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Antimicrobial and anticancer drug resistance represent two of the main global 

challenges for the public health, requiring immediate practical solutions. In 

line with this, we need a better understanding of the origins of drug resistance 

in prokaryotic and eukaryotic cells and the evolutionary processes leading 

to the occurrence of adaptive phenotypes in response to the selective 

pressure of therapeutic agents. The purpose of this paper is to present some 

of the analogies between the antimicrobial and anticancer drug resistance. 

Antimicrobial and anticancer drugs share common targets and mechanisms of 

action as well as similar mechanisms of resistance (e.g., increased drug efflux, 

drug inactivation, target alteration, persister cells’ selection, protection of 

bacterial communities/malignant tissue by an extracellular matrix, etc.). Both 

individual and collective stress responses triggered by the chemotherapeutic 

agent involving complex intercellular communication processes, as well as 

with the surrounding microenvironment, will be  considered. The common 

themes in antimicrobial and anticancer drug resistance recommend the utility 

of bacterial experimental models for unraveling the mechanisms that facilitate 

the evolution and adaptation of malignant cells to antineoplastic drugs.
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Introduction

The emerging and accelerated evolution of drug resistance in microbial and tumor cells 
share many analogies such as common targets (topoisomerase II) and mechanisms of action; 
availability of molecules with dual antimicrobial and antineoplastic activity (e.g., antineoplastic 
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antibiotics); similar mechanisms of resistance; common selective 
drivers for resistance; dual resistance, respectively, intrinsic (failure 
to obtain an initial response to drugs) and acquired (involving 
specific and gradual genetic and epigenetic mechanisms); and 
existence of complex interactions between the gut microbiota and 
the drugs (Lambert et al., 2011). We will enumerate below some of 
the most well-known examples of similarities between antimicrobial 
and anticancer drugs resistance, at single cell and population level, 
that will be further detailed in dedicated sections of this review.

Single-cell processes involved in 
antimicrobial and anticancer drugs 
resistance

One of the best-known examples of multi-drug resistance 
(MDR) mechanisms shared by bacterial and malignant cells are 
the efflux pumps (Spratt, 1994; Davies and Davies, 2010). Efflux 
pump activation is responsible for therapeutic failure in solid 
and hematological malignancies as well as in many bacterial 
infections (Sissi and Palumbo, 2003; Bisacchi and Hale, 2016). 
Another common feature is represented by the adaptation 
strategies to the stress induced by different microenvironments, 
which are triggered by the genetic instability of tumor cells and 
bacterial mutability, respectively. In this regard, stimulation of 
stress-induced DNA repairing (SOS) genes plays an important 
role in DNA repair in both prokaryotic and eukaryotic cells 
exposed to inhibitory agents. Bacterial resistance could occur 
not only by spontaneous mutations or horizontal gene transfer 
of resistance genes but also by adaptation through prolonged 
exposure to sublethal doses (Andersson and Hughes, 2014). It is 
very likely that the same adaptive mechanism is at work in 
neoplastic cells.

Collective responses involved in 
antimicrobial and anticancer drugs 
resistance

Besides single-cell processes, adaptation at population level 
has been shown to be involved in resistance to both antimicrobial 
and antineoplastic agents. The collective stress response 
triggered by the chemotherapeutic agent involves complex 
intercellular communication processes, as well as with the 
surrounding microenvironment (Stewart and Costerton, 2001; 
Butler et al., 2010). For example, in the absence of nutrients, 
both microbial and tumor cells adapt to environmental 
conditions by metabolically shifting to a persistent phenotype in 
which cells do not grow and divide. In the presence of antibiotics, 
bacterial cells try to avoid the drugs by flagellar movement to a 
region of low concentration of the cytocidal agent and by 
forming a biofilm, which limits access of the drug (Stewart and 
Costerton, 2001; Butler et al., 2010). The tumor cells avoid the 
antineoplastic drugs by metastasis or by establishing an altered 

microenvironment through vascularization (Ahmed et al., 2010; 
Lambert et  al., 2011). The stroma and extracellular matrix 
(ECM) of neoplastic cells and the microbial biofilm exopolymeric 
matrix limit the rate of O2 and nutrient diffusion and protect the 
cellular communities.

