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Pit latrines are used by billions of people globally, often in developing countries

where they provide a low-tech and low-cost sanitation method. However,

health and social problems can arise from a lack of emptying or maintenance

of these facilities. A better understanding of the biological and environmental

parameters within pit latrines could inform attempts to enhance material

decomposition rates, and therefore slow fill-up rate. In this study, we have

performed a spatial analysis of 35 Tanzanian pit latrines to identify bacteria and

environmental factors that are associated with faster or slower pit latrine fill-

up rates. Using ordination of microbial community data, we observed a linear

gradient in terms of beta diversity with increasing pit latrine sample depth,

corresponding to a shift inmicrobial community structure from gut-associated

families in the top layer to environmental- and wastewater-associated taxa

at greater depths. We also investigated the bacteria and environmental

parameters associated with fill-up rates, and identified pH, volatile solids,

and volatile fatty acids as features strongly positively correlated with pit

latrine fill-up rates, whereas phosphate was strongly negatively correlated

with fill-up rate. A number of pit latrine microbiota taxa were also

correlated with fill-up rates. Using a multivariate regression, we identified the

Lactobacillaceae and Incertae_Sedis_XIII taxa as particularly strongly positively

and negatively correlated with fill-up rate, respectively. This study therefore

increases knowledge of the microbiota within pit latrines, and identifies
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potentially important bacteria and environmental variables associated with fill-

up rates. These new insights may be useful for future studies investigating the

decomposition process within pit latrines.
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sanitation, microbiota, 16S rRNA gene sequencing, pit latrines, decomposition

Introduction

Access to adequate sanitation has a major impact on

reducing human illness and death, especially among children

(Nakagiri et al., 2016; UNICEF-WHO, 2020). In 2020,∼2 billion

people still lacked a basic sanitation service and 494 million of

these people practiced open defecation (UNICEF-WHO, 2020).

This leaves the communities these people live in vulnerable to

water, sanitation, and hygiene (WASH) related diseases.

A pit latrine is an improved sanitation toilet facility that

generally consists of a large pit dug into the earth. Some

pit latrines can be covered with concrete slabs, and more

advanced versions include: pour flush; borehole pit latrines;

and odor controlling versions such as the Ventilated Improved

(VIP) and Reed Odorless Earth Closet (ROEC; Nakagiri et al.,

2016). Pit latrines are used by billions of people, mostly in

developing countries, and remain the only viable sanitation

option for many communities where they represent a low-

cost and low-tech sanitation system (Graham and Polizzotto,

2013; Holm et al., 2016). A key challenge of pit latrine usage is

the eventual filling of the pit. Emptying or replacement of pit

latrines is costly and the material is hazardous to empty and

dispose of Nakagiri et al. (2016) and Farling et al. (2019). How

quickly an individual pit latrine will fill is difficult to determine,

and is related to latrine size and architecture, the number of

users, drainage rate, decomposition rates, and whether other

wastes such as household garbage have also been added to

the pit.

In our previous work, we characterized the bacterial

diversity and composition of 30 pit latrines in Tanzania and

Vietnam using high-throughput 16S rRNA gene sequencing

(Torondel et al., 2016). We found that the microbial

communities within pit latrines were highly dependent

on geographical location and user habits, and correlated

with environmental factors including pH, temperature,

and organic matter content/composition (Torondel et al.,

2016). However, in that cross-sectional study we did not

address questions related to pit latrine decomposition and

fill-up rates. Decomposition rates within pit latrines are

highly variable, and dependent on multiple factors such as

moisture content, aerobic vs. anaerobic conditions, and the

presence of inhibitory compounds (Nwaneri et al., 2008;

Van Eekert et al., 2019). The microbial communities within

a pit latrine are also of key importance for organic matter

degradation. Therefore, optimizing the degrading capacity

of the microbiota within these latrines may slow the rate

of filling. However, the composition within latrines, or the

source of microbial communities, has not been well described

in the literature and they are essentially operated as “black

box” systems.

The pit latrine environment is not homogenous.

Microorganisms will enter the pit from human feces, as well

as from the surrounding environment, soil and groundwater.

In our previous study (Torondel et al., 2016), we observed 3%

operational taxonomic unit (OTU) richness that varied from

173 to 1,903 in individual latrines. These values fell within the

range of values typically found in the human gut, which is a

relatively low diversity environment, and soil, a comparatively

highly diverse microbial community (Turnbaugh et al., 2010;

Singh et al., 2014). This supports assumptions that the microbial

communities within the pit latrines consist of more microbial

taxa than just those originating from human feces. It is generally

recognized that the top layer of pit latrines will be more

representative of the influent/or fecal content and be subject to

oxygen intrusion, while the lower layers will be more anoxic

(Van Eekert et al., 2019). Pathogens have been observed to be

consistently abundant across pit latrine depth (Capone et al.,

2021), but changes in prevailing environmental conditions may

impact the overall microbial communities, and decomposition

rates, within different regions of the pit. Therefore, the spatial

distribution of microorganisms within an individual pit latrine

is potentially an important factor to consider. However, the

distribution and source of the microbial communities that are

most responsible for decomposition or fill-up rates remain

largely unknown.

