 
sensors of viral RNA. RLR signaling leads to activation of players 
such as NF-κB, MAPK and IRFs which promote induction of type 
I IFN and some of the pro-inflammatory cytokines (Kawai and 
Akira, 2009; Lavelle et al., 2010).

G-protein coupled receptors and PGRPs
GPCRs and PGRPs are another group of human host receptors 

which recognize microbiota-derived signals. The GPCRs 
recognize the microbiome through a signal peptide or short chain 
fatty acids (Dierking and Pita, 2020). GPCRs such as FPR1 (formyl 
peptide receptor 1), FPR2, GPCR41 or FFAR3 (free fatty acid 
receptor 3) and GPCR43 or FFAR2 can detect bacterial MAMPs 
(Bloes et  al., 2015). While FPRs carry important roles in 
inflammation and immune cell activation, FFARs are essential 
nutritional components which function as signaling molecules 
that regulate cellular and physiological processes (He and Ye, 
2017; Kimura et al., 2020). On the other hand, the mammalian 
PGRPs have a regular antibacterial activity by contributing to the 

activation of macrophages during immune responses (Dierking 
and Pita, 2020).

Polymorphisms of microbial sensors

Immuno-polymorphism is a significant aspect of infectious 
diseases biology that has been explored genetically in population-
wide studies shedding light on the association of polymorphisms 
with epidemiology of several infectious diseases. Polymorphisms 
in the nucleotide or amino acid sequences of host receptors can 
influence downstream signaling pathways which in turn promote 
the resistance or susceptibility to various infections.

Polymorphism in TLRs and NLRs
A number of polymorphisms are directly associated with 

different phenotypes of infectious diseases of the gut (Table 1). 
TLR4 polymorphism (D299G and T399I) was reported as the first 
genetic variant in TLRs to reduce lipopolysaccharides-receptor 
interactions, which increased susceptibility to sepsis-inducing 
Gram-negative bacterial infections (Zhang et al., 2021). There are 
other common residues exhibiting single nucleotide 
polymorphisms (SNPs) in TLRs, namely, TLR1-I602S, TLR2-
R677W, TLR3-P554S, TLR4-D299G, TLR5-L616F, TLR6-P249S, 
TLR7-Q11L, TLR8-M1V, TLR9-G1174A and TLR10-G1031T 
(Mukherjee et al., 2019). Polymorphisms in the TLR receptors are 
known to be associated with disease phenotypes such as ulcerative 
colitis, pancolitis, decreased or increased incidence and 
susceptibility to diseases such as inflammatory bowel disease and 
Crohn’s disease (CD; Mukherjee et al., 2019). CD is a chronic 
inflammatory bowel disease (IBD) which causes inflammation of 
the digestive tract mucosa with symptoms such as abdominal 
pain, fistulas, severe diarrhea, weight loss and malnutrition.

NLR mutations on the other hand, are quite often associated 
with syndromes of autoinflammatory mechanisms, hinting at a 
convoluted role of cytosolic surveillance in systemic innate 
immunity (Delbridge and O’Riordan, 2007; Table 1). NOD1 and 
NOD2 are PG sensors which specifically respond to the PG 
components found in the rigid cell wall of the bacteria. A genetic 
association between NOD1 and NOD2 mutations and 
autoinflammatory diseases shows the importance of NOD 
proteins in inflammation regulation (Hugot et al., 2001; Girardin 
et al., 2005; McGovern et al., 2005). However, a direct contribution 
of NOD proteins to patients with immunodeficiency is not yet 
established (Delbridge and O’Riordan, 2007). NOD2 with its three 
coding variants (R702W, G908R, and L1007fs) resulting in 
decreased muramyl-dipeptide (MDP) responsiveness has been 
associated with a strong genetic risk factor for development of CD 
(Parlato and Yeretssian, 2014). On the other hand, genetic studies 
on NOD1 variants with susceptibility to IBD need further 
investigation due to conflicting information in literature 
(McGovern et al., 2005; Tremelling et al., 2006). The implications 
of NOD1 and NOD2 in bacterial sensing, primarily through the 
strong association of NOD2 with CD, has been under speculation 
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TABLE 1 Table showing important examples of human host receptors, their polymorphisms and their associated diseases.

