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Objective: Inflammatory bowel disease (IBD) is a heterogenous disease in

which the microbiome has been shown to play an important role. However,

the precise homeostatic or pathological functions played by bacteria remain

unclear. Most published studies report taxa-disease associations based on

single-technology analysis of a single cohort, potentially biasing results to

one clinical protocol, cohort, and molecular analysis technology. To begin to

address this key question, precise identification of the bacteria implicated in

IBD across cohorts is necessary.

Methods: We sought to take advantage of the numerous and diverse studies

characterizing the microbiome in IBD to develop a multi-technology meta-

analysis (MTMA) as a platform for aggregation of independently generated

datasets, irrespective of DNA-profiling technique, in order to uncover the

consistent microbial modulators of disease. We report the largest strain-level

survey of IBD, integrating microbiome profiles from 3,407 samples from 21

datasets spanning 15 cohorts, three of which are presented for the first time

in the current study, characterized using three DNA-profiling technologies,

mapping all nucleotide data against known, culturable strain reference data.

Results: We identify several novel IBD associations with culturable strains

that have so far remained elusive, including two genome-sequenced but

uncharacterized Lachnospiraceae strains consistently decreased in both the

gut luminal and mucosal contents of patients with IBD, and demonstrate

that these strains are correlated with inflammation-related pathways that

are known mechanisms targeted for treatment. Furthermore, comparative

MTMA at the species versus strain level reveals that not all significant
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strain associations resulted in a corresponding species-level significance and

conversely significant species associations are not always re-captured at

the strain level.

Conclusion: We propose MTMA for uncovering experimentally testable strain-

disease associations that, as demonstrated here, are beneficial in discovering

mechanisms underpinning microbiome impact on disease or novel targets for

therapeutic interventions.

KEYWORDS

meta-analysis, gut microbiome, inflammatory bowel disease, metagenomics, 16S
rRNA, strain

Introduction

Most microbiome studies in human diseases are based
upon single-cohort, single-technology analyses of microbial
populations to produce associations between bacterial groups
and disease with limited strain identification. The results
can potentially be biased by disparities in clinical protocols,
cohort demographics, molecular analysis technologies, and
taxonomic resolution (Walters et al., 2014; Gilbert et al.,
2018). Recent meta-analyses have identified taxa, typically
limited to the genus-level (Wirbel et al., 2021) that correlate
with a given disease across cohorts and are often confined
to single technology-based analyses (Walters et al., 2014;
Duvallet et al., 2017). Appreciation of strain-specific markers
in single-technology meta-analysis workflows has been noted
(Pasolli et al., 2016), and given that biological activity can
be strain-specific, knowledge of specific strains is fundamental
to deciphering their functional role in disease (De Filippis
et al., 2019). For example, a metagenomic survey of stool from
patients with IBD identified a bloom of specific Ruminococcus
gnavus strains in patients but not in control subjects, and
these strains were found to harbor genes that conferred
them an adaptive advantage in disease (Hall et al., 2017).
There is thus a need for a systematic approach to identifying
strains associated with health or disease consistently across the
growing number of published studies. Furthermore, microbial-
abundance changes inferred from single-technology meta-
analyses are subject to caveats associated with each DNA-
profiling technology, such as the limited taxonomic resolution
from sequencing the 16S rRNA gene (16S.NGS) or sporadic
detection of low-abundance taxa in whole genome shotgun
sequencing (WGS.NGS) (Hamady and Knight, 2009; Shah et al.,
2011) related to limited sampling depth. These limitations
have restricted our view of the microbiome’s role in disease
to higher-order taxa and to those inferred from datasets
characterized by a single technology. In this study, we
develop and propose multi-technology meta-analysis (MTMA)

as a platform for aggregation of independently generated
datasets from multiple DNA-profiling technologies to facilitate
a comprehensive strain-level view of disease and apply it
to the large number of microbiome datasets available in
IBD.

Patients with IBD suffer from chronic inflammation of the
gastrointestinal tract where genetic, environmental, immune,
and microbial factors have all been implicated in disease
onset and progression. Recent metagenomic surveys of the
microbiome in IBD (Vich Vila et al., 2018; Franzosa et al., 2019;
Lloyd-Price et al., 2019) at the species and strain-level present
an important advancement in understanding the functional
role of the microbiome in IBD and present a rich source
of data that can be systematically analyzed to identify cross-
cohort strain-IBD associations. We present the first strain-level
analysis of IBD, where we have mapped all data against DNA
records for known, isolated, and named strains, integrating
microbiome datasets characterized using three DNA-profiling
technologies and pinpoint strains enriched or reduced in disease
by applying a novel MTMA technique on 21 datasets. We
identified previously unreported associations that were either
unique to IBD subtypes [Ulcerative Colitis (UC) and Crohn’s
Disease (CD)] or persisted across subtypes and even gut
ecosystems (microbiome associated with stool/luminal-contents
and intestinal-mucosa/biopsy samples from the large-intestine).
Herein, we discovered Alistipes putredinis, a Gemminger
formicilis and two as yet uncharacterized Lachnospiraceae strains
that were decreased in both the lumen and mucosal contents of
patients with UC and CD across multiple cohorts. Identification
of the ubiquitous decrease of these strains in IBD supports
the notion that these bacteria likely play critical roles in
the healthy human guts and presents opportunities for the
development of IBD diagnostic or therapeutic interventions that
aim to restore these strains or their associated functions to
levels in healthy subjects. Furthermore, we confirmed previously
observed associations in IBD and reported the applicability
of these findings across geographically dispersed cohorts. The
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work presented herein is the largest and most comprehensive
integration of microbiome in IBD to our knowledge and
demonstrates the ability of MTMA to build upon previous
work in this field and uncover strain-disease associations
that can be further elucidated for their functional role in
IBD.

Methods

The cohorts integrated to demonstrate the MTMA
methodology was required to contain both control subjects and
UC or CD cases or both. Each patient was linked to either a
stool biospecimen or a mucosal biopsy biospecimen or both.
Supplementary Table 1 lists the laboratory techniques used to
profile the biospecimens, the counts of cases and controls, and
the depth of sequencing.

Patient populations and sample
collections for SG-Cohort 2_2013

Mucosal biopsies were collected at the University of Calgary
during initial diagnosis or follow-up endoscopy from September
2007 to April 2013 from control and UC subjects (BioProject
accession number PRJNA527097). A diagnosis of UC was
confirmed by a qualified gastroenterologist at the Foothills
Medical Center, University of Calgary. Informed consent for
use of biopsy samples was obtained by the University of
Calgary Intestinal Inflammation Tissue Bank and the study
was approved by the University of Calgary, Conjoint Health
Research Ethics Board (ID: 18142 and 14-2429).

Generation of microbiome
profiling data for SG-Cohort
2_2013

DNA isolation

DNA was isolated from mucosal biopsies using the
MoBio Ultraclean Tissue and Cells DNA isolation kit (MoBio
Laboratories, Carlsbad, CA, USA) following instructions
provided by the manufacturer.

16S.NGS data generation

The 16S rRNA V4 region was PCR-amplified using fusion
primers designed against surrounding conserved regions and
tailed to incorporate Illumina adaptors and indexing barcodes
as described previously (Caporaso et al., 2012). Amplicons were

sequenced on the Illumina MiSeq (Illumina, San Diego, CA,
USA) following instructions provided by the manufacturer.

PhyloChip data generation

V1 through V9 16S rRNA gene analysis was performed on
the G3 PhyloChip (Hazen et al., 2010; Mendes et al., 2011)
using lab protocols and image-scoring procedures previously
described (Sarhan et al., 2018).