To this end, in this paper we sought to explore the biological

and environmental factors affecting the rate of decomposition

within pit latrines. Whilst our previous cross-sectional study

(Torondel et al., 2016) provided invaluable information about

the diversity and composition of bacterial communities found

in pit latrines from different geographical locations, in this

study our aims were to i) determine if there is spatial variation

in bacterial communities within 35 Tanzanian pit latrines at

varying sampling depths (sampled over 1 year) and ii) if these

profiles could be linked to environmental factors and pit latrine

filling rates.

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.960747
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ijaz et al. 10.3389/fmicb.2022.960747

Materials and methods

Study area and latrine selection

The study was conducted in Tanzania in the villages of

Sululu and Signali. A total of 50 latrines were selected for

this study (Supplementary Figure 1a). The details for all the

latrines sampled are given in Supplementary Data 1. However,

only 35 pit latrines were used in the final microbiota analysis

due to challenges with DNA extraction and obtaining sufficient

read numbers from the microbial sequencing. Characteristics of

latrines used are presented in Supplementary Table 1. Further

details regarding the local environment and general pit latrine

construction can be found in both Irishet al. (2013) and

Torondel et al. (2016).

Sample collection

Samples were collected from the individual latrines at depth

intervals of 20 cm using with a standard soil auger for solid

consistency material (Eijkelkamp, Giesbeek, The Netherlands),

or with a sterile 150ml plastic container attached to the soil

auger for samples with a liquid consistency. The sampling

device is shown in Supplementary Figure 1b. The following

environmental parameters: pH, temperature, total and soluble

chemical oxygen demand [CODt and CODs], volatile fatty acids

[VFAs], total solids [TS], volatile solids [VS], ammonia, total

phosphate, carbohydrate and protein were measured as outlined

in Torondel et al. (2016).

Assessment of pit latrine fill-up rates

At the beginning of the study (January 2011), the exact

internal dimensions of the pit latrines were determined.

Afterwards, changes in the empty pit volume were measured

using a digital laser reader every second month over the

course of the 1-year sampling period from February 2011

to February 2012 (Supplementary Figure 1c). The fill-up rate

(liters/person/day) was then determined using the equations

below and the raw data is provided in Supplementary Data 2.

Positive fill-up rates imply accumulation or increase of volume

and negative fill-up rates vice versa imply decomposition or

decrease in volume.

Fillup_rate





litres
person

day



=

Total_volume_change×1000

Number_days_monitored
×Average_users (1)

Total_volume_change

=
Total_depth_change×Latrine_width×Latrine_length

Number_days_monitored

×Average_users (2)

Total_depth_change

= Depth_February_2011− Depth_February_2012 (3)

DNA extraction and 454-pyrosequencing

Samples for DNA analysis were kept at −80◦C until DNA

extraction was performed (in 2012). DNA was extracted from

the samples using FastDNA R© SPIN Kits for Soil and a FastPrep-

24 bead-beading machine (MP Biomedicals, Santa Ana, USA),

according to the manufacturer’s instructions. Bacterial DNA

was amplified using the barcoded primers 338F and 926R

according to the protocol described in Torondel et al. (2016).

PCR products were cleaned using the Wizard PCR product

purification kit (Promega, Fitchburg,Wisconsin, USA) and were

then pyrosequenced at the Wellcome Sanger Institute in 2012

using the Lib-L kit on the 454 GS FLX Titanium System (Roche,

Branford, Connecticut, USA). Further details on the protocols

used to generate 16S rRNA gene sequence data are as described

in Torondel et al. (2016).

Bioinformatics

The sequence data was processed using the AmpliconNoise

pipeline for pyrosequencing data (Quince et al., 2009, 2011),

during which the samples were demultiplexed, filtered and

trimmed (Quince et al., 2009). The filtered flowgrams were

clustered to remove errors, and then converted into sequences

using the PyroNoise algorithm. They were then further clustered

by SeqNoise to remove PCR single base errors. Following these

steps, chimeric sequences were then identified and removed

using the Perseus algorithm (Quince et al., 2011). The sequences

that passed these quality control steps were classified using

the RDP classifier (Wang et al., 2007). OTUs were generated

using pair-wise Needleman–Wunsch alignment and hierarchical

clustering with an average linkage algorithm and a 3% sequence

similarity cut-off. We then performed multiple sequence

alignment of the OTU consensus sequences using mafft (Katoh

and Standley, 2013) and generated a phylogenetic tree using

FastTree (Price et al., 2010), which was used in the beta-diversity

analysis. Tax4Fun (Aßhauer et al., 2015) was then used to predict

the functional capabilities of microbial communities based on

16S rRNA gene datasets after matching sequence taxonomies

using the SILVA reference database (Quast et al., 2012). The

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

associated with known prokaryotic organisms are available in

Tax4Fun for SILVA SSU Ref NR database release 115 and the

KEGG database release 64.0. We used the fctProfiling = FALSE
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in Tax4Fun() function to recover KEGG pathways (N samples

× K KEGG Orthologs) according to the MoP-Pro approach

(Aßhaauer and Meinicke, 2013). Although the Tax4Fun-based

metabolic predictions are limited by the taxa available in the

reference database, it provides a statistic called fraction-of-

taxonomic-units-unexplained (FTU), which reflects the number

of sequences that are assigned to a taxonomic unit and do not

map to organisms or pathways in the KEGG reference database.