Human host 
receptor

Category Polymorphism Disease condition References

Toll-like receptors (TLRs)

TLR1 Cell membrane TLR R80T Complicated skin and skin structure 

infection (cSSSIs), pancolitis, 

invasive aspergillosis

D’Onofrio et al., 2020, 

Stappers et al., 2014

TLR2 Cell membrane TLR T597C Tuberculosis meningitis Thuong et al., 2007

TLR3 Intracellular TLR L412F Herpes labialis Yang et al., 2012

TLR4 Cell membrane TLR D299G Inflammatory bowel disease (IBD) Meena et al., 2013

TLR5 Cell membrane TLR L616F Crohn’s disease Sheridan et al., 2013

TLR6 Cell membrane TLR P249S cSSSIs Stappers et al., 2014

TLR7 Intracellular TLR Q11L, Y264H Hepatitis C virus (HCV), systemic 

lupus erythematosus

Schott et al., 2007,

Brown et al., 2022

TLR8 Intracellular TLR 129C/G Crimean-Congo hemorrhagic fever Engin et al., 2010

TLR9 Intracellular TLR 1635A/G HIV infection Bochud et al., 2007

TLR10 Cell membrane TLR N241H, I369L Prostate cancer Su et al., 2021

NOD-like receptors (NLRs)

NOD2 Caspase activation and 

recruitment domain containing 

NLR

1,007 fs, R702W, G908R Crohn’s disease Sidiq et al., 2016

L469F, R334Q, R334W, R702W, 

G908R

Blau syndrome, arthritis, 

gastrointestinal cancer

Caso et al., 2015

Liu et al., 2014

NLRP1 Pyrin domain containing NLR M77T Corneal intraepithelial dyskeratosis Soler et al., 2013

L155H-V1059M-M1184V Autoimmune diseases Levandowski et al., 2013

NLRP3 Pyrin domain containing NLR See the source references Inflammatory bowel diseases, 

alzheimer’s disease

Zhen and Zhang, 2019,

Feng et al., 2020

NLRP7 Pyrin domain containing NLR A719V, F671Glnfs*18 Abnormal human pregnancies and 

embryonic development

Soellner et al., 2017

NLRP12 Pyrin domain containing NLR R284X, c.2072 + 3insT Hereditary periodic fever 

syndromes, dermatitis

Wang, 2022

G-protein coupled receptors (GPCRs)

CaSR Calcium-sensing GPCR L123S Autosomal dominant hypocalcemia 

(ADH), Sporadic 

hypoparathyroidism, Familial 

hypoparathyroidism

Festas Silva et al., 2021

CXCR4 Chemokine GPCR S339fs5 WHIM syndrome Luo et al., 2022

EDNRB Endothelin GPCR W276C Hirschsprung’s disease Chatterjee and Chakravarti, 

2019

FSHR Glycoprotein hormone GPCR A189V Female infertility Lundin et al., 2022

FPR1 Formyl peptide GPCR F110S, C126W Juvenile periodontitis Jones et al., 2003

FZD4 Class frizzled GPCR R417Q Familial exudative vitreoretinopathy 

(FEVR)

Kondo et al., 2007

GNRHR Goandotropin-releasing 

hormone GPCR

Q174R Hypogonadotropic hypogonadism 

(HH)

Wang et al., 2021

GPR54 Kisspeptin GPCR T305C Hypogonadotropic hypogonadism 

(HH)

Alzahrani et al., 2019

GPR56 Adhesion class GPCR R565W, L640R Bilateral frontoparietal 

polymicrogyria (BFPP)

Chiang et al., 2011

LGR8 Relaxin family peptide GPCR I604V Cryptorchidism Bogatcheva and Agoulnik, 

2005

MASS1 Adhesion class GPCR S2652X Usher syndrome,

Fibrile seizures (FS)

Nakayama et al., 2002

(Continued)
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that an altered detection of commensal microbes might lead to the 
impairment of homeostasis in the intestines thereby leading to 
intestinal inflammation (Parlato and Yeretssian, 2014).