Interaction of antimicrobial and 
anticancer drugs with gut microbiota

The gut microbiome plays an important role in modulating 
the efficacy and toxicity of antibiotics and antitumoral agents, 
thus representing an attractive target for improving drug safety 
and efficacy, by manipulating its composition. However, both 
antibacterial and anticancer treatments induce perturbations in 
the normal microbiota (also known as dysbiosis). Dysbiosis is 
not only associated with diarrhea and fungal infections, it could 
have a role in neoplastic etiology and cancer risk, influence the 
efficacy of chemotherapy, radiotherapy, and immunotherapy, 
and also promote the emergence of antimicrobial and 
antitumoral drug resistance (Alexander et al., 2017; Lazar et al., 
2019; Pinato et al., 2019; Cheng et al., 2020). Antibiotics with 
broad spectrum have been shown to induce numerical changes 
in 3% of bacterial species in the gut microbiota and the occurred 
dysbiosis further alters the therapeutic efficacy of certain 
antitumor antibiotics and increases their toxicity (Lofmark et al., 
2006; Jernberg et  al., 2007; Andersson and Hughes, 2014; 
Francino, 2015). On the other side, antineoplastic chemotherapy 
indirectly amplifies dysbiosis and has profound effects, mainly 
on the intestinal epithelium, influencing cancer progression, 
treatment efficacy, and toxicity.

All these functional analogies and complex interactions can 
generate common therapeutic strategies. Therefore, the purpose 
of this paper is to present some of the analogies between the 
antimicrobial and anticancer drug resistance, starting with the 
presentation of the common targets and mechanisms of action 
and of the antineoplastic antibiotics. Both single-cell and collective 
mechanisms of resistance in bacterial communities and malignant 
tissues will be presented.

Antimicrobial and anticancer drug 
resistance: The dimension of the 
challenge for the public health

Nowadays, cancer and infectious diseases are two of the 
most problematic and common diseases, exhibiting a great 
impact on the health status of the general population. According 
to the World Health Organization (WHO), cancer is one of the 
leading mortality causes worldwide, with nearly 10 million 
deaths recorded in 2020.1 The most common neoplasia, also 

1 https://www.who.int/news-room/fact-sheets/detail/cancer
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accounting for the highest mortality rates are, in alphabetical 
order, breast, colorectal, liver, lung, prostate, skin, and stomach 
cancers (Ferlay et al., 2021). The current therapeutic approaches 
in cancer include surgery and chemotherapy as first options, 
followed by radiotherapy, immunotherapy, and targeted therapy 
(Kanady et al., 1997). Based on experimental tumor induction 
and propagation models, it is estimated that in neoplasms 
containing 103–106 cells, the chemotherapeutic treatment can 
select at least one clone of resistant cells, which can survive and 
continue to proliferate, leading to tumor recurrence or metastasis 
formation. The spontaneous mutation rate is directly 
proportional with the metastatic potential, being 3- to 7-fold 
higher in case of tumorigenic clones with high metastatic 
potential (Cifone and Fidler, 1981). Thus, the emergence of 
resistance to antitumoral drugs currently represents one of the 
major medical challenges.

Antimicrobial resistance (AMR) is one of the top ten global 
threats, not only for humans, but also for the environmental 
health, being considered a typical One Health problem.2 The most 
threatening bugs, exhibiting MDR, extended-drug and even 
pan-drug resistance phenotypes are grouped under the acronym 
ESCAPE (Enterococcus faecium, Staphylococcus aureus, 
Clostridium difficile, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacteriaceae; Peterson, 2009). The first 18 
most fearful resistant microbes are classified by the Center for 
Disease Control and Prevention (CDC) as either urgent, serious, 
or concerning threats in the 2019 AR Threats Report (CDC’s 
Antibiotic Resistance Threats in the United States, 2019).

The antimicrobials crisis, beyond direct consequences related 
to increased mortality and morbidity rates caused by infectious 
diseases and huge economic losses, would compromise the success 
of modern medicine, including invasive diagnosis procedures 
(e.g., biopsy), surgery, and cancer radio- and chemotherapy. 
Regardless of the extent of the surgery, the risk of developing 
healthcare associated infections with resistant strains is very high, 
causing difficulties in making the most appropriate therapeutic 
decision. Also, radiotherapy and chemotherapy could induce a 
temporary immunodeficiency and thus increase the oncologic 
patient susceptibility to infections, including those produced by 
MDR bacteria3 (Ariza-Heredia and Chemaly, 2018). 
Fluoroquinolone and carbapenem resistance, nosocomial 
outbreaks of Gram-negative sepsis on cancer wards, are often 
caused by enteric bacteria, with mortality rates of 60%–84% 
(Papanicolas et al., 2018).