In our case this value was low, at ∼15% and thus, with high

matches to the reference database, increases our confidence in

our recovered predicted metabolic functions. Despite this, we

only used recovered metabolic profiles for diversity analysis and

not any downstream differential analysis.

Seqenv (Sinclair et al., 2016) was then used to search OTU

sequences against the “nt” nucleotide database by NCBI, textual

information on isolation sources of the search results were

collated, and a text mining algorithm was used to identify

and parse words associated with the Environmental Ontology

(EnvO). The normalized frequencies (using DESeq2) of EnvO

terms for each OTUs were then multiplied with the OTU

table to generate a new table (N samples × E EnvO terms)

representing abundances of EnvO terms. The OTU table, EnvO

table, phylogenetic tree, and taxonomic information, and meta

data were then used in multivariate statistical analysis in the

context of environmental parameters.

Data curation and processing

Out of a total of 50 latrines sampled (at varying depths)

a total of 35 individual latrines were used in the microbiome

analysis, due to challenges with DNA extractions, PCR and

sequencing. The lower layers, in particular, were difficult to

extract and sequence. We have only retained samples that

had reads >1,000 (n = 79). Further to this, in the analysis

involving statistics, we have only considered samples with

complete environmental data and the top 4 sampling depths,

due to the low numbers of samples with sequences from

depths beyond 80 cm (n = 62). Environmental data consisted

of measurements of pH, temperature, total solids (TS), volatile

solids (VS), volatile fatty acids (VFA), total chemical oxygen

demand (CODt), soluble chemical oxygen demand (CODs), the

percentage of soluble chemical oxygen demand to total chemical

oxygen demand (%CODs/t), ammonia, phosphate, protein, and

carbohydrate. A spreadsheet of the samples and associated

metadata from this study are given in Supplementary Data 3.

Statistical analyses

Statistical analyses were performed in R using the tables

and data generated as above as well as the meta data associated

with the study. For community analysis (including alpha and

beta diversity analyses) we used the vegan package (Dixon,

2003). To calculate weighted Unifrac distances (that account for

phylogenetic closeness as well as abundance count), we used the

phyloseq (Mcmurdie and Holmes, 2013) package. Nonmetric

Distance Scaling (NMDS) plot of community data (OTUs at

3% divergence) was performed using the metamds() function

from the vegan package. The samples were grouped for different

depths as well as the mean ordination value and spread of

points [standard errors of the (weighted) averages as ellipses

using vegan’s ordiellipse() function]. We used adonis() from

the vegan package for the analysis of variance i.e., partitioning

distance matrices among sources of variation (both qualitative

and quantitative information). This function, hitherto referred

to as PERMANOVA, fits linear models (e.g., factors, polynomial

regression) to distance matrices and uses a permutation test with

pseudo-F ratios.

For differential analyses between different pit latrine depths,

we used the DESeqDataSetFromMatrix() function from the

DESeq2 package (Love et al., 2014) with a significance

value cut-off of 0.01. This function allows negative binomial

Generalized Linear Model (GLM) fitting (as abundance data

from metagenomic sequencing is overdispersed) and Wald

statistics for abundance data. After performing multiple

testing corrections, it reported families/EnvO terms that

varied significantly between depths. Similarly, to find KEGG

pathways that were significantly different between pit latrine

sampling depths, we used the Kruskal–Wallis test with p-

values adjusted for multiple comparisons using the Benjamini–

Hochberg procedure. We also calculated Local Contributions to

Beta Diversity (LCBD) (Legendre and Cáceres, 2013) where the

total beta diversity is calculated as the variance of the community

data and is then broken up into sample-wise contributions.

We followed the procedure where a Hellinger transform is first

applied to the abundance data (Samples× Families) to calculate

a squared differences from columnmean table from where sum of

columns gave the LCBD values of the samples.

For regression analysis of fill-up rate against families and

environmental data (Table 1 and Supplementary Data 4), we

used the car package in R (Fox and Weisberg, 2010) for

regression diagnostics; the gvlma package (Peña and Slate,

2015) for checking linear model assumptions; a customized

script (Ijaz, 2018) to use variance inflation factor (VIF) to

remove collinearities; the step() function for formula-based

model filtering using Akaike Information Criteria (AIC); the

leap package (Lumley and Miller, 2009) to perform subset

regression; and the DAAG package (Maindonald and Braun,

2015) to perform cross-validation for linear regression.

In Table 1, we show the results after fitting the linear

equation, Yi = β0 + β1 X1i + β2 X2i + β3 X3i + εi, on

environmental covariates from pit latrines. Here Yi is the fill-

up rate for top layer (depth 1) to give n = 25 samples. The

explanatory data Xi are highlighted as bold in the table. Before

applying the linear regression, we tested for homoscedasticity
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(constant variance) to make sure the linear assumptions held.