Polymorphism in CTLRs and RLRs
Multiple CTLRs and RLRs variants have been reported in 

literature against non-enteric infectious microbes. In CTLRs, two 
variants, G54D (rs1800450) and N104S (rs2617170) in MBL2 and 
KLRC4, respectively, contribute to the susceptibility of Behcet’s 
disease (Yang et al., 2017). Behcet’s (beh-CHETS) disease is an 
autoimmune disease that causes systemic blood vessel 
inflammation. In particular, G1186A mutation in a CTLR known 
as MRC1 (mannose receptor 1) was linked to an increased risk of 
pulmonary tuberculosis among the Chinese population (Zhang 
et al., 2012). Recently, four CLEC4E SNPs (rs10841845, rs10841847, 
rs10841856, and rs4620776) were identified to be  a cause of 
pulmonary tuberculosis (Bowker et al., 2016). One such finding 
reports broad spectrum MBL2 polymorphisms associated with 
human immunodeficiency virus (HIV) and tuberculosis 
co-infection across diverse populations (Garcia-Laorden et  al., 
2006). In RLRs, mutations at residues threonine 770, serine 854 
and serine 85, were shown to constitutively activate RIG-I resulting 
in IFN induction (Sun et  al., 2011). A non-synonymous 
polymorphism due to mutation of arginine to cysteine at amino 
acid position 7 leads to the expression of a functional RIG-I 
associated with an increased antiviral signaling (Shigemoto et al., 
2009; Hu et al., 2010; Loo and Gale Jr, 2011).

Polymorphism in GPCRs and PGRPs
GPCRs, like TLRs and NLRs play an important role in the 

recognition of MAMPs. The transcription in cells may be affected in 
a tissue-selective manner which in turn may be  affected by the 
polymorphisms of the GPCR promoter regions genes (Insel et al., 
2007; Table  1) while genetic variants in PGLYRP1, PGLYRP2, 
PGLYRP3 and PGLYRP4 genes were shown to be associated with CD 
and ulcerative colitis (Zulfiqar et al., 2013; Dierking and Pita, 2020).

Microbial ligands

Microbial metabolites are chemical compounds which have 
the ability to regulate host immune responses by activating human 
host receptors (Rooks and Garrett, 2016). On the other hand, 

microbial ligands which bind to the receptors as mentioned above, 
also referred to as the PAMPs recognized by PRRs, can be grouped 
into three main classes, i.e., glycans, nucleic acids, and the proteins 
(Kawai and Akira, 2009). These microbial ligands do not share 
structural similarity but they share features which reflect the 
evolutionary progression of response to innate immunity. First, 
these are produced by the microbe (commensal/ pathogenic) and 
not by the host. This is the basis of discrimination of the self and 
non-self-antigens which in turn enables the host to mount an 
innate or adaptive immune response against microbial agents. 
Second, these ligands are conserved among a certain class of 
pathogens (Rana et al., 2015). Hence, recognition of a conserved 
portion of the lipopolysaccharide (LPS) lets PRR to identify the 
presence of any Gram-negative bacteria. Third, as these PAMPs 
carry out functions which are physiologically essential for 
microbial survival, any mutation in PRRs would be  toxic or 
detrimental to the host itself (Medzhitov and Janeway Jr, 2000; 
Mogensen, 2009).