All these facts demonstrate that the continuously growing 
cancer burden is potentiated by the emergence and spread of AMR.

2 https://www.who.int/news-room/fact-sheets/detail/

antimicrobial-resistance

3 https://www.reactgroup.org/news-and-views/news-and-opinions/

year-2020/

new-react-policy-brief-successful-cancer-treatment-relies-on-effective-

antibiotics/

Common features in antimicrobial 
and antineoplastic agents’ 
structures, targets, and 
mechanisms of action

The currently available antibiotics act through: (a) inhibition 
of cell wall synthesis (beta-lactams); (b) alteration of cell surface 
structures (cell wall, outer membrane, cytoplasmic membrane; 
polypeptides, daptomycin), (c) inhibition of protein synthesis 
(aminoglycosides, tetracyclines, macrolides, lincosamides, 
streptogramins, oxazolidinones, chloramphenicol, etc.) (d) 
inhibition of DNA synthesis and transcription (quinolones, 
rifamycins); and inhibition of essential metabolites (trimethoprim-
sulfamethoxazole; Mihaescu et  al., 2008, 2009). The main 
mechanisms of action of the antitumoral drugs are (a) alteration 
of DNA structure by intercalation or ROS release, (b) inhibition 
of enzymes involved in replication and transcription, (c) inhibition 
of essential metabolites, and (d) inhibition of cellular growth by 
preventing the activation of certain proteins (Figure 1).

Some of the current antibiotics were reported to have the 
same target and similar mechanisms of action exhibiting both 
antimicrobial and antitumor activity (Gao et  al., 2020). 
Antineoplastic antibiotics with major therapeutic impact are 
anthracyclines, peptides, and quinolones, which interact with 
topoisomerases both in prokaryotic and eukaryotic cells 
(Pommier et al., 2010). Anthracyclines react with topoisomerase 
DNA complex, stabilize it, and induce cell apoptosis (D’Arpa and 
Liu, 1989). Quinolones and aminocoumarin antibiotics target type 
II topoisomerases (gyrase) and topoisomerase IV, converting these 
enzymes into physiological poisons, both in tumoral and bacterial 
cells (Barrett, 1996; Salerno et al., 2010). Moreover, besides their 
direct antitumoral effects, quinolones proved to have 
immunomodulators activity and to stimulate the antineoplastic 
immune response (Dalhoff and Shalit, 2003).

These aspects suggest that the identification of inhibitory 
compounds with multiple targets (i.e., topoisomerases I and II and 
DNA repairing enzymes) could represent a promising lead to 
efficiently fight bacterial infections and cancer and to avoid 
emergence of bacterial and tumor cells resistance (Skok et al., 
2020). Even a low level of inhibition for multiple bacterial and 
tumor cell functions would have a high cumulative effect and limit 
the risk of resistance development (Avner et al., 2012).

Common features in antimicrobial 
and antineoplastic agents’ 
resistance

The accelerated evolution of resistance of neoplastic cells to 
chemotherapeutic agents and of bacterial cells to antibiotics is the 
result of common mechanisms acting at individual (Figure 2) and 
population levels (Lambert et al., 2011). The current research is 
focused on the identification of these mechanisms in order to be able 
to develop efficient drugs to overcome them (Nikolaou et al., 2018).
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FIGURE 2

Comparative representation of the main targets, mechanisms of action, and mechanisms of resistance in bacterial and tumoral cells.

Single-cell resistance mechanisms

After surgical resection of the primary tumor, the next step in 
the therapeutic approach is chemotherapy. This can be  given 

before and/or after the primary tumor is resected to inhibit the 
proliferation of malignant cells and induce their apoptosis, but its 
disadvantage is the selection of resistant clones. According to 
Goldie–Coldman, the clones of tumor resistant cells survive 

FIGURE 1

Comparative representation of the antibiotics and antitumoral agents’ mechanisms of action.
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because of spontaneous mutations, which occur in 1/1,000,000 
cells; thus, the probability of the emergence of tumor resistance is 
very high (considering that 1 g of tumor tissue contains 109 cells) 
(Goldie and Coldman, 1979, 1983, 1984). In bacteria, resistance is 
acquired either by spontaneous mutations or by horizontal gene 
transfer mediated by phage transduction, transformation with 
external DNA, and resistance plasmid transfer during conjugation.