Generation of RNAseq data for
SG-Cohort 1_2014

Biopsies were completely defrosted in RNA-later before
performing RNA purification with the AllPrep RNA Mini
kit (Qiagen). Defrosted biopsies were transferred into a tube
containing 350 µl RLT buffer with β-mercaptoethanol (Sigma-
Aldrich, St Louis, MO, USA), three 3.5 mm glass beads, and
0.25 ml of 0.1 mm glass beads (Biospec, Bartlesville, OK, USA).
Disruption and homogenization were carried out in a MagNA
Lyser (Roche, Penzberg, Germany) two times for 15 s at 3,500
or 6,500 rpm. RNA purification was performed according to
the kit manufacturer’s instructions. DNA contaminations in
RNA samples were removed by Turbo DNA-free kit following
the manufacturer’s instructions (Ambion, Carlsbad, CA, USA).
RNA concentrations were measured using a Nano-Drop 2000
Spectrophotometer (Thermo Scientific, Waltham, MA, USA).
RNA integrity was checked on 1% agarose gel electrophoresis
and 2100 Bioanalyzer system (Agilent Technologies, Santa
Clara, CA, USA). In addition, RNA quality was considered
acceptable if the RNA integrity number was ≥ 6 and the rRNA
ratio was ≥ 1.5. Host transcriptome RNAseq was carried out by
Macrogen (Seoul, South Korea) using TruSeq Stranded mRNA
Sample Prep Kit (Illumina) with Illumina HiSeq 4000 2 × 150
reads following the manufacturer’s protocol.

Procurement of raw data and
metadata curation for public
datasets

For the integrated meta-analysis, we obtained 13 additional
cohorts where UC and/or CD subjects were profiled with
WGS.NGS and/or 16S.NGS techniques against control
subjects using either mucosal biopsies or stool biospecimens
(Supplementary Table 1). 16S.NGS from mucosa was available
for Fastq/Fasta files and metadata were procured from
public repositories. Metadata stored with raw data, such as
NCBI’s RunInfo table associated with the SRA Run Selector,
and/or metadata published in tables in the primary text
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or Supplementary files of the publications, were retrieved
and manually re-annotated using a controlled vocabulary of
hierarchically organized terms. An in-house database was
created to store all study-related data and facilitate appropriate
metadata annotation of all datasets via manual curation.
Clinical metadata was stored in this database as a series of
label:value pairs attached to the biospecimen from which the
data files were generated.

StrainSelect database

StrainSelect1 is a reference database of archaeal and bacterial
genomic identifiers organized by strain. StrainSelect assigns a
consistently formatted identifier for known strains that have
been isolated and have had their genome sequenced and/or their
16S rRNA gene sequenced and shared publicly.

A single strain encapsulates all the descendants of single
isolation in pure culture and is usually disseminated by a
succession of cultures ultimately derived from a single colony
(Boone and Castenholz, 2001). The initial process of “isolation”
from a living community within a biome is an unnatural
selection event that captures only a point-in-time of an evolving
genome that might become altered by future natural selection
events (Dijkshoorn et al., 2000). Nonetheless, these isolated
strains are important tools for experimental microbiology
and provide points of reference to compare to future datasets
so oftentimes microbiologists, after isolating and naming a
single strain from clinical or environmental material, will send
replicate sub-cultures to multiple biological resource centers
(BRCs), such as ATCC or DSM, who then assign their own
catalog numbers. DNA sequencing institutes throughout the
international scientific community procure strains from various
BRCs and then upload gene or genome assemblies to public
databases such as the NCBI which assigns an identifier for each
assembly. Since this is a decentralized international process
there has been persistent confusion about what data came
from which strain. A prime example can be seen in a strain
isolated from a healthy Japanese male in 2011 (Morotomi et al.,
2012). The research team bestowed novel genus and species
level nomenclature for the isolate which they publicized as
Christensenella minuta YIT 12065. Two independent BRCs,
DSM, and JCM, also propagated sub-cultures of this strain
with their own unique catalog numbers, DSM 22607 and
JCM 16072. The University of California at Davis, Beijing
Genome Institute, Washington University, and South China
University of Technology each procured the strain from one
of the BRCs then separately sequenced the extracted DNA and
submitted their optimal assembly to public databases which
are now downloadable under 4 different assembly identifiers:

1 http://strainselect.secondgenome.com

GCF_001571425, GCF_001652705, GCF_001678855, and
GCF_003628755. A novice user of these public databases can
misinterpret these four assemblies as four different genomes
from four different strains, but they would be incorrect. In
building the StrainSelect database, we sought to overcome
confusion by tracing through the synonymous identifiers
for sub-cultures and genomic data records and assigning a
consistently formatted identifier for the strain, which in this
example is StrainSelectID: t__520.

Taxonomic placement and nomenclature were adapted
from GTDB (Parks et al., 2022). In cases where strains were
represented by one or more 16S rRNA genes without an
available genome assembly, taxonomic placement was estimated
using the sintax method (Edgar, 2018). Where formal taxonomic
names were not available for genera and species, numeric
provisional identifiers were assigned prefixed by “PROV.” In
Figure 5 and Supplementary Figures 7–10, when GTDB
recognized distinct phyla placements such as Firmicutes_A,
Firmicutes_B, and Firmicutes_C for ease of visualization they
were grouped as Firmicutes in the figure.

Raw profiling data processing and
taxonomic annotation

16S.NGS data processing

When raw sequence reads were available, they were
processed via DADA2 applying default settings for filtering,
learning errors, dereplication, amplicon sequence variant (ASV)
inference, and chimera removal (Callahan et al., 2016).
Truncation quality (truncQ) was set to two, and ten nucleotides
were trimmed from the termini of each forward and reverse
read. When only trimmed reads or only fasta files or when
data was generated via Sanger or 454 sequencings, paired-end
reads were merged (when applicable) and aligned to StrainSelect
(see text footnote 1; StrainSelect19_README.txt), version
2019 (SS19) using USEARCH (Edgar, 2010) using methods
described in the strain-level annotation section below. Distinct
strain matches were defined as described. The remaining
sequences were quality-filtered, chimera-filtered, and clustered
at ≥ 97% similarity via UPARSE (Allali et al., 2017) to
generate de novo OTUs. OTU abundances were generated by
aligning and counting all non-strain sequences against the OTU
representative sequences.

For strain-level annotation, ASVs or de novo OTU
representative sequences were mapped to SS19 using USEARCH
(Edgar, 2010) (usearch_global). SS19 is a repository of strain
identifiers (and their various synonyms) and gene identifiers
derived from known isolated microbial strains as of 22 July 2019.
A sequence observed in a clinical biospecimen was assigned a
strain-level annotation only when it met two conditions: (1)
it matched at least one reference gene from one strain with
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≥ 99% identity, and (2) the highest identity match to any gene
from a different strain was less than that of the top strain (e.g.,
99.75 vs. 99.50%). Sequence-to-strain assignment examples are
provided in Supplementary Table 2. Counts of reads from all
ASVs annotated uniquely to a strain were summed to obtain
strain-level abundances. Similarly, in the case of the pipeline
where de novo OTUs were generated, counts of reads from all
de novo OTUs annotated uniquely to a strain were summed
along with reads that were uniquely mapped to a strain pre-OTU
generation to obtain strain-level abundances.

For species-level annotation, if a unique strain match was
achieved the strain’s species level and higher level taxonomic
placement was inherited. If a unique strain match was not
achieved, then species level and higher taxonomic placement
were estimated with sintax (-cutoff 0.80) (Callahan et al., 2016).

PhyloChip data processing

Empirical OTUs (eOTUs) generated using image-scoring
procedures were annotated against SS19 to obtain strain-level
annotations as described previously (Sarhan et al., 2018; Ravilla
et al., 2019).

WGS.NGS data processing

Reads were processed with Trimmomatic (Bolger et al.,
2014) to remove adapter sequences and low-quality ends
(< Q20). Reads shorter than 35-bp following trimming were
discarded. Contaminant sequences (e.g., sequencing primers)
were removed using Bowtie (Langmead and Salzberg, 2012).
Host sequences were removed via Kraken (Wood and Salzberg,
2014), which used exact alignments of raw shotgun sequences to
k-mers derived from the human reference genome. Ribosomal
RNA sequences from all three domains of life were identified
and removed with SortMeRNA 2.0 (Kopylova et al., 2012). In
total, short and/or low quality reads, host reads, and ribosomal
RNA reads were ignored. Sourmash (Irber and Brown, 2016)
was used to taxonomically annotate the remaining reads against
a database built using strains in the SS19 database with genomes
available as of July 2019. Strain-level annotations were summed
to obtain species-level annotations.