Microbial effector proteins
Microbial effector proteins are known to encompass catalytic 

domains within their primary sequences and exhibit enzymatic 
activities (Popa et al., 2016). Effector proteins are classified into four 
main categories based on the mode of action on the host (Scott and 
Hartland, 2017): 1. As competitive inhibitors which directly bind 
with host receptors (NleF—Escherichia, VipD—Legionella), 2. As 
proteins which functionally mimic the host proteins by post 
translational modifications (PTMs) such as lipidation (SopE—
Shigella, SifA—Salmonella), 3. As mediators of PTM to block host 
protein functions (AnkX—Legionella, OspF—Shigella), and 4. As 
proteolytic enzymes which alter the host proteome composition 
and its spatial organization (NleC—Escherichia, RavZ—Legionella; 
Paul, 2012). Effector proteins expressed by different bacteria modify 
host cell proteins aiming to suppress the host defense mechanisms. 
This in turn allows the pathogens to source essential nutrients from 
the host and cause infection. Bacterial effector proteins are reported 
to be distinctively associated with different receptors and activate 
different downstream signaling pathways—thus establishing the 
differences between commensals and pathogens (Weigele et al., 
2017; Mak and Thurston, 2021).

Among the various functions of the effector proteins, the 
ability to alter the host protein signaling pathways using PTMs is 
the most interesting one from a therapeutic perspective (Forrest 

Human host 
receptor

Category Polymorphism Disease condition References

MC4R Melanocortin GPCR P78L Dominant and recessive obesity Wang et al., 2014

RHO Opsin GPCR P23H Retinitis pigmentosa (RP) Lee et al., 2021

AVPR2 Vasopressin and oxytocin 

GPCR

R113W Nephrogenic diabetes insipidus 

(NDI)

Cheong et al., 2007

ß1 Adrenergic receptor Andrenoceptors R389G Heart failure Zhang and Steinberg, 2013

ß3 Adrenergic receptor Andrenoceptors W64R Obesity Haji et al., 2021

TABLE 1 (Continued)
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and Welch, 2020). Pathogenic bacteria, both intracellular and 
extracellular, secrete effector proteins into the host cell which 
intervenes in the immuno-modulatory response by mimicking the 
natural process in the host cell. Among the modifications are 
phosphorylation, acetylation, methylation, ribosylation, 
adenylation, lipidation, glycosylation, ubiquitination and the 
reversal of these modifications (Forrest and Welch, 2020). 
Irreversible changes like proteolysis, eliminylation and 
deamidation also perturb the host response pathway. Given the 
fact that the actual modification occurs due to enzymatic reaction 
by the effector proteins, the therapeutic interventions in these 
pathways find a spotlight as potential alternative treatment(s), 
especially against drug-resistant infections (Stévenin and Neefjes, 
2022). Along with the host protein signaling pathways, the host 
receptors themselves go through a series of PTMs whose role in 
pathogenesis, if further deciphered would expand our 
understanding of the molecular and cellular basis of innate 
immunity (Liu et al., 2016; Patwardhan et al., 2021).

Phosphorylation is a well-known PTM in which a phosphoryl 
group is transferred to a hydroxyl group of serine, threonine or 
tyrosine residues and is critical to host cell functions. Infectious 
bacteria exploit this pathway by secreting their own (de)
phosphorylating enzymes to alter the host cell response. For 
example, in entero-haemorrhagic E. coli (EHEC) O157:H7 (Hua 
et al., 2020), the effector protein EspF interacts with annexin A6 
(ANXA6) of the host protein resulting in phosphorylation of 
myosin light chain (MLC) and activation of protein kinase C (PKC) 
leading to the disruption of tight junctions between host cells, thus 
weakening the intercellular integrity. Lysine acetylation and 
methylation are other well-known PTMs where an acetyl group or 
a methyl group is transferred, respectively, to the epsilon-amino 
group in the side chain of a lysine residue in a reversible manner. In 
contrast, invasive pathogens such as Salmonella hijack their own 
process via acetylation to mediate and downregulate the effector 
proteins (Sang et  al., 2016). In the case of Shigella, the effector 
protein OspZ methylates cysteines in NF-kB activators TAB2 and 
TAB3 preventing the release of pro-inflammatory cytokine IL-8 
(Zheng et al., 2016). In contrast to addition of chemical groups on 
to the host proteins, ubiquitination (and ubiquitin-like protein 
conjugation) involves the addition of a small ubiquitin (or ubiquitin-
like) protein on to the amino-group of a lysine residue or the 
N-terminal methionine residue in the host protein. A concerted 
action of ubiquitinating enzymes facilitate this process while 
proteases called deubiquitinases (DUBs) reverse the ubiquitination. 
Several enteric pathogens are known to hijack this process to 
modulate the immune response. For example, Salmonella uses SseL 
for deubiquitinating polyubiquitin chains (Rytkönen et al., 2007) 
while AvrA removes ubiquitin from nuclear factor of kappa light 
polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and 
β-catenin resulting in the regulation of the NF-κB and β-catenin 
signaling pathways (Ye et al., 2007). In some cases, the bacterial 
effector proteins also mimic the ubiquitinating enzymes of the host 
protein. Such proteins are called Novel E3 ligases (NELs). For 
example, Shigella secretes NEL called IpaH9.8 which contributes to 