For this purpose, we used the Breusch–Pagan (BP) test, or

the Lagrange multiplier test for heteroscedasticity, with the

null hypothesis being the residuals were homoscedastic. The

BP test (χ2 = 0.034, p = 0.8532) suggested to use the

linear regression model. We gained additional confirmation

by employing gvlma() from R’s gvlma package, which also

suggested that heteroscedasticity was not satisfied. We then

chose several methods: Method 1, in this method we used

the variance inflation factor (VIF) to remove collinear terms

from the environmental parameter by using a threshold of

10. TS, CODt, and Protein were removed in this case. We

then performed the regression of fill-up rate against the

environmental data; Method 2, after removing colinear terms

and performing regression, we then used regression diagnostics

(R’s car package) to identify extreme observations using the

Bonferonni p-value test to remove T28 (p = 0.94714) as well

as T27 and T33, which were removed based on Cook’s distance;

Method 3, we used step-wise regression (without employing VIF

to remove any colinear terms) using AIC on all the samples

minus T28, T27, and T33; and Method 4, we used the subset

regression after removing T28, T27, and T33. For each model,

we provided adjusted R2 as quality of fit. Furthermore, we

performed cross-validation for linear regression using 10 folds

in the CVlm() function from R’s DAAG package. We used 10

folds cross-validation where we randomly dropped 10 samples

and trained the regression model on the remaining data to get

an additional Mean Squared Error (MSE), which accounts for

any outliers in the dataset.

For each statistical method, appropriate normalization was

used. For example, where we used alpha-diversity estimates and

regression analysis, we rarefied the abundance table to the lowest

library size. DESeq2 for differential analysis uses its own median

of ratios normalization where abundance count is divided by

sample-specific size factors determined by the median ratio of

amplicon counts relative to geometric mean per amplicon. To

visualize the results from DESeq2, the expression levels were

drawn after using log-relative normalization on the abundance

tables (Ijaz et al., 2017).

The statistical scripts and workflows for all of the methods

above can be found at http://userweb.eng.gla.ac.uk/umer.ijaz#

bioinformatics.

Results

We characterized the microbial communities within the

pit latrines and found that the most abundant taxa were

relatively similar for individual pits at the same sampling depth

(Figure 1). Clostridiaceae and Ruminococcaceae were observed

to be the two most proportionally abundant families out of the

top 20 observed families (Figure 1). Local contribution to beta

diversity (LCBD) values varied between latrines, but not across
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FIGURE 1

Stacked bar plot of the 20 most proportionally abundant family-level taxa (on the y-axis as percentage relative proportion) for all the samples

from individual pit latrines (labeled T##) ordered by depth from 20 (Depth 1), 40 (Depth 2), 60 (Depth 3), and 80 cm (Depth 4) [left to right on the

x-axis]. Local Contributions to Beta Diversity (LCBD) values are drawn as bubbles below. A higher LCBD value suggests the community is

di�erent from the average community profile (indicating outliers).

different depths within the same latrine (Figure 1), indicating

that individual latrines are a greater source of microbiota

variation than depth.

There were no significant differences in alpha-diversity

(Evenness, Richness, Shannon and Simpson diversity indices)

between the four sampled pit depth layers (Figure 2A). However,

when we analyzed beta diversity estimates we observed that

with increased pit sample depth there was less dissimilarity,

or more overlap in the microbial community composition

(Figure 2B). Next, we considered microbiota diversity with

respect to Environmental Ontology (EnvO; https://sites.google.

com/site/environmentontology/) terms returned from the

seqenv pipeline. EnvO provides a unified metadata annotation

from deposited sequences from The National Center for

Biotechnology Information (NCBI). It collates descriptions of

environmental information and where sequences are isolated

from. This pipeline may therefore allow us to elucidate the

origin of microbial community members in the pit latrines, and

how these might change with pit sample depth. We observed

differences in all alpha-diversity measures with respect to depth

and the terms recovered from “isolation source” (287 unique

terms), with the number of unique terms increasing with

increased pit sample depth (Figure 2C). When looking at the

richness of the predicted pathways (Figure 2D) we observed

an increase in the number of KEGG pathways identified as

pit sample depth increased. There were a total of 12 EnvO

terms that were differentially abundant at different depths.

We observed an increase in “anaerobic digester sludge” and

“anthropogenic habitat” terms with increasing pit sample

depth (Figure 3). Other identified terms include various

environmental habitats such as “sea_water”, “ocean”, “prairie”,

“aquifer”, and “saline_marsh”, which in general also increased

with increased pit sample depth. This indicates that the

microbial populations were indeed changing with respect to pit

latrine sampling depth.

Next, we wanted to determine which specific microbiota

taxa were changing with respect to pit latrine sample depth.