Statistical analyses of isolated
datasets

Datasets with less than five patients remaining in either the
control and UC or CD groups were excluded based on a power
analysis that indicated a minimum of five subjects per group
was required to detect small (log-2 fold change > 1) strain-level
differential abundances when integrating five or more datasets
in a meta-analysis.

Data pre-filtering, normalization, and
statistical tests

PhyloChip
Significant differences for all eOTUs were calculated via

Welch’s t-tests, and adjusted p-values were determined with
the Benjamini-Hochberg correction. Fold change and variance
were calculated using the metafor package in R using the escalc
function with measure = MD (Edgar, 2010). Standard error
was calculated as the square root of the variance and both fold
change and standard error were extrapolated to a log-2 scale.

16S.NGS
We used methods described in ANCOM-II (Kaul et al.,

2017) and used the functionality implemented in the
feature_table_pre_process function2 to filter ASV or OTU
tables. Briefly, this pre-filtering detected outlier values based
on a cutoff of 5% (out_cut = 0.05) and performed prevalence
filtering at 5% (zero_cut = 0.95). Following this a pseudo-count
of 1 was added to all samples and bins, and data were normalized
via a clr-transformation (as implemented in clr function in
the compositions package in R). Significant differences for
bins were calculated via t-tests, and adjusted p-values were
determined with the Benjamini-Hochberg correction. The
clr-transformation followed by the t-test for DA in NGS data
results in high concordance across related cohorts (Wallen,
2021).

WGS.NGS
f_unique_weighted values exported per strain from

sourmash were converted to the count scale. Data were
then filtered and normalized using methods described for
16S.NGS. Significant differences for bins were calculated
via t-tests, and adjusted p-values were determined with the
Benjamini-Hochberg correction.

Computation of effect size and
standard error for meta-analysis

Whenever multiple biospecimens of the same type (stool
or biopsy) were acquired from the same subject, only the
earliest time point was retained. If the clinical metadata did
not resolve the relative timepoints, then the biospecimen that
yielded the greatest number of reads post-filtering was retained.
Fold change and variance were calculated using the metafor
package in R using the escalc function with measure = MD
(Viechtbauer, 2010). Standard error was calculated as the square
root of the variance and both fold change and standard error
were extrapolated to a log-2 scale.

2 https://github.com/FrederickHuangLin/ANCOM
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Multi-technology meta-analysis

Log-2 fold change and standard errors pertaining to isolated
datasets were integrated in MTMA using a Random effects
model (REM) as implemented in the rma.mv function in
the metafor package in R (Viechtbauer, 2010). A multi-level
REM that treated cohort and dataset (combination of cohort,
profiling technology, and the variable region of 16S-rRNA when
applicable) as outer and inner-levels to integrate results from
isolated analyses in MTMA. REM was run using the option
in the rma.mv function, the Nelder-Mead optimizer with 500
maximum iterations. Only those strains or species observed
in at least two datasets were retained for REM analysis. False
discovery correction for REM-generated p-values was achieved
using the Benjamini-Hochberg method.

Permutation analysis

From a table of strain-level observations of log-2 fold
changes and associated standard errors in each isolated
dataset, random draws were taken to simulate a collection of
observations from 1 to 3 DNA-profiling technologies, 1 to 2
biospecimen-types, 1 to 2 disease-subtype contrasts, and 2 to
21 datasets. A total of 7,500 of the random draws were made
simulating 2 or 3 single-technology meta-analyses (STMAs)
within an MTMA allowing comparisons between STMA and
MTMA. STMA and MTMA were then run on these simulated
observations as described in the MTMA section above and
p-values, log-2 fold changes, and 95% confidence intervals were
obtained for comparisons.

Functional annotation of strains

For strains of interest, protein sequences were predicted by
Prodigal (Hyatt et al., 2010). KEGG orthology (KO) annotations
for the proteins were obtained using KofamKOALA (Aramaki
et al., 2020). The associated pathway for these KOs was obtained
from KEGG.

Analysis of host pathways
correlation with the abundance of
strains of interest

Data processing

Reads were processed with Trimmomatic (Bolger et al.,
2014) to remove adapter sequences and low-quality ends
(< Q20). Reads shorter than 35 bp following trimming were
discarded. Contaminant sequences (e.g., sequencing primers)

were removed using Bowtie (Langmead and Salzberg, 2012).
HISAT2 (Kim et al., 2019) was used for mapping followed by
SUBREAD (Liao et al., 2019) for feature count generation. Gene
symbol conversion was performed with the Ensembl database
using the mygene package in R (Wu et al., 2013).

Statistical analysis for identification of
enriched pathways

Mucosal biopsies from patients where both microbiome
(PhyloChip) and host-expression profile were available in
SG-Cohort-1, were examined for gene-expression patterns
correlating with the abundance of each strain of interest (4
strains identified as significantly decreased in IBD and detected
in > 75% of the contrasts examined herein; Figure 7 strains
with a positive log-2 fold change by MTMA and 4 strains that
were not significantly associated with IBD in this MTMA).
DESeq2 (Love et al., 2014) with ashr shrinkage was used for
the identification of genes that were significantly differentially
abundant based on correlation to the abundance of each strain
of interest. For each strain, significantly enriched pathways
were determined using the pathway enrichment module in
Reactome (Yu and He, 2016) as implemented in the R
function enrichPathway from the Reactome package. Only genes
that were significantly differentially abundant at an adjusted
p < 0.05 were considered for pathway enrichment analysis.
Top 20 pathways (based on adjusted p-value) from the pathway
enrichment analysis for each strain were compared to identified
pathways unique to the strains determined as significantly
decreased in IBD. Note that the top 20 pathways were compared
only for pathways with adjusted p < 0.1.

Results

Single cohort analyses identify
study-specific microbiome signatures
that are often not concordant across
cohorts

To determine if associative patterns between bacterial taxa
and IBD (specifically in UC and CD) in individual studies could
be confirmed across cohorts, we identified microbiome studies
where both clinical metadata and microbiome-sequencing
data were publicly available or were generated from three of
our recent studies (Supplementary Table 1). We integrated
microbiome profiles that were characterized via WGS.NGS,
16S.NGS, or PhyloChip from 1,289 stool and 2,118 mucosa
samples spanning 21 datasets across 15 cohorts using a
standardized pipeline that facilitated comparison across cohorts
and DNA-profiling technologies (Figures 1A,B). Patients in
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FIGURE 1

Multi-technology meta-analysis workflow and dataset characteristics. (A) Analysis pipeline overview. Microbiome studies in IBD with publicly
available metadata and sequencing data (11 studies, until January 2020) and 3 studies generated herein were collected
(Supplementary Table 1). Metadata associated with each study was manually re-annotated using a controlled vocabulary enabling comparison
across datasets. Raw data from each isolated dataset was individually processed, quality-filtered, taxonomically annotated, and statistically
analyzed using methods and tools appropriate for each DNA-profiling technology. Datasets were integrated using MTMA. See section
“Methods” for details. (B) Sample size for each dataset with sub-tallies demonstrating count of control, Ulcerative colitis, and Crohn’s disease
subjects. (C) Number of strains obtained via annotation against the StrainSelect database for each dataset.