the splicing of U2AF35 mRNA resulting in the suppression of host 
immune response (Rytkönen et al., 2007).

Possible targets for discovery

Given the myriad of host receptor proteins modulated by 
pathogenic effector proteins in an enzymatic fashion, such 
processes are considered high profile therapeutic targets for 
drug interventions (Figure  1). The emergence of antibiotic 
resistance, compounded by the growth-lag in developing new 
antibiotics also necessitates the identification of alternative 
targets for antimicrobial therapy. In this aspect, new avenues are 
constantly being explored. We have discussed the important 
interactions in the previous section. The underlying biochemical 
mechanisms of such interactions and the PTMs associated with 
pathogenesis could potentially unlock the therapeutic potential 
of targeting these enzymes. Though in its infancy, the existing 
state-of-the-art high throughput screening (HTS) facilities and 
the ever-expanding repertoire of chemical inhibitors and small 
molecule libraries has pushed the frontiers in the struggle to 
control enteropathogenic infections with the help of new 
therapeutic molecules.

Some of the biochemical pathways involved in infection have 
been extensively studied to identify small molecule inhibitors that 
can influence the activity of PTM-promoting effector proteins. For 
example, Mycobacterium tyrosine phosphatases namely mPTPA 
and mPTPB were targeted for identifying inhibitors that can 
potentially lead to therapeutic application (Ruddraraju et  al., 
2020). Such techniques can be applied to the effector proteins 
identified in several species of enteric bacteria using similar 
screening techniques.

There are several mechanisms through which pathogenic 
bacteria develop drug resistance, including drug inactivation, 
modification of bacterial target sites, reduced antibiotic uptake 
and the formation of biofilms. These mechanisms explain how 
WHO “priority status” listed ESKAPE pathogens (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter species) have developed fitness against a wide-range 
of compounds such as lipopeptides, fluoroquinolones, 
tetracyclines, β-lactams and antibiotics that are the last line of 
defense (De Oliveira et al., 2020). One way to circumvent this 
problem is to use a multi-drug target instead of a single target 
thereby overcoming the susceptibility to resistance due to 
mutations. Single drug-target systems could be prone to drug 
resistance due to mutations (evolutionarily unavoidable). 
Therefore, multiple drug-target systems linked by a chemical 
linker are more effective. For example, in Helicobacter, using a 
multi-drug system such as the quadruple therapy is effective given 
that development of multiple phenotypic resistance is often 
difficult and slow. Similarly, targeting homomers with multiple 
binding sites (MBS) is better than targeting a single binding site 
(SBS; Abrusán and Marsh, 2019). Another avenue that is recently 
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being explored is the host-directed therapy (HDT). HDT involves 
interfering with host factors important for pathogens to invade 
and cause disease (Ruddraraju et al., 2020). This can be carried out 
in two steps: directly interfering with host response pathways and 
enhancing immune response to infection (Kaufmann et al., 2018; 
Abrusán and Marsh, 2019). Furthermore, advances in the ‘omics’ 
research of the gut-microbe interactions have opened up 
possibilities of finding  additional targets for drug discovery. Most 
of these interactions are followed up using mass spectrometric 
techniques using samples from diseased patients. Such data are 
consolidated into an interaction map providing a holistic approach 

for both diagnosis and treatment for various gut-related diseases 
(Lloyd-Price et al., 2019; Whon et al., 2021).