Malignant cells could develop resistance through one/some of 
the following biochemical mechanisms: (a) inhibition of drug 
distribution through circulation or blood–brain barrier, (b) 
inhibition of intracellular accumulation, (c) inhibition of 
interaction between the chemotherapeutic agent and target 
molecules (i.e., proteins and nucleic acids), (d) transformation of 
the active agent or of its specific target, (e) enzymatic or chemical 
drug inactivation, and (f) removal of the chemotherapeutic agent 
from the cells via efflux pumps.

In bacteria, the biochemical mechanisms of resistance include 
(a) decreased porin permeability, (b) active efflux of the antibiotic, 
(c) target alteration, and (d) chemical modification or inactivation 
of antibiotics (Patel et al., 2021). Thus, one of the most important 

resistance mechanisms present in both bacteria and tumor cells is 
represented by the activation/hyperactivation of efflux pumps. In 
neoplastic cells, the overexpression of P-glycoprotein occurred 
through the amplification of the encoding gene is leading to MDR 
to hydrophobic compounds: (a) anthracyclines (doxorubicin, 
daunorubicin, epirubicin, and idarubicin); (b) aminoacridines 
(AMSA); (c) taxans (taxol, etc.), vinca alkaloids, and actinomycin 
D; and (d) mitomycin C and topoisomerase I inhibitors (Patel 
et al., 2021) In bacteria, there are at least four families of secondary 
transporters conferring MDR and assuring toxic compounds 
elimination (Mihaescu et al., 2008).

Bacterial biofilms versus tumoral tissue 
– The power of the collective

The ability to resist a chemotherapeutic treatment or to 
survive in stressful environments is the result of the ability of both 
bacterial and tumor cells to cooperate and elaborate a collective 
adaptive response (Figure 3).

FIGURE 3

Comparative representation of the collective adaptative mechanisms exhibited by bacterial and tumor cells in stressful environments.
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Both bacterial and tumor cells adapt to different 
microenvironmental conditions by changing their phenotype and 
activating the stress response processes. For example, in the 
absence of nutrients, both bacterial and tumor cells adapt to 
environmental conditions by metabolically shifting to a persister 
phenotype in which cells do not grow and divide.

Also, both bacterial and tumor cells transiently increase their 
mutation rates (e.g., hypermutator bacterial cells) and can reduce 
DNA replication fidelity to foster diversity. This process is known 
as adaptive mutability and leads to accelerated evolution and 
adaptation. As a result, biofilm and tumor cells could develop 
MDR much more rapidly. However, the hypermutability state is 
maintained only in a small population fraction reducing the risk 
of detrimental or fatal mutations in the rest of the clonal 
population (Taddei et al., 1997; Macia et al., 2005).

Both bacterial and tumor cells adopt a running behavior 
(mediated by flagellar motility in case of bacteria and by metastasis 
process in case of tumoral cells) in the presence of stressor agents.

The bacterial communities/tumoral tissues isolate in citadels 
which are hard to penetrate by the antibiotics/antitumoral agents. 
Inside these isolated communities, a collective stress response, 
involving complex intercellular and with the surrounding 
microenvironment communication, is achieved (Lambert et al., 
2011). All these functional analogies and a better understanding 
of the mechanisms and implications of individual and collective 
adaptive evolution are of relevance to generate common 
therapeutic strategies (Table 1).

Gut microbiota–antibiotics–
antitumoral agents trialogue

Given the similarities regarding the antibiotics and some 
antitumoral agents’ structure, targets, and resistance 
mechanisms, concerns have been raised regarding their 
bidirectional interactions with the host microbiota. The human 
microbiota is considered both an essential organ, with important 
roles in nutrition, pathogenesis, and immunity, and the second 
genome, represented by bacteria, archaea, fungi, and viruses 
(Neu, 2015).