To do this we performed regression analysis at the family level

(208 families in total). The primary reason for collating

data at the family level, and then employing it in the

regression modeling, was to avoid the linear dependencies

between taxa, which are higher at lower levels (genera and

species) and can thereby adversely affect the regression

performance (and hence the reason why variance inflation

factor is suggested in our analyses). A total of 21 families

were differentially abundant across pit latrine sample

depth (Figure 4). Families that were more proportionally

abundant in the top pit sample layers were Rikenellaceae,

Lactobacillaceae, Burkholderiaceae, Prevotellaceae,

Spirochaetaceae, Bacteroidaceae, Succinivibrionaceae, and

Enterobacteriaceae. With the exception of Burkholderiaceae,

which would be considered as environmental-associated, these

families are all associated with the human gut. In contrast,

families with increased proportional abundance with increasing

pit sample depth were Gammaproteobacteria_incertae_sedis,

Thermomonosporaceae, Caldilineaceae, Rhodospirillaceae,

Erythrobacteraceae, Anaerolineaceae, Nakamurellaceae,

Trueperaceae, Rhodocyclaceae, Hyphomicrobiaceae,

Frontiers inMicrobiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2022.960747
https://sites.google.com/site/environmentontology/
https://sites.google.com/site/environmentontology/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ijaz et al. 10.3389/fmicb.2022.960747

FIGURE 2

(A) Alpha diversity metrics calculated on the rarefied microbiota data (OTUs at 3% divergence) from the four di�erent pit latrine sample depths

(Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm, and Depth 4 = 80cm); (B) Nonmetric multidimensional distance scaling (NMDS) plot

(beta diversity) using weighted Unifrac distance. The ellipses represent the 95% confidence interval of the standard error of the ordination points

of a given category (Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm, and Depth 4 = 80cm) and the labels are drawn at the mean value of

the ordination points; (C) Alpha diversity metrics calculated on the rarefied EnvO table returned from seqenv pipeline, indicating that the

diversity of defined “descriptors” increased with increasing pit sample depth (Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm, and Depth

4 = 80cm); (D) Richness was calculated as the exponential of Shannon entropy on the proportional representation of 284 KEGG pathways

returned from Tax4Fun software. Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm, and Depth 4 = 80cm. For (A,C,D), we performed

pair-wise ANOVA, taking two pit latrine sampling depths at a time. Significance values were indicated as follows (*0.01 ≤ p < 0.05; **0.05 ≤ p <

0.001. Other alpha-diversity measures (Richness, Shannon and Simpson) are shown in Supplementary Figure 2.

Sphaerobacteraceae, Plactomycetaceae, and Sinobacteraceae.

These are typically environment-associated taxa and wastewater

associated. Thus, as expected, our data indicate that the top

layers of pit latrines are dominated by human fecal-associated

bacteria, while environmental taxa become more proportionally

dominant at lower depths.

Variation in pit latrine layers may be explained by the

variation of environmental conditions. Therefore, we next

wanted to correlate microbial community structure from the

varying sampling depths with the environmental parameters.

We observed that microbial community richness was correlated

with numerous environmental parameters across pit latrine

sample depths (Figure 5A). Within this, we found that the

CODs, CODt, carbohydrate, and protein concentrations and the

%CODs/t ratio were all negatively correlated with the richness

of the bacterial community (i.e., increased concentrations led to

reduced diversity). In contrast, total solids (TS) concentrations

were positively correlated with increased richness. In these plots,

typically samples from depth 1 clustered together and were

distinct from the samples at other depths. For example, in the

environmental plots for CODt and protein parameters, samples

from depth 1 clustered toward increased concentrations and

richness values ∼300 (Figure 5A). When looking at individual

environmental factors, we identified Latrines (accounting

for 3.37% variability; p-value 0.003), Depth (accounting for

2.87% variability; p-value 0.005), pH (accounting for 3.03%

variability; p-value 0.004), TS (accounting for 3.91% variability;

p-value 0.001), VFA (accounting for 2.17% variability; p-value

0.038), CODt (accounting for 2.44% variability; p-value 0.015),

%CODs/t (accounting for 2.88% variability; p-value 0.004), and
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FIGURE 3

Boxplots showing the environmental ontology (EnvO) terms returned from the seqenv pipeline that were log-2 fold di�erentially abundant for

the combined pit latrine samples at sampling depths 1, 2, 3, and 4. Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm, and Depth 4 = 80cm.

Phosphate (accounting for 2.27% variability; p-value 0.029) as

the significant factors correlated with the microbial community

composition (by performing PERMANOVA on the community

data). We then performed regression of richness as well as

constrained ordination (CCA) of the microbial community data

against the environmental variables (Figure 5B). From this, we

observed that a positive environmental gradient existed with

VFA and %CODs/t (clustered with upper sampling depths)
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FIGURE 4

21 families were significantly di�erent (Adjusted p-values ≤ 0.05) between the four pit latrine sample depth layers (Depth 1 = 20cm, Depth

2 = 40cm, Depth 3 = 60cm, and Depth 4 = 80cm). In (A) four families that were predominantly gut-associated species (n = 7) are drawn in the

top row whilst the families that increased in proportional abundance with greater depth, and four families that were predominantly

environment-associated, (n = 14) are drawn in the bottom row. The remaining familes are shown in Supplementary Figure 3. Correlation plots

(B) of the full 21 families for samples at Depth 1 (20 cm), Depth 2 (20 cm), Depth 3 (60 cm), and Depth 4 (80 cm) with the recorded environmental

factors are drawn top right. For this calculation we took the relative proportions of the abundance data before calculating the Kendall

correlation. The p-values for a single environmental factor (column) were adjusted for multiple tests using the Benjamini and Hochberg (1995)

correction method. The adjusted significant p-values are represented as *0.01 ≤ p < 0.05; **0.05 ≤ p < 0.001; and ***p ≤ 0.001 in top right

panel. Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm, and Depth 4 = 80cm.

and a negative gradient was associated with TS. These results

highlight the impact of environmental parameters on pit latrine

microbial richness, with COD, proteins, VFAs, and solids

potentially important parameters to consider.