remission or those treated with antibiotics were excluded.
Datasets with less than five patients remaining in either the
control and UC or CD groups were excluded. To allow
comparison of clinical variables across datasets from multiple
research groups, we re-annotated metadata from public datasets
using a controlled vocabulary of hierarchically organized terms.
Raw data from each isolated dataset was processed, quality-
filtered, taxonomically annotated, and analyzed using methods

appropriate for each DNA-profiling technology. Herein we
defined a strain as all the descendants of single isolation in
pure culture (Boone and Castenholz, 2001). We developed
StrainSelect, a curated strain database containing sequence
information of bacterial and archaeal strains connected to
genome identifiers (details in section “Methods”), to enable
comparison of fine-scale strain variations between case and
control subjects. We identified 2,626 strains across the 21
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datasets with on average, 1,311 strains identified in WGS.NGS,
119 in PhyloChip, and 97 in 16S.NGS datasets (Figure 1C).
These counts should not be considered as a measure of
the complete taxonomic richness within the biospecimens
but instead simply the counts of known strains in the
reference database that were identified by stringent DNA
matching. The lower number of strains was identified in
16S.NGS and PhyloChip datasets are not surprising as
the ability to accurately assign 16S-rRNA sequences to a
specific strain is a known limitation (Johnson et al., 2019).
Thus we only identified strains that could be uniquely
annotated to a sequence. When strain-level discrimination
of taxa was not possible, to understand the role of these
taxa in IBD, we also pursued analysis at the species level.
Identification of differentially abundant (DA) strains across
cohorts from a simple comparison of isolated datasets was
limited as 75 or 30% of the strains were detected in only
one dataset characterizing the intestinal mucosa and gut-
lumen (stool), respectively (Figure 2A, green bars). Strains
that were significantly DA from the isolated analyses were
primarily dataset-specific (green bars, Figure 2B). Furthermore,
in many cases these significantly differentially abundant
strains were not always consistently associated with either
homeostasis (enriched in control) or dysbiosis (enriched in
case), across all datasets within a contrast (Supplementary
Figure 1, rightmost panels). This sparsity in overlap of
strains significantly associated with disease across datasets
underscores the need for more robust means of discerning
concordant signatures across cohorts. With approximately
40% of strains demonstrating concordant associations, albeit
not always significant, with either homeostasis or dysbiosis
(Figure 2C), we hypothesized that MTMA could enable the
identification of significantly and consistently concordant taxa
associations across datasets.

Multi-technology meta-analysis
identifies significant findings that are
concordant across DNA-profiling
technologies and is more sensitive to
changes compared to STMA

We utilized a multi-level random-effects model that treated
cohort and dataset as nested levels to integrate results
from isolated analyses in MTMA. This enabled weighting
cohorts equally even when multiple technologies were used
to characterize the microbiome in a single cohort. We
hypothesized that since MTMA facilitates the integration of
all available microbiome data in a disease area, significant
associations identified herein would represent microbes that
are consistently perturbed in disease. This would eliminate
findings that are not reproducible across datasets characterized
by different DNA-profiling technologies which traditional

single-technology meta-analysis (STMA) may fail to eliminate;
given that they are restricted to trends observed in one
DNA-profiling technology only. To demonstrate this added
value of a comprehensive view of the microbiome in disease
facilitated by MTMA compared to STMA, permutations were
run to simulate two or more observations of taxa from
two or more DNA-profiling technologies. For each simulated
taxon, significance (p < 0.01) in STMA or MTMA was
determined by integrating data pertaining to each DNA-
profiling technology only or all simulated data agnostic of
technology (Figure 3). A taxon was considered concordant
when the direction of effect (measured as log-2 fold changes)
across all STMAs that evaluated the taxon were in the
same direction (solid boxplots). For STMA, confidence in
the reported direction of effect per taxon was determined
as cases where the lower and upper bounds of the 95%
confidence intervals are in the same direction as the effect.
STMAs tended to identify significant associations when they
were confident regardless of concordance across STMAs (left
panel p-values are lower than the right panel in green
boxplots but no significant difference in the distribution of
STMA p-values when comparing green solid and dotted-
boxplots in both panels; Figure 3). However, we observed
more significant associations with MTMA when effects were
concordant across DNA-profiling technologies compared to
when they were discordant (greater counts of DA strains below
a given p-value cutoff blue-solid compared to blue-dotted
boxplots in both panels; Figure 3). MTMA also identified
significant findings in cases where STMA were concordant
even when individual STMAs were not confident in the
direction of the association and failed to infer a significant
STMA finding (greater counts of DA strains below a given
p-value cutoff in MTMA compared to STMA in solid boxplots
in the right panel; Figure 3). By integrating datasets across
DNA-profiling technologies, MTMA identifies significant taxa-
disease associations while accounting for concordance in the
direction and variance of the effect across cohorts allowing
for a more comprehensive view of the microbiome’s role in
disease.

Multi-technology meta-analysis
identifies concordant strain signatures
that are supported by multiple isolated
analyses which often fail to identify
these changes as significant

Unlike significant taxa identified by isolated datasets were
trends in the association were often not supported across
cohorts (Supplementary Figure 1), significant associations
identified by MTMA are driven by the directional concordance
of the strain and supported by multiple cohorts (Figure 4
and Supplementary Figures 2–5). In fact, we observed
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FIGURE 2

Differentially abundant strains are inconsistent across single-cohort microbiome analyses. (A) Number of strains detected (after prevalence
filtering) in each of the two contrasts (Controls compared to UC or CD) for each microbial ecosystem (luminal/stool and mucosa) with
sub-tallies colored according to the number of datasets a strain is detected in. Number of datasets considered for each contrast is specified in
parentheses. (B) Number of strains that were significantly differentially abundant (adjusted-p < 0.01) with sub-tallies colored according to the
number of datasets they were significant in. (C) Number of strains that exhibit concordance in direction of the log-2 fold change. Color
represents proportions of datasets in which they were detected within a contrast. Only strains detected in at least two isolated datasets are
included.

that for the majority of these strains association with
homeostasis (green) or dysbiosis (pink) was supported by
all datasets the strain was detected in demonstrating that
the significantly DA strains identified by MTMA reveal
perturbations that are consistent across cohorts and DNA-
profiling technologies. In a few cases where there was
discordance in trends (example, any strain represented by a
large point in the left panel of Supplementary Figure 3)
these could be attributed to isolated datasets that had low
confidence in the direction of association of a strain (dotted
lines). Several strain-disease associations identified in MTMA
were not identified in isolated analyses of the datasets
(Figure 4 and Supplementary Figures 2–5; orange dots).
This could likely be due to isolated studies individually
being underpowered to detect this change given the lack of
confidence in the direction of association inferred in many of
these isolated datasets (dotted lines). In these cases, MTMA
inferred a significant association by integrating the observed
effects and associated variances across datasets. Thus, MTMA
corroborated findings from isolated analysis if supported
concordantly across datasets but eliminates discordant and
identified novel disease-strain associations that isolated analyses
failed to detect. Furthermore, several associations uncovered
herein were from the integration of cohorts characterized
by different DNA-profiling technologies which would not
have been possible without a multi-technology integration
approach.

Multi-technology meta-analysis
identifies novel dysbiosis and
homeostasis-associated species and
strains and confirms previously
established taxa associated with
Crohn’s disease and Ulcerative colitis

Given that few studies have investigated the microbiome in
both stool and mucosa in an IBD patient population (Altomare
et al., 2019; Lo Presti et al., 2019), we also used MTMA
to identify cross-cohort microbiome associations that were
specific to or common across microbial ecosystems represented
by stool and mucosal samples. Overall, compared to stool
we observed fewer species and strains that were significantly
DA in the mucosa. Furthermore, the largest DA species
and strains (both in terms of magnitude and significance)
were observed in the comparison of stool from control and
CD patients (Supplementary Figures 6A,B), indicating that
microbiome dysbiosis is both greater and more consistent
across cohorts in CD. We also observed that the decrease
of several homeostasis-associated bacteria was supported by a
greater number of cohorts than an enrichment of dysbiosis-
associated bacteria in both stool and mucosa (Supplementary
Figure 6C and findings in the top-right quadrant of volcano
plots are supported by more cohorts compared to top-left
quadrant). Together, these findings point to greater therapeutic
potential in targeting the microbiome via restoration of missing
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FIGURE 3

Multi-technology meta-analysis identifies significant findings that are concordant across DNA-profiling technologies, overcoming this limitation
with STMAs. Permutations were run to simulate two or more observations of taxa in two or more DNA-profiling technologies. Distribution of
p-values from Single Technology Meta-Analysis (STMA) (green; integration of simulated observations from one DNA-profiling technology) or
MTMA (blue; integration of simulated observations from multiple DNA-profiling technologies) for 7,500 permuted cases is shown. Solid and
dashed-boxplots correspond to cases where the direction of the log-2 fold change inferred via STMAs are concordant or discordant,
respectively. Left and right panels correspond to cases where all STMAs are confident in the direction of the effect (log-2 fold change) or at
least one STMA is not-confident, respectively. Confidence of an STMA effect direction was defined at 95%. Red dashed lines correspond to a
p-value of 0.01.

homeostasis-associated bacteria or functions mediated by these
bacteria, especially in CD.