The normal gut microbiota has a density of 1011–1012 cells/ml 
content and contains mainly two anaerobic phylotypes: 
Bacteroidetes (48%) and Firmicutes (51%) together with 
Proteobacteria, Fusobacteria, Spirochaetes, etc. (Mandal et  al., 
2016). The intestinal microbiome plays an important role in 
integration of the dietary signals with immune system reactivity 
and maintenance of the intestinal homeostasis (Thaiss et al., 2016), 
assuring (i) the mechanical and physiological barrier against 
colonization with pathogenic agents and overgrowth of existing 
microorganisms and (ii) anti-tumoral effects, mucosa protection 
from the side effects and potentiation of antitumoral treatments 
(Cheng et al., 2020). It is well-known that many factors, from 
ethnicity, diet, and other lifestyle factors and long-term or frequent 
use of common antibiotics influence the microbiota composition 

and can induce malignant transformation (Chelariu et al., 2016, 
2017; Sommer et al., 2017; Lazar et al., 2018, 2019; Pircalabioru 
et al., 2019; Mihai et al., 2021). There are studies stating that the 
elimination of the infective process with amoxicillin and 
clarithromycin in early stage of neoplasia has beneficial effects 
(Van Nuffel et al., 2015). On the contrary, an analysis of 125,441 
cancer patients and 490,510 subjects in the control group proved 
that the antibiotic treatment increased the cancer risk. It has been 
shown that the incidence of cancer in people treated on long-term 
with antibiotics increased by 18%, especially for lung, kidney, 
pancreatic, lymphoma, and myeloma cancers (Friedman et al., 
2009). In case of colorectal cancer (CRC), the highest risk was 
associated with anti-anaerobic antibiotics (vancomycin and 
penicillins) and the lowest, with tetracyclines (Bufill, 1990; 
Kilkkinen et al., 2008; Friedman et al., 2009; Dik et al., 2016; Cao 
et al., 2018).

Neoplasia-associated changes in microbiota are frequently 
seen, particularly in tissues/systems in contact with gut or 
respiratory tract microbiota (Wotherspoon et  al., 1991; 
Bayerdörffer et al., 1995; Isaacson and Du, 2004; Yamamoto and 
Schiestl, 2014; Mima et al., 2017; Mao et al., 2018). The decrease 
of mucopolysaccharide layer thickness exposes epithelium to 
direct contact with microbiota and to the development of invasive 
biofilms (Costerton et  al., 1999). It has been shown that the 
adenomatous polyps, CRC, and healthy epithelium at distance 
from benign or malignant tumors are covered with biofilms 
formed by tumorigenic invasive polymicrobial associations 
incorporated in a polysaccharide matrix (Bufill, 1990; Swidsinski 
et al., 2005; Dejea et al., 2014, 2018; Tomkovich et al., 2019). In the 
colon epithelium covered with invasive biofilms, the density of 
E-cadherin adherence molecules decreases, and the level of IL-6, 
a marker of increased permeability and inflammatory reaction, 
increases. By increasing the permeability of the epithelium, the 
excess lipopolysaccharides (LPS) from the outer membrane of the 
Gram-negative bacterial cell pass into the blood and induce 
endotoxemia, inflammation in visceral adipose tissue, disruption 
of glucose metabolism, insulin resistance, and obesity, playing a 
role in the development of metabolic syndrome, type 2 diabetes, 
inflammatory bowel disease, autoimmunity, and carcinogenesis 
(Halmos and Suba, 2016). The risk of such pathologies is increased 
by prolonged antibiotic exposure (Hernandez, 2016).

Dysbiosis associated with an increase in pathogenic bacteria 
such as Fusobacterium nucleatum stimulates the growth of 
different intestinal tumor types, including CRC, by inhibiting the 
activity of NK cells.

During dysbiosis, the pro-inflammatory Th17 and anti-
inflammatory Treg lymphocytes ratio changes in the favor of the 
last ones, probably due to changes in the concentration and ratios 
of short-chain fatty acids (SCFAs). It has been shown that butyrate 
and propionate, but not acetate, stimulate extrathymic production 
of foxp3 anti-inflammatory Treg lymphocytes (Arpaia et  al., 
2013). Importantly, SCFA can act as histone deacetylases inhibitors 
to induce hyperacetylation of histones modulating gene expression 
leading to apoptosis and growth arrest (Schilderink et al., 2013).
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Modulation of gut microbiota by 
antitumoral agents and influence of 
antibiotics