Finally, in order to investigate why different pit latrines fill

at varying rates, we correlated microbiota structure with latrine

environmental parameters and fill-up rates. Fill-up rates are

ultimately the most important aspect in pit latrine functioning,

with a completely filled pit requiring emptying or replacement.

We focused on the samples from the top layer (Depth 1),

for which OTUs assigned at family level with environmental

and fill-up data were available (25 samples). This stringent

sampling strategy was necessary to enable us to correlate both

the environmental variables and the community structure with

the fill-up rate. The environment strongly correlated with the

microbiota profiles, explaining just over 30% of the variability

in community structure at the family level. The previous results

(Figure 5A) and PERMANOVA values highlighted the strong

influence of environmental parameters (e.g., pH, COD, VFA,

phosphate, and carbohydrates). For this reason, we correlated

the environmental variables with fill-up rate independent of

community structure. Once we removed three outliers, a

significant multivariate fit of fill-rate as a function of the

environmental variables was obtained (adj. R2 = 0.638). From

this, VFAs, VS, and pH were all strongly positively associated

with fill-up rates (Table 1). Of these, the most significant

variable was pH (i.e., higher pH correlated with faster fill-up

rates). On the other hand, phosphate was strongly negatively

correlated with fill-up rate (i.e., pits filled up slower with

increasing phosphate).

Next, we investigated whether the microbial community

structure could have an influence on fill-up rate beyond

that variation that was accounted for by the environmental

variables described above. We did this by adding the 20

most abundant bacterial family-level taxa to our multivariate

regression (Supplementary Data 4) and detected the subset of

taxa and environmental variables that best correlated with

fill-up rate. The overall fit increased from adj. R2 = 0.638

to adj. R2 = 0.79, suggesting that the microbiota does

indeed contribute to the fill up rate. Taxa from the following
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FIGURE 5

(A) Correlation between richness of samples at depth 1, 2, 3, and 4 (70 samples with 14,803 OTUs; and colored by depth) and the environmental

parameters. Here only the significant parameters are shown. (B) Canonical correspondence analysis of community data against significant

environmental parameters (based on PERMANOVA) for samples at depths 1, 2, 3, and 4. Depth 1 = 20cm, Depth 2 = 40cm, Depth 3 = 60cm,

and Depth 4 = 80cm.

families: Porphyromonadaceae, Lactobacillaceae, Clostridiaceae,

Prevotellaceae, and Enterobacteriaceaewere positively associated

with fill-up rate. In contrast, theVeillonellaceae, Spirochaetaceae,

Incertae_Sedis_XIV, Erysipelotrichaceae, Incertae_Sedis_XI, and

Incertae_Sedis_XIII taxa were negatively associated with fill-

up rate. The most significant overall fit included two families

in addition to the environmental variables, Lactobacillaceae,

and Incertae_Sedis_XIII, which were strongly positively and

negatively correlated with fill-up rate respectively.

Discussion

Pit latrines are widely adopted as improved sanitation

systems. One of the main challenges of their use is the rate

at which a pit will completely fill, which is both costly and

hazardous to remediate. As microbial communities within the

pit carry out the decomposition of organic material, it is possible

that the longevity of a latrine can be extended if the microbial

degradative activity is optimized. However, there is widespread

variability in pit latrine filling and decomposition rates, which

are intrinsically linked to a variety of external factors such as

the number and toilet habits of users, presence of household

waste, anaerobic conditions, and the surrounding soil and

groundwater. This is important from a public health perspective

given that the pits either need to be emptied after filling, or

become unusable, potentially leading to increased defaecation in

the open. This risks potential increased exposure to diarrhoeal

and other pathogens (Farling et al., 2019). In this study, we

therefore aimed to better understand how pit latrine microbiota

profiles might be linked to pit fill-up rates by determining how

the bacterial profiles changed with pit sample depth and if these

profiles could be correlated with filling rates and environmental

conditions in the pit. We observed clear differences in bacterial

communities across pit latrine sample depth and were able to

correlate specific microbial taxa with environmental parameters

and filling rates.

