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by improving nutrients
digestibility and intestinal
morphology, and modulating
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Nutrition, Sichuan Agricultural University, Chengdu, China, 2The First A�liated Hospital, Department

of Pain, Hengyang Medical School, University of South China, Hengyang, China, 3Guangzhou

Prosyn Biological Technology Feed CO., LTD., Guangzhou, China

The e�ects of Rhodotorula benthica culture (RBC) and antibiotics (AB) on

the growth performance, nutrients digestibility, morphological indicators, and

colonic microbiota of weaning piglets were explored. Ninety-six (Duroc ×

Landrace × Large) weaned piglets (21-day-old) weighing 7.7 ± 0.83 kg, were

randomly allocated to 4 dietary treatments. They were fed with basal diet

(CON), basal diet + 25 mg/kg bacitracin zinc + 5 mg/kg colistin sulfate (AB),

5 g/kg reduction in soybean meal of basal diet + 5 g/kg RBC (RBC1), or 10

g/kg reduction in soybean meal of basal diet + 10 g/kg RBC (RBC2). The

results