Using MTMA, we were able to confirm the previously
observed decrease in certain homeostasis-associated species in
the stool of patients with both UC and CD (Figure 5, blue
highlights; Supplementary Figure 8) (McIlroy et al., 2018;
Schirmer et al., 2019). Other microbiome-IBD associations, that
were previously reported in the literature, were only confirmed
as significant associations across CD cohorts (Figure 5, red
highlights) although non-significant trends were observed
across UC cohorts. Further, while the previously reported
decrease of Faecalibacterium prausnitzii in patients with CD was
observed in stool samples, this association was not significant
in mucosal tissue (Walters et al., 2014; Schirmer et al., 2019).
We identified several taxa that were increased in both the stool
and mucosa of control compared to patients with CD and a few
that were decreased, such as Morganella morganii (Figure 5,
purple dots; Supplementary Figures 7, 9). Such microbial
changes that are observed in both luminal and mucosal
environments could be indicative of systemic perturbation to
the gut-microbiome. We also found lower levels of yet-to-be-
named species and strains from the Lachnospiraceae family in

mucosa and stool samples from patients with UC and CD
(Supplementary Figures 7–10), presenting novel associations
of these taxa in IBD. In addition to confirming the cross-cohort
generalizability of previously reported taxa-disease associations
in IBD, our MTMA approach identified novel and specific
strain-associations within these species presenting genomic
targets that can be further interrogated for their functional role
in disease.

Strain-level multi-technology
meta-analysis reveals unique
taxa-disease associations that are not
always recapitulated at the
species-level

When comparing MTMA results at the species and
strain level, we observed that not all significant strain
associations resulted in species-level significance (bottom
panels; Figure 5 and Supplementary Figures 7–10) and
conversely significant species associations with the disease
were not always re-captured at the strain level (gray bars;
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FIGURE 4

Differentially abundant strains in Crohn’s disease identified herein are concordant across cohorts. Strains that are significantly enriched (A) or
decreased (B) in stool from controls compared to CD subjects based on strain-level MTMA. Strains (dots) are sized by the number of isolated
datasets they are detected and colored as follows: significant by one or more isolated analyses and MTMA (blue) or MTMA only (orange). Strains
are connected to isolated datasets (gray squares) they are detected in. Line color indicates enrichment (green) or decrease (pink) of strains in
controls compared to case subjects. Thick and thin lines indicate significantly (adjusted p < 0.01) and non-significant findings in isolated
datasets, respectively. Solid and dashed lines correspond to isolated datasets that are confident or not-confident in the direction of the log-2
fold change, respectively. Confidence is determined as cases where the lower and upper bounds of the 95% confidence interval associated with
a log-2 fold change are in the same direction as the log-2 fold change. Strains where the adjusted p-value from MTMA was < 0.0001 are
shown. Supplementary Figure 2 plots strains with adjusted p-value in the 0.01–0.0001 range. Plots summarizing isolated dataset results for
strains significant via MTMA for other contrasts considered herein are in Supplementary Figures 3–5.

Figure 5 and Supplementary Figures 7–10). In many cases
where significant species association was identified, we
observed that only a subset of strains within this species
demonstrated significant association with disease (Figure 6 and
Supplementary Figure 11). More importantly, we observed
that within a species, some strains demonstrated enrichment
in disease while others were enriched in control subjects. For
example, while the species-level analysis and previous studies
reported a decrease in Odoribacter splanchnicus in patients with
CD (Schirmer et al., 2019), we observed both significant disease
and homeostasis-associated strains within this species (Figure 6,
fourth taxa from the right). To gain insight into the functional
differences between the disease and homeostasis-associated
O. splanchnicus strains, we compared the annotated KEGG
pathway profiles of these strains’ genomes and observed greater
coverage of a D-alanine metabolism pathway (path:map00473;
Supplementary Figure 12) in the homeostasis-associated strain
(t__266395). Alanine is reported to reduce experimental liver
damage by a direct effect on hepatocytes (Maezono et al., 1996).
The ability to modulate alanine metabolism by t__266395 may
confer a beneficial effect on the liver, which is known to be
associated with gut mucosal immunity (Trivedi and Adams,
2016). These findings together highlight that strain identity
even within species may be important to the role played by a
bacterium in disease.

Multi-technology meta-analysis
uncovers strains that demonstrate
cross-cohort association with
inflammatory bowel disease, including
across disease subtypes and
gut-microbial ecosystems, presenting
novel therapeutic and diagnostic
opportunities

Strains that are significantly enriched or decreased in
UC and CD subjects in both the stool and mucosa may
point to an IBD biology that influences both disease subtypes
and to potential drivers of systemic gut dysbiosis. A total
of 267 of the 305 strains identified as significantly DA by
MTMA were changed specifically to a disease subtype and
an ecosystem (Supplementary Figure 13A). Among strains
that demonstrated significant associations in both UC and CD
subjects compared to controls, only one strain, Gemminger
formicilis t__83170, was identified as significantly decreased in
both luminal (stool) and intestinal-mucosa from UC and CD
subjects (Supplementary Figure 13B). Identification of strain
signatures that were decreased in both UC and CD patients
across cohorts motivated us to examine taxa associations with
IBD agnostic of disease subtype or microbial ecosystem. A total
of 329 strains were detected in at least one dataset comparing
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FIGURE 5

Novel dysbiosis and homeostasis-associated species and strains in the gut lumen of Crohn’s disease subjects that were previously unreported in
isolated analyses. Left panel plots the log-2 fold change of differential abundance at the species level. Bars are colored by the number of strains
within a species that are significantly differentially abundant (DA), with gray bars indicating cases where only species-level significance is
observed. Phylum-level placement is shown in the right strip. Panel (A) plots cases significantly DA species with or without strain-level
significance in differential abundance. Panel (B) plots cases with only strain-level but no species-level significant differential abundance.
Significance was determined at adjusted p < 0.01. Purple dots point to species that were enriched or decreased in the mucosa of CD subjects as
well as stool. Species that were previously reported in the literature as DA in stool of both UC and CD patients are highlighted in blue or red.
Only species that are taxonomically named are shown. Unnamed species are shown in Supplementary Figure 7. Plots summarizing results for
other contrasts considered herein are provided in Supplementary Figures 8–10.
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FIGURE 6

Strain-identity even within a species is important to the functional role of a bacterium in IBD. Top panel indicates direction of each species-level
enrichment (green) or decrease (pink) in stool samples from controls as compared to CD subjects. In the bottom panel, log-2 fold change of
strains within a species is shown with closed and open triangles indicating significant and insignificant findings in strain-level MTMA,
respectively. Significance was determined at an adjusted p < 0.01. Plots summarizing strain-level differences within a species for other contrasts
considered herein are provided in Supplementary Figure 11.