Antitumoral treatments influence the eubiosis by different 
mechanisms such as: (a) alteration of the quantitative and 
qualitative panel of molecules produced by the epithelium; (b) 
induction of changes in gut microbiota, followed by increase of the 
epithelial barrier permeability, facilitating bacterial translocation 
into the internal environment in cancer patients that are already 
immunosuppressed due to cytostatic treatment or malignancy, 
hence increasing the risk of sepsis (Sullivan et al., 2001; Samet 
et  al., 2013; Papanicolas et  al., 2018); (c) alteration of 
immunological homeostasis due to antibiotic treatment, 
increasing immunosuppression and susceptibility to infectious 
diseases and neoplasia (Willing et  al., 2011; Alexander et  al., 
2017); (d) decrease in the efficacy of some anticancer agents and 
an increase in their toxicity; and (e) triggering of oxidative stress 
(ROI release) and genotoxicity since bacterial DNA double-strand 
breaking under antibiotic/cytostatic agents action activate the 
mutation-inducing SOS repair system leading to antibiotic 
resistance, while other antibiotics favor the spread of resistant 
strains (Podolsky, 2002; Cho, 2008).

Some of the most frequently reported alterations of gut 
microbiota composition and diversity induced by chemotherapy 
are (i) increased abundance of pathogenic bacteria (e.g., 

enterococci, staphylococci, Escherichia coli, other 
Enterobacteriaceae, Pseudomonas, clostridia, and Gram-negative 
anaerobes); (ii) augmented bacterial translocation to mesenteric 
lymph nodes and spleen, accompanied by the occurrence of Th1 
and Th17 immune responses (Panebianco et  al., 2018); (iii) 
decreased gut bacterial total numbers and biodiversity; (iv) 
decrease of beneficial bacteria, such as Lactobacillus spp., 
Bacteroides spp., Faecalibacterium prausnitzii, Bifidobacterium 
spp., and Firmicutes (Panebianco et al., 2018). It has been shown 
that oncologic patients harbor a marked reduction in intestinal 
bacterial diversity, with >30% of fecal samples dominated by a 
single bacterial genus, increasing the risk of bacterial translocation 
and explaining the fact that bloodstream infections are causing 
death in ~10% of cancer patients (Liang et al., 2019). In 50% of 
patients, bacteremia was preceded by intestinal domination with 
a corresponding organism for 7 days, the enterococcal domination 
of the gut microbiota being associated with a 9-fold increase in the 
risk of vancomycin-resistant enterococcus (VRE) bacteremia, 
while proteobacterial domination with a 5-fold increase in the risk 
of Gram-negative bacteremia (Liang et al., 2019).

The majority of antitumoral agents have been shown to 
modulate the gut microbiota. Anthracyclines have a bacteriostatic 
effect on the microbiota. Irinotecan is toxic to commensal 
microbiota, causing an increase in the number of potentially 
pathogenic species (Enterobacteriaceae, Clostridium, and 
Fusobacterium nucleatum). Cyclophosphamide, an alkylating 

TABLE 1 Summarization of comparative mechanisms adopted by bacterial and tumor cells seeking survival under stress (Lambert et al., 2011).

Mechanisms to escape stress 
mediated by drug exposure Bacteria Tumors

Phenotypic, reversible mechanisms

  Moving to an environment that contains a lower 

concentration of a cytocidal agent

Mobility Metastasis

  The cell population can create a milieu where 

the drug has limited access to the cells

Biofilms Altered tumor microenvironment (including the 

vasculature)

The extracellular polymeric matrix limits the influx of 

nutrients and oxygen

Tumor stroma and dense surrounding extracellular 

matrix limiting the diffusion of nutrients and oxygen

Intercellular communication inside biofilm cells and with the 

environment through quorum sensing and response

Intercellular communication inside tumor cells and 

with different cells from the surrounding healthy 

tissues through direct contact and soluble mediators 

(cytokines)

Biofilm compartmentalization as response to different 

phsyico-chemical conditions leading to phenotypic 

heterogeneity/primitive differentiation

Highly specialized cells and heterogeneous population 

Metabolic shift toward anaerobic glycolysis

Lysis of bacterial cells and occurrence of a channel network/

cavities facilitating the water and nutrients access to the inner 

biofilm layers

Tumor neovascularization

Isolated cells/microcolonies dispersal and initiation of a novel 

biofilm in other anatomic sites

Metastatic expansion from a primary human tumor

  Phenotypic switching Persisters’ phenotype

Genetic variation (inherent/de novo mutations)

  Stress-induced mutagenesis (activation of SOS 

response)

Selection of (hyper) mutator (high mutation rates) phenotypes Genetic instability in cancer tissues assuring rapid and 

high adaptability to microenvironment changes and drugs

https://doi.org/10.3389/fmicb.2022.960693
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chifiriuc et al. 10.3389/fmicb.2022.960693

Frontiers in Microbiology 08 frontiersin.org

compound, is located at the intersection of immunotherapy and 
chemotherapy. Its anti-neoplastic efficacy is based on stimulating 
the anti-tumor immune response, which is mainly 
pro-inflammatory. As a consequence, it also alters the 
permeability of the small intestine and induces translocation of 
Gram-negative and Gram-positive species into the secondary 
lymphoid organs, where bacteria stimulate the Th1 and Th2 
memory lymphocytes. Germ-free mice and conventional mice 
treated with anti-Gram-positive antibiotics have minimal Th17 
lymphocyte response, and tumors do not respond to 
cyclophosphamide (Viaud et al., 2013).

Besides their direct effect on gut eubiosis, cystostatic 
derivatives are eliminated by biliary secretion in the gut and could, 
on their turn, stimulate or inhibit the microbiota (Alexander 
et al., 2017).

Many studies demonstrate that antibiotic treatment could 
influence the efficiency of cytostatic treatments. For example, 
cyclophosphamide efficiency was diminished by vancomycin and 
colistin, while Lactobacillus murinus, Lactobacillus johnsonii, 
Barnesiella intestinihominis, and Enterococcus hirae increased its 
antitumor activity or restored the response to cyclophosphamide 
in tumor-bearing antibiotic-treated mice (White et  al., 2008; 
Viaud et al., 2013; Li et al., 2021). The cytotoxicity of CB 1954 was 
strongly enhanced by E. coli nitroreductase activity (Chen et al., 
2004). Therefore, gut microbiota modulation could maximize the 
response to anticancer treatments. For example, starting from the 
capacity of intravenously injected spores of strictly anaerobic 
Clostridium species to germinate in the hypoxic regions present in 
solid tumors, a genetically engineered, non-toxinogenic strain of 
C. novyi-NT has been used to carry the anticancer drug and 
deliver it inside the tumor (Staedtke et al., 2016; Feng et al., 2021). 
Not only chemotherapy, but also radiotherapy has been shown to 
induce persistent selective killing of commensal anaerobes as well 
as expansion of potentially pathogenic enterococci and 
Enterobacteriaceae (Garajova et al., 2021).

Influence of gut microbiota on 
antitumoral treatment efficacy

It has been shown that gut microbiota influences the efficacy 
of conventional chemotherapy, immunotherapy, radiotherapy and 
surgery, the drug toxicity, and utltimately, the oncologic patient’ 
prognosis. Gut microbiota influences the efficacy of chemotherapy 
and immunotherapy due to its ability to metabolize drugs and 
xenobiotics, and to modulate host inflammation and 
immune responses.

The healthy microbiota enhances the efficacy of the platinum-
based agent oxaliplatin, by inducing ROI release from myeloid 
cells, thereby enhancing inflammatory cytokine production and 
tumor regression (Goldszmid et  al., 2015). This effect was 
decreased in germ-free / antibiotic-treated mice, while a better 
response of mice to cisplatin was obtained when combined with 
Lactobacillus (Iida et al., 2013). On the contrary, Fusobacterium 

nucleatum has been shown to increase resistance platinum-based 
agents through increasing authophagy (Yu et al., 2017).

Doxorubicin has been shown to be inactivated by microbial 
deglycosylation performed by strains of Streptomyces and 
Raoultella (Westman et al., 2012; Blaustein et al., 2021).

The efficacy of 5-Fluorouracil has been reduced by the 
presence of mycoplasmas or F. nucleatum, via upregulation of an 
inhibitor apoptotic protein (IAP). It has been shown that 
F. nucleatum increases tumor-associated neutrophils, dendritic 
cells, and pro-cancer M2 macrophages and prevents the 
cytotoxicity of T and NK cells (Zhang et al., 2019). When present 
inside the tumor microenvironment, Mycoplasma hyorhinis can 
induce a dramatic antitumor activity decrease (20–150-fold) of 
5-Fluorouracil by degradation to its less active derivatives 
(Bronckaers et al., 2008; Garajova et al., 2021).

Gemcitabine can be metabolized by different microbes, such 
as Mycoplasma, F. nucleatum, and E. coli which express nucleoside 
analog-catabolizing enzymes to its inactive metabolite 
2′,2′-difluoro-2′-deoxyuridine (dFdU) and resistance could 
be neutralized by some antibiotics such as ciprofloxacin, which 
eliminate these species from gut microbiota (Geller et al., 2017; 
Garajova et al., 2021).

Gut microbiota dysbiosis has been also shown to interfere 
with the efficacy of anticancer immunotherapy (Garajova et al., 
2021), inducing resistance to antibodies against programmed cell 
death 1 (PD-1; Routy et  al., 2018). Moreover, the efficacy of 
Ipilimumab, a monoclonal antibody that neutralizes the cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4), is dependent on the 
presence of Bacteroides fragilis polysaccharide that induces a 
splenic Th1 cell memory response (Beck et al., 2006; Vetizou et al., 
2015). Besides increasing its efficiency, many members of gut 
microbiota such as Bacteroidaceae, Rikenellaceae, and 
Barnesiellaceae protect from Ipilimumab adverse events (Dubin 
et  al., 2016). The favorable clinical outcome during anti-PD1 
therapy was linked to the presence of Akkermansia muciniphila, 
as well as to high diversity and abundance of Clostridiales/Rumin
ococcaceae/Faecalibacterium, Bifidobacterium longum, Collinsella 
aerofaciens, and Enterococcus faecium. Conversely, the poor 
responders harbored a low diversity and high abundance of 
Bacteroidales (Robert et  al., 2011; Sivan et  al., 2015; 
Gopalakrishnan et al., 2018; Mao et al., 2021; Wong et al., 2021; 
Sevcikova et al., 2022).

Chemotherapy and emergence of AMR

Chemotherapy could trigger the emergence of de novo 
antimicrobial resistance, one of the mechanisms being the increase 
of mutation rate by activating the bacterial SOS response to DNA 
damage (Poulin-Laprade et  al., 2015). Mitomycin C has been 
shown to be a potent inducer of the bacterial SOS response, being 
used to select resistant E. coli clones with resistance mediated by 
mdfA efflux pump overexpression (Wei et al., 2001). It has been 
shown that activation of the SOS response by mitomycin C 
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increases the transcription of genes necessary to horizontal 
transfer the SXT element that encodes resistance to multiple 
antibiotics in Vibrio cholerae (Beaber et al., 2004). Methotrexate, 
a dihydrofolate reductase inhibitor, acts by blocking dihydrofolic 
acid synthesis similarly to trimethoprim antibiotic and thus, 
co-selects bacterial cells carrying the trimethoprim resistance 
gene on the same plasmid (Guethmundsdottir et  al., 2021). 
Non-lethal doses of cisplatin resulted in a 3-7-fold increase in 
mutation frequency, leading to resistance to rifampicin and 
ciprofloxacin and the administration of antioxidants (ascorbic 
acid) decreased genotoxicity by 41% and bacterial mutation rates 
by 65% (Lofmark et  al., 2006; Chistyakov et  al., 2018). Some 
chemotherapeutic agents have been shown to increase the 
horizontal transfer of bacterial resistance genes by phage 
transduction, transformation with external DNA, or plasmid 
transfer by conjugation (Wei et al., 2001).

Conclusion

The evolutionary strategies used by bacteria and tumors to 
individually and collectively adapt to continuously changing and 
stressful environments share many similarities, opening new 
avenues in the study of drug resistance within cancer tissues, 
using more simple and reproducible bacterial models, as well as 
in the development of novel antitumor agents and microbiome-
based therapeutic interventions that may be  able to correct 
dysbiosis and thus to maximize the treatment efficiency and 
prevent selection of drug resistance. The gut microbiota is 
influenced by and influences the treatment efficacy and drug 
toxicity. Chemotherapy is likely to produce de novo antimicrobial 
resistance in gut microbiota by inducing dysbiosis, increasing the 
horizontal gene transfer and the mutation rates consequently to 
the bacterial SOS system activation. On the other side, the 
disruption of commensal gut microbiota and alteration of host 
physiology might influence both the efficacy of the antitumoral 
treatments and their toxicity. Therefore, a better knowledge of the 
complex interactions among gut microbiota, antibiotics, and 
anticancer drugs will enable us to develop novel anticancer 
treatment strategies and subsequently improve the cancer 

patients’ outcome, minimizing the risk of antibiotic-resistant 
bacteria carriage and of associated infections.
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