Microbial pit latrine research has primarily focused on

assessing water contamination downstream (Ndoziya et al.,

2019; Usman and Aliyu, 2020), and few studies have focused

on the microbial communities within the pit latrines. Thus,

the microbial communities within pit latrines are hugely

understudied and knowledge gaps remain with respect to spatial,

temporal, and environmental drivers of microbiota composition

and activity. The dominant microbial taxa from the pit latrines

in this study were the Clostridiaceae and Ruminococcaceae

families, which we previously also showed were more abundant

in Tanzanian pit latrines than in Vietnamese comparator pits

(Torondel et al., 2016). These general findings differ from those

found in the limited number of other pit latrine microbiome

studies. For example, Byrne et al. (2017) observed Bacteroidales

and Porphyromonadaceae as the dominant taxa in pour-

flush pit latrines in South Africa, while Beukes (2019) found

Pseudomonas and Bacillus species as the dominant taxa in

ventilated improved pit latrines also from South Africa. While

geographic and user population differences may explain some of

these observed discrepancies, both South African latrine types

will also have significant oxygen intrusion, which would impact
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the latrine microbiome, particularly if anaerobic digestion is

typically the primary degradation process (Van Eekert et al.,

2019). Nonetheless, it is clear that there will be significant

variations in microbiota composition in pit latrines around the

world, and that local environmental conditions will be major

drivers of microbial community assembly. The fact that our

work was focused solely on one region of Tanzania is therefore a

limitation of the study, as conclusions from these pit latrinesmay

not be generalized to other locations around the world where

pit latrines are commonly used. Moreover, we did not classify

the water content of the latrines which may have influenced

community composition, or the addition of solid/household

waste to the latrines, and whether this might also impact fill

rate. Users reportedly did not dispose of solid waste in the

latrines, as they are aware of the contribution of solid material

to the rapid filling of the pits. However, we did notice menstrual

cloths, other cloth-like materials and stones in a small number

of latrines, which may be important features to investigate in

future work. Another limitation of the study is that we used 454-

pyrosequencing, which has reduced throughput compared to the

more widely used Illumina-based technology, and suffers from

systematic biases including homopolymer errors. Nonetheless,

we have attempted to optimize the quality of our data by setting

a minimum read depth threshold, which resulted in the drop

out of some samples after denoising steps. As a result, the

remaining samples that passed our stringent quality control

criteria show consistent patterns, and can therefore be deemed

to be robust.

In the context of Tanzania, we showed that pit latrine

sample depth was an important determinant of microbial

community structure, with variation observed in beta diversity

dissimilarity, and abundant microbial families, at different

depths within latrines. Based on differential expression analysis,

we identified families whose dominance was altered significantly

while moving down through the pit latrine layers. Many

of these families were gut-associated (e.g., Prevotellaceae)

and decreased in dominance with greater sample depth. In

contrast, several environmental-associated families showed the

opposite pattern, whereby they increased in predominance

with increased sampling depth. This supports the assumption

that the top layer of the pit latrine is likely to be much

higher in fecal matter (gut-associated), while the lower layers

are progressively less favorable for gut-derived microbes and

are instead associated with organisms that are ubiquitous

to the surrounding environment (Nakagiri et al., 2016;

Van Eekert et al., 2019). This was also evidenced by the

linear trend in the NMDS plot and the increasing trend

of EnvO terms related to “anaerobic_sludge_digester” with

increasing pit latrine depth. This contrasts with work by

Capone et al. (2021) who noted enteric pathogen detection

was largely consistent across pit latrine sampling depth. Of

note, targeted qPCR was used for enteric pathogen detection

in that work, so the wider microbiota was not studied.

It is therefore not possible to determine whether or not

the observed consistent pathogen detection also occurred in

parallel with consistent overall microbiota composition in

that study. Regardless, pit latrine configuration may have

played a key role as Capone et al. (2021) studied lined

pit latrines (just 26% of the latrines in our study were

lined—Supplementary Table 1), which may have minimized

interactions with the surrounding environmental microbial

communities. Future work to link pit latrine configuration with

microbial community structure would also help to advance our

understanding of these systems.

A further key aim of our study was to correlate microbiota

composition and measured environmental variables with pit

fill-up rates. Volatile solids (VS) were positively correlated

with fill-up rate. This seems intuitive, as the decomposition

of fecal matter through anaerobic digestion or decomposition

should reduce VS, therefore, if VS is increasing, then fill-

up rates may also increase. This would likely be the case

if decomposition was lower than the rate at which new

organic material was added to the pit. We also observed that

pH was strongly positively correlated with fill-up rate (i.e.,

as pH increased fill-up rate also increased). The correlation

with pH is to some extent expected, as a lower pH is

indicative of increased microbial degradative activity due to

the release of volatile fatty acids (VFA) during anaerobic

fermentation (Van Eekert et al., 2019). Increased fermentative

activity might therefore result in a lowering of the fill-up

rate. However, it is important to note that VFA levels were

also positively correlated in this study with fill-up rate. This

apparent contradiction could in part be explained by the

fact that the accumulation of VFAs (for example acetic and

lactic acid) can inhibit various microbial groups, and might

therefore subsequently negatively impact decomposition (Wang

et al., 1999). Phosphate was negatively correlated with fill-

up rate. The correlation with phosphate concentrations is

intriguing as it suggests that phosphate may be the limiting

nutrient for microbial degradation and, hence, addition of

phosphate may be a possible strategy to decrease latrine fill-

up rate. Kaspari et al. (2008) analyzed the relative effects of

eight nutrient elements on litter decomposition and found

that phosphate availability is one of crucial factors to enhance

litter decomposition in tropical forests (Kaspari et al., 2008).