UC and CD to control subjects in both mucosa and stool. An
MTMA integrating isolated-dataset results across all contrasts
for these strains identified 40 strains that demonstrated cross-
cohort associations with IBD in both the luminal and mucosal
ecosystems and both disease subtypes. More strains were
consistently decreased in IBD patients compared to strains that
were consistently decreased in control subjects across cohorts
(Supplementary Figure 14). This finding is consistent with
observations of a decrease of homeostasis-associated genera
across IBD cohorts by Duvallet et al. (2017), re-emphasizing a
need for therapeutic strategies in IBD that target remediation of
decreased homeostasis-associated strains.

Of particular interest were four strains (A. putredenis
t__80573, G. formicilis t__83170, and two Lachnospiraceae
strains t__256727 and t__133679) that were significantly
enriched and one strain (D. invisus t__28462) that was decreased
in controls compared to case subjects. The association of
these strains with the disease was supported by > 12 cohorts
and also supported in both stool and mucosa (Figure 7).
Significant associations for a few of these strains were
consistent with the literature. A decrease of A. putredinis
and G. formicilis in patients with IBD has been reported
previously (de Meij et al., 2018; Kowalska-Duplaga et al., 2019;

Schirmer et al., 2019). A study characterizing the microbiome
using a molecular fingerprinting technique reported a decrease
of D. invisus in patients with CD (Joossens et al., 2011)
while our MTMA strain-level integration of multiple IBD
cohorts demonstrated a significant decrease of the D. invisus
strain t__28462 in controls compared to patients with IBD.
We also identified the enrichment of two Lachnospiraceae
strains across control compared to patients with IBD in
multiple cohorts that are yet-to-be-named even at the genus
level. The enrichment of this strain in control subjects
was supported by datasets using multiple DNA-profiling
technologies (Figure 7; point shapes) further increasing the
confidence in the identified association of these strains. While a
decrease of Lachnospiraceae in IBD patients has been presented
in multiple studies (Schirmer et al., 2019), none described these
specific strains.

To gain insight into potential disease-modulating functions
of the four strains enriched in control compared to patients with
IBD we examined host gene-expression patterns correlating
with the abundance of these strains in a cohort of IBD patients.
A total of 140 patients (15 controls, 77 UC, 48 CD) in SG-
Cohort-1 had both microbiome (PhyloChip) and host-gene
expression profiles (RNAseq) of their mucosal samples available
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FIGURE 7

Two Lachnospiraceae strains are ubiquitously decreased in IBD compared to control subjects. Each panel plots log-2 fold change from MTMA
(diamonds at the top) and isolated (squares, circles, and triangles) datasets for strains that are significantly (adjusted p < 0.01) differentially
abundant in an MTMA integrating all datasets and comparisons described herein. For isolated datasets, points are shaped by the DNA-profiling
technology used to characterize the microbiome and colored by biospecimen type and disease subtype being compared to controls. Error bars
correspond to the 95% confidence interval. Plot summarizes results for the five strains that demonstrate the most consistent association with
IBD across cohorts (detected in greater than 75% of all contrasts integrated and significant by MTMA). See Supplementary Figure 15 for
remaining strains identified as significant in this MTMA.

for analysis. Gene-expression patterns indicated significant
enrichment of immune-related and signal-transduction
pathways associated with these four strains (Figure 8). For
the two Lachnospiraceae strains, we observed significant
enrichment of multiple inflammation-related pathways such as
those involved in interleukin-signaling. Many of these pathways,
including TNF-α, IL-17, and IL-10 signaling, are known target
therapeutic mechanisms in IBD (Weisshof et al., 2018; Giuffrida
et al., 2019). To determine if enrichment of immune-related
pathways was specific to the strains we identified herein, we
compared pathways enriched in correlation with the four
strains to those enriched in correlation with strains that were
not significantly associated with IBD in this MTMA (strains
that are neither consistently enriched nor decreased across
IBD cohorts; control strains). Most of the immune-related
and signal-transduction pathways were not associated with
the control strains indicating that enrichment of these known
IBD-related pathways is specific to the strains we identified
here as decreased in patients with IBD (Figure 8). This analysis
points to the value of the MTMA approach that identifies
specific strains associated with the disease across cohorts and

hence enables insight into the biological relevance of these
strains in a disease context.

Discussion

It is apparent from our re-analysis of published datasets
that there exist significant variations across cohorts, even
when datasets are analyzed through a standardized pipeline
(Figure 2 and Supplementary Figure 1). MTMA enabled the
synthesis of existing knowledge of the microbiome in IBD
and uncovered previously unreported perturbations in IBD
that are applicable across geographically dispersed cohorts
overcoming limitations of previous meta-analyses that were
restricted in their view of the microbiome in disease to that
offered by one DNA-profiling technology. Combining datasets
profiled using different technologies not only allowed us to
view the microbiome in IBD through a comprehensive lens
but also increased confidence in strain-disease associations that
were supported by multiple technologies, especially in cases
where novel associations with unnamed strains were identified
(Lachnospiraceae strains; Figure 7). We acknowledge that
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FIGURE 8

Strains that are ubiquitously decreased in patients with IBD are associated with modulation of immune and signal-transduction related
pathways. Gene-expression patterns correlating with the abundance of four strains identified as significantly enriched in controls compared to
patients with IBD by MTMA (left panel) and four strains that were not significant in this MTMA (right panel) were determined. Pathway
enrichment analysis was used to identify pathways that were significantly enriched in the gene-expression pattern associated with each strain.
Pathway coverage across the IBD and control strains are shown. Light to dark green indicates higher pathway coverage. White cells without an
* indicate that the pathway was not significantly enriched in the gene-expression pattern associated with that strain. Only the top 20 pathways
that were significantly enriched in at least one of the IBD strains are shown. Significance was determined at adjusted p < 0.2.

even with this MTMA approach, the taxa-disease associations
identified herein is subject to biases from differences between
isolated studies in terms of experimental, sequencing, and
cohort demographics. However, by focusing on associations
that are supported by multiple cohorts, MTMA limits the
identification of spurious associations that may arise from
experimental biases in the analysis of a single cohort or a
meta-analysis integrating data profiled on one technology one.

While the analysis at higher-order taxonomic levels of
the microbiome provides valuable insight, our comparative

MTMA at the species and strain level clearly demonstrates
strain-specific associations with disease or health even within
a species. Strain-specific variations in the metabolic capabilities
of bacterial species have long been established but strain-level
variations within the human microbiome are only recently
being explored (Yan et al., 2020). We attempted to characterize
functional differences between strains identified here as disease
or homeostasis-associated. However, we observed that the
majority of their functions remain to be elucidated with on
average, over 70% of the predicted genes from a strain’s genome
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having no known KEGG orthologs. This necessitates improved
functional annotation of proteins derived from the human
microbiome. Recent work into deciphering the functional
annotation for small proteins derived from human-associated
metagenomes has been an important step in this direction
(Sberro et al., 2019). In particular, little is known about the
two Lachnospiraceae strains that are decreased in IBD stools
and mucosa, besides their genome assemblies. Just as NIH
projects such as “Most Wanted” identified abundant 16S rRNA
amplicons that inspired a search for their genomes of origin
(Fodor et al., 2012), we believe a new project is needed to
elucidate the phenotypes of strains with known genomes and
highly significant associations with disease and health. The
Lachnospiraceae strains pinpointed by MTMA are excellent
candidates for functional studies that characterize how peptides,
proteins, or metabolites from these strains interact with human
cells to begin to unravel their role in IBD.

Our approach identified novel species and strains that
were differentially abundant in patients with IBD compared to
control subjects and confirmed previously published findings
such as a decrease of Faecalibacterium prausnitzii in patients
with CD (Schirmer et al., 2019). Furthermore, in many
cases for the first time identified specific strains and the
applicability of these findings across cohorts. Overall, we
observed greater support across cohorts for species and strains
that were decreased in patients with UC or CD compared
to controls (Supplementary Figure 6), pointing to a greater
therapeutic potential of targeting the microbiome by restoring
missing homeostasis-associated bacteria or their associated
functions. We also observed that MTMA identified strain
associations specific to UC or CD, implying potential distinct
microbial drivers of the two disease subtypes. Particularly, in
comparing stool samples between CD and control patients, we
observed many significant and large taxa-disease associations
(Supplementary Figure 6; larger values of significance and log-
2 fold change), indicating that drivers of microbial dysbiosis are
likely larger and consistent across patients with CD as compared
to UC. Alternatively, this finding could point to patient
stratification within patients with UC or other confounders that
elude the identification of strong cross-cohort microbial drivers
of UC. Our integrated analysis combining information across
disease subtypes and microbial ecosystems revealed for the first
time four strains that were consistently decreased in IBD in
both the gut lumen and mucosa. These strains may represent a
starting point for the development of therapeutic interventions
targeting restoration of these strains or their functions to levels
observed in control subjects. Furthermore, signatures that are
reproducible across cohorts, ecosystems, disease subtypes, and
DNA profiling technologies can present opportunities for the
development of a ubiquitous IBD-strain biomarker. Our effort
to understand how these strains interact with the host at a
mechanistic level, revealed enrichment of inflammation-related
pathways in host-gene expression correlating with the two

Lachnospiraceae strains that were decreased in IBD. While this
analysis points to potential pathways via which these strains
could confer a host benefit in IBD, further experimental and
omics analyses are required to understand how these strains
interact with the host.

Multi-technology meta-analysis reveals novel and
previously unpublished species and strains that are enriched
or decreased in IBD compared to control patients from
a systematic re-analysis and integration of existing public
and new datasets. Our comparative analysis at the species
and strain level highlights the importance of strain-specific
association with disease or health even within a species and
underscores the need for fine-grained taxonomic analysis of
the microbiome to generate testable hypotheses and disease-
specific therapeutic strategies. We believe applying the MTMA
framework, with its ability to integrate a growing number
of datasets across DNA profiling technologies and pinpoint
specific strains, will allow for the identification of robust
microbiome modulators of disease.
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SUPPLEMENTARY FIGURE 1

Significant findings from isolated dataset analysis often do not exhibit
concordance in the direction of differential abundance across multiple
datasets. Left panel tallies the number of significant strains (adjusted
p < 0.01) in each isolated dataset with sub-tallies by enrichment (green)
or decrease (pink) in control compared to case subjects as defined by
the direction of log-2 fold change. In the middle and right panels, log-2
fold changes in each isolated dataset are shown for strains that are
significantly DA in at least one isolated dataset and detected in at least
two isolated datasets. Closed and open triangles indicate significant and
non-significant findings in each isolated dataset, respectively. Strains are
grouped by concordance in direction of differential abundance across
all datasets or the lack thereof. Panels (a,b) summarize findings from
analysis of mucosa from each isolated dataset in comparison of control
to UC and CD subjects, respectively. Similarly, panels (c,d) summarize
findings for analysis of stool from controls compared to UC and CD
subjects, respectively.

SUPPLEMENTARY FIGURE 2

Differentially abundant strains in Crohn’s disease identified herein are
concordant across cohorts (only adjusted p < 0.01 and > 0.0001 are
shown). Strains that are significantly enriched (a) or decreased (b) in
stool from controls compared to CD subjects based on strain-level
MTMA. Strains (dots) are sized by the number of isolated datasets the
strain is detected and colored as follows: significant by 1 or more
isolated analysis and MTMA (blue) or MTMA only (orange). Strains are
connected to isolated datasets (gray squares) they are detected in. Line
color indicates enrichment (green) or decrease (pink) of strains in
controls compared to case subjects in each isolated dataset. Thick and
thin lines indicate significant and non-significant findings in isolated
datasets, respectively. Solid and dashed lines correspond to isolated
datasets that are confident or not-confident in the direction of the log-2
fold change, respectively. Confidence is determined as cases where the
lower and upper bounds of the 95% confidence interval associated with
a log-2 fold change are in the same direction as the log-2 fold change.

SUPPLEMENTARY FIGURE 3

Differentially abundant strains in Ulcerative Colitis subjects identified
herein are concordant across cohorts in mucosa samples. Left and
right panels plot strains that are significantly enriched or decreased in
controls compared to Ulcerative colitis subjects in mucosa samples
based on strain-level MTMA, respectively. Strains (dots) are sized by the
number of isolated datasets a strain is detected and colored as follows:
significant by 1 or more isolated analysis and MTMA (blue) or MTMA only

(orange). Strains are connected to isolated datasets (gray squares) they
are detected in. Line color indicates enrichment (green) or decrease
(pink) of strains in controls compared to case subjects in each isolated
dataset. Thick and thin lines indicate significant and non-significant
findings in isolated datasets, respectively. Solid and dashed lines
correspond to isolated datasets that are confident or not-confident in
the direction of the log-2 fold change, respectively. Confidence is
determined as cases where the lower and upper bounds of the 95%
confidence interval associated with a log-2 fold change are in the same
direction as the log-2 fold change. Significance was determined at an
adjusted p < 0.01.

SUPPLEMENTARY FIGURE 4

Differentially abundant strains in Crohn’s disease subjects identified
herein are concordant across cohorts in mucosa samples. Left and
right panels plot strains that are significantly enriched or decreased in
controls compared to Crohn’s disease subjects in mucosa samples
based on strain-level MTMA, respectively. Strains (dots) are sized by the
number of isolated datasets a strain is detected and colored as follows:
significant by 1 or more isolated analyses and MTMA (blue) or MTMA
only (orange). Strains are connected to isolated datasets (gray squares)
they are detected in. Line color indicates enrichment (green) or
decrease (pink) of strains in control compared to case subjects in each
isolated dataset. Thick and thin lines indicate significant and
non-significant findings in isolated datasets, respectively. Solid and
dashed lines correspond to isolated datasets that are confident or
not-confident in the direction of the log-2 fold change, respectively.
Confidence is determined as cases where the lower and upper bounds
of the 95% confidence interval associated with a log-2 fold change are
in the same direction of the log-2 fold change. Significance was
determined at an adjusted p < 0.01.

SUPPLEMENTARY FIGURE 5

Differentially abundant strains in Ulcerative Colitis subjects identified
herein are concordant across cohorts in stool samples. Left and right
panels plot strains that are significantly enriched or decreased in
controls compared to Ulcerative colitis subjects in stool samples based
on strain-level MTMA, respectively. Strains (dots) are sized by the
number of isolated datasets a strain is detected and colored as follows:
significant by 1 or more isolated analysis and MTMA (blue) or MTMA only
(orange). Strains are connected to isolated datasets (gray squares) they
are detected in. Line color indicates enrichment (green) or decrease
(pink) of strains in controls compared to case subjects in each isolated
dataset. Thick and thin lines indicate significant and non-significant
findings in isolated datasets, respectively. Solid and dashed lines
correspond to isolated datasets that are confident or not-confident in
the direction of the log-2 fold change, respectively. Confidence is
determined as cases where the lower and upper bounds of the 95%
confidence interval associated with a log-2 fold change are in the same
direction of the log-2 fold change. Significance was determined at an
adjusted p-value cutoff of 0.01.

SUPPLEMENTARY FIGURE 6

Multi-technology meta-analysis identifies greater number of
significantly differentially abundant species and strains in stool
compared to mucosa and in Crohn’s disease as compared to ulcerative
colitis. MTMA-derived adjusted p-values and log-2 fold changes are
plotted. Data points are colored according to the number of cohorts in
which a species or strain was detected and shaped by the number of
DNA-profiling technologies datasets integrated into MTMA were
characterized. The red-dashed line corresponds to an adjusted p-value
of 0.01. Species or strains significantly increased in control subjects plot
in the upper right quadrant, whereas those decreased in control
subjects plot in the upper left quadrant. Panels (a,b) correspond to
species and strain-level findings, respectively. (c) The average number
of cohorts in which a significant DA strain or species is detected and
plotted. Green and pink represent the number of cohorts supporting
strains that are significantly increased and decreased in controls as
compared to case subjects, respectively.

SUPPLEMENTARY FIGURE 7

Multi-technology meta-analysis identifies species and strains that are
yet to be named even at the species-level that are differentially
abundant in stool samples from Crohn’s as compared to control
subjects. Left panel plots the log-2 fold change of differential
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abundance aggregated at the species level. Bars are colored by the
number of strains within a species that are significantly DA with gray
bars indicating cases where only species-level significance is observed.
Right strip indicates phylum-level placement of each species. Top panel
plots cases with species-level significant differences with or without
strain-level significant differences. Bottom panel plots cases with only
strain-level but no species-level significant differences. Significance was
determined at adjusted p < 0.01. Purple dots point to species decreased
in both stool and mucosa of controls compared to CD patients. Only
species that are not taxonomically named are shown.

SUPPLEMENTARY FIGURE 8

Novel dysbiosis and homeostasis-associated species and strains in the
gut lumen of Ulcerative colitis subjects that were previously unreported
in isolated analyses. Left panel plots the log-2 fold change of differential
abundance aggregated at the species level. Bars are colored by the
number of strains within a species that are significantly differentially
abundant with gray bars indicating cases where only species-level
significance is observed. Right strip indicates phylum-level placement of
each species. Top panel plots cases with species-level significant
differences with or without strain-level significant differences. Bottom
panel plots cases with only strain-level but no species-level significant
differences. Significance was determined at adjusted p < 0.01.

SUPPLEMENTARY FIGURE 9

Novel dysbiosis and homeostasis-associated species and strains
in the mucosa of Crohn’s disease subjects that were previously
unreported in isolated analyses. Left panel plots the log-2 fold
change of differential abundance aggregated at the species level. Bars
are colored by the number of strains within a species that are
significantly differentially abundant with gray bars indicating cases
where only species-level significance is observed. Right strip indicates
phylum-level placement of each species. Top panel plots cases with
species-level significant differences with or without strain-level
significant differences. Bottom panel plots cases with only strain-level
but no species-level significant differences. Significance was
determined at adjusted p < 0.01.

SUPPLEMENTARY FIGURE 10

Novel dysbiosis and homeostasis-associated species and strains in the
mucosa of Ulcerative Colitis subjects that were previously unreported in
isolated analyses. Left panel plots the log-2 fold change of differential
abundance aggregated at the species level. Bars are colored by the
number of strains within a species that are significantly differentially
abundant with gray bars indicating cases where only species-level
significance is observed. Right strip indicates phylum-level placement of
each species. Top panel plots cases with species-level significant
differences with or without strain-level significant differences. Bottom
panel plots cases with only strain-level but no species-level significant
differences. Significance was determined at adjusted p < 0.01.

SUPPLEMENTARY FIGURE 11

Strain-identity even within a species is important to the functional role
of a bacterium in IBD. Top strip plots enrichment (green) or decrease
(pink) of species in controls as compared to case subjects. Bottom
panel plots the log-2 fold change of strains within a species with closed
and open triangles indicating significant and non-significant findings in
strain-level MTMA, respectively. Significance was determined at an
adjusted p < 0.01. Panels (a) through (c) summarize findings for
controls compared to UC in mucosa, controls compared to CD in
mucosa, controls compared to UC in stool, respectively.

SUPPLEMENTARY FIGURE 12

Strains within a species demonstrate differences in their functional
potential. KEGG-pathway profiles of two Odoribacter splanchnicus
strains that were identified as significantly enriched (t__237969) and
decreased (t__266395) in stool from CD as compared to control
subjects by MTMA are shown. Color gradient in the heat map represents
the percent coverage of known genes in the pathway that are identified
in the genome of the strain. All pathways supported by the presence of
at least 20% of the known genes constituting the pathway in one of the
strains are shown.

SUPPLEMENTARY FIGURE 13

Multi-technology meta-analysis identifies strain-associations that are
often specific to a disease subtype and microbial ecosystem with few
strains that demonstrate significant associations in multiple MTMAs. (a)

Number of strains that are significantly DA by MTMA in each of the two
subtypes (Controls compared to UC or CD) for each gut-microbial
ecosystem (stool/luminal and mucosa) with sub-tallies colored
according to the number of MTMAs a strain is significant. (b)
MTMA-derived log-2 fold changes for strains identified as significantly
(denoted by asterisks) DA in two or more contrasts by MTMA are shown.
Significance was determined at adjusted p < 0.01.

SUPPLEMENTARY FIGURE 14

Multi-technology meta-analysis identifies greater number of
homeostasis as compared to dysbiosis-associated strains in IBD that are
consistently decreased across disease subtypes, gut-microbial
ecosystems, and DNA-profiling technologies. MTMA-derived adjusted
p-values and log-2 fold changes are plotted from an MTMA integrating
all IBD datasets described here in. Data points are colored according to
the proportion of comparisons in which a strain demonstrated
concordance in direction of log-2 fold change and shaped by the
DNA-profiling technologies used for characterization of the datasets.
The red-dashed line corresponds to an adjusted p-value of 0.01. Strains
significantly enriched in controls compared to IBD subjects plot in the
upper right quadrant, whereas those decreased in control subjects plot
in the upper left quadrant.

SUPPLEMENTARY FIGURE 15

Multi-technology meta-analysis identifies strains that are consistently
associated (enriched or decreased) with IBD across disease subtypes,
gut-microbial ecosystems, cohorts and DNA-profiling technologies.
Each panel plots log-2 fold change from MTMA and isolated datasets
for strains that are significantly DA in an MTMA integrating all datasets
and comparisons described here in. For isolated datasets, points are
shaped by the DNA-profiling technology used to characterize the
microbiome and colored by gut-microbial ecosystems and disease
subtypes being compared to controls. Error bars correspond to the 95%
confidence interval. Significance was determined at an adjusted
p < 0.01. Plots summarizing results for strains that are detected in less
than 75% of the contrasts integrated into the MTMA are shown here.

SUPPLEMENTARY TABLE 1

Details pertaining to cohorts, datasets, and comparisons analyzed.

SUPPLEMENTARY TABLE 2

Examples of 16S rRNA gene sequences observed in clinical subjects,
their identities to publicly available reference genes from known
isolated strains, and interpretations of which strain was selected, if any,
as the best unique match. Two cases (Examples 1 and 2) where a strain
is not selected from a clinical sequence are shown followed by three
cases (Examples 3–5) where a strain is selected. Displayed beneath each
ASV are the reference genes with identity from highest downward to the
first gene or tied genes below 99% identity. Reference genes are
indicated by NCBI accession number followed by a colon, the
nucleotide span, and the strand in parentheses. Since one strain can
have genes deposited from multiple DNA sequencing institutes and
have various identifiers in international culture collections, synonymous
terms for the same strain are included for convenience. The StrainSelect
ID is the single identifier representing the entire set of synonyms.
A sequence was assigned to a strain only when it met two conditions:
(1) it matches at least one reference gene from one strain with ≥ 99%
identity, and (2) the highest identity matches to any gene from a
different strain is less than the top strain.

SUPPLEMENTARY TABLE 3

Species identified as significantly differentially enriched or decreased in
UC or CD compared to control subjects by MTMA. Significance was
determined at adjusted p < 0.01. Log-2 fold change of case over
control in comparison of UC or CD to control subjects in stool or
mucosa samples are tabulated. Negative and positive log-2 fold
changes correspond to species decreased or enriched in controls
compared to case subjects, respectively.

SUPPLEMENTARY TABLE 4

Strains identified as significantly differentially enriched or decreased in
UC or CD compared to control subjects by MTMA. Significance was
determined at adjusted p < 0.01. Log-2 fold change of case over
control in comparison of UC or CD to control subjects in stool or
mucosa samples are tabulated. Negative and positive log-2 fold
changes correspond to strains decreased or enriched in controls
compared to case subjects, respectively.
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