In addition to this, SNPs are known to be one of the major 
elements associated with the fate of a microbial infection 
(Mukherjee et al., 2019). Studies conducted in a German cohort 
showed correlation of SNPs, G743A and T1805G with cell surface 
TLR1 expression deficiency resulting in susceptibility to 
M. tuberculosis infection. Two additional SNPs, S150G and V220M 
which are associated with the structural organization of the LRR 
motif of TLR1 further refined the understanding of susceptibility to 
M. tuberculosis in the context of receptor recognition ability of 

FIGURE 1

Host–microbe interface in the human gut. Different pattern recognition receptors (PRRs) in the host distinctly recognize PAMPs from pathogenic 
bacteria (black arrows), eliciting an immune response (upward arrow at far left, dotted arrows). In turn, pathogens secrete effector proteins that 
can modulate the pathways involved in host-immunity (red arrows). The enzymatic functions of effector proteins can be targeted for drug 
interventions contributing to alternative therapies against infections (blue ‘T’ bars; created with BioRender.com).
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mycobacteria (Bustamante et al., 2011; Uciechowski et al., 2011). 
Another interesting observation reported in Asian patients having 
acute febrile malaria demonstrates the presence of polymorphisms 
(rs5743551) on G allele of TLR1 leading to reduced parasitemia and 
thereby a host directed control on severity of the disease (Hahn 
et  al., 2016). From an evolutionary thinking, this points to the 
possibility that G allele of TLR1 rs5743551 occurs in higher 
frequencies in non-Caucasian hosts and imparts a fitness advantage 
in malaria endemic zones. The state-of-the-art CRISPR/Cas9-based 
genome editing could be employed to target the microbes which 
cause pathogenesis in the host (Zheng et al., 2022). Polymorphisms 
in host receptors can further be  exploited to understand the 
virulence potential of pathogenic bacteria that can be targeted for 
suppression by CRISPR-Cas9 based therapies (Ramachandran and 
Bikard, 2019; Nath et al., 2022).

Conclusion

Sustained efforts directed at understanding the gut microbiome 
and the immune interactions have contributed to our understanding 
of the role of dysbiosis in the immune system concerning a range of 
infections and disease phenotypes. However, due to a relentless rise 
in antibiotic resistance, the human gut, which is home to the largest 
ecosystem of microbes, is at risk of becoming a hot-zone of a wide 
range of potential infections and pathologies. In future, alternative 
therapies are critical to replace current infection control regimens 
by targeting the receptor-ligand interactions and their downstream 
processes in the gut. In this regard, it is important to understand 
how commensal and pathogenic bacteria interact with the host in 
order to maintain symbiosis or trigger an infection. A few 
interesting aspects need to be addressed in relation to the axis of 
host-pathogen-environment: colonization of the mucus layer by 
commensal bacteria while in symbiosis with the host in the presence 
of specific MAMPs; existence of commensal MAMPs alongside 
pathogenic variants which can be distinguished from each other 
based on their environment; and restoring commensality to the 
pathogenic PAMPs by altering the host environment. Considering 
the fact that even a single polymorphism might facilitate a 
commensal-to-pathogen transition, it is important to develop a 
holistic approach towards an assay platform that profiles pathogenic 

PAMPs and the commensal MAMPs based on molecular, 
physiological and host genetic factors. This can be exploited in 
developing molecular screens targeting the host-pathogen interface 
in addition to better understanding the relationship between 
microbial sensors and enteric bacteria and how they affect 
susceptibility or resistance to an infection.
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