Different research groups have previously attempted to alter

decomposition rates by either addition of a mixture of

microorganisms and/or enzymes (Taljaard et al., 2005; Nakagiri

et al., 2016). However, Buckley et al. determined no correlation

between the use of additives and the rate of change in pit

matter content (Buckley et al., 2008). Further investigations

are clearly required to elucidate the potential impact of

these variables.

We also addressed the question of whether the microbial

community structure could influence fill-up rate beyond

that variation that is accounted for by the environmental
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variables. Our results indicate that microbial composition

is indeed correlated. Porphyromonadaceae, Lactobacillaceae,

Clostridiaceae, Prevotellaceae, and Enterobacteriaceae were

all strongly positively associated with fill-up rate. This

finding may be partly explained by the top layers of the pit

latrine being continually enriched with these gut-associated

microorganisms, hence heavily-used latrines that fill up

more quickly could have a higher proportional abundance

of fecal-derived microbes. Of note, Lactobacillaceae were

particularly strongly correlated with pit latrine fill-up rates.

The constituent species of this family (e.g., Lactobacillus,

Pediococcus, and Paralactobacillus) typically generate lactic

acid as a main fermentation product, which could play an

important role in pit latrine microbiota dynamics given that

lactic acid has been shown to be a key disruptor of microbial

community structure and activity in other related anaerobic

environments such as the mammalian gut (Louis et al., 2022).

Intriguingly, Veillonellaceae, a family that includes many

lactic acid-utilizing species (Louis et al., 2022), was negatively

associated with pit fill-up rates, adding further circumstantial

evidence that lactic acid production/consumption might

be important for pit latrine microbiota functionality. The

Incertae_Sedis_XIII taxon was also strongly negatively

associated with fill-up rate. These bacteria are from the

class Clostridia and are commonly found in the gut, but

are poorly characterized and not well understood. Thus,

further analysis into the profiles of these organisms, and

their interactions within pit latrines may help to unravel

these factors.

To conclude, we have shown a clear sample depth

gradient within pit latrines, with gut-derived microbes

associated with the upper layers and environmental-associated

microbes with the lower layers, thus demonstrating that

spatial sampling is key for understanding the processes

and microbial activity within pit latrines. Additionally, we

have identified that pH, VS, VFA, and phosphate were key

parameters correlated with pit latrine fill-up rate. We also

observed potentially important microbes that were correlated

with fill-up rates, however, further controlled experimentation

would be required to unravel these interactions. Overall,

our work provides valuable novel insight into the microbial

communities in these improved sanitation systems, which may

be informative for future decomposition-based trials to improve

pit latrine performance.
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SUPPLEMENTARY FIGURE S1

(a) Example of pit latrine from Tanzania, (b) Sampling device to acquire

liquid material from pit latrines, and (c)method for measuring fill-up rate.

SUPPLEMENTARY FIGURE S2

(A) Alpha diversity metrics calculated on the rarefied microbiota data

(OTUs at 3% divergence) from the four di�erent pit latrine sample depths

(Depth 1 = 20 cm, Depth 2 = 40 cm, Depth 3 = 60 cm, and Depth 4 = 80

cm); (B) Alpha diversity metrics calculated on the rarefied EnvO table

returned from seqenv pipeline, indicating that the diversity of defined

“descriptors” increased with increasing pit sample depth (Depth 1 = 20

cm, Depth 2 = 40 cm, Depth 3 = 60 cm, and Depth 4 = 80 cm).

SUPPLEMENTARY FIGURE S3

Di�erentially abundant families not shown in Figure 4.

SUPPLEMENTARY DATA S1

Spreadsheet of the characteristics of all the pit latrines sampled in

Tanzania.

SUPPLEMENTARY DATA S2

Spreadsheet of the calculation of fill-up rate.

SUPPLEMENTARY DATA S3

Spreadsheet of the samples and associated metadata from this study.

SUPPLEMENTARY DATA S4

Subset regression to address whether the microbial community

structure could have an influence on fill-up rate, beyond variation which

is accounted for by the environmental variables. In addition to the

predictors considered in Table 1, we added the 20 most abundant

families to our multivariate regression (after using log-relative

transformation of the abundance data in the regression model) using

subset regression (Model 4 in Table 1). The top 10 subsets ranked by

adjusted R2 are given in the table including MSE between cross-validated

prediction and the predicted values using all the observations. Similar to

Table 1, predictors that may contribute to the fill-up rate are shaded as

orange, and those that may cause the latrines to fill-up more slowly are

shaded as blue. For each family we also display the genera in

parenthesis that were detected for these families in our samples. If the

explanatory variable was not selected in the subset, the cell is empty.

SUPPLEMENTARY TABLE S1

Characteristics of the 35 latrines from Tanzania used in the microbial

analysis in this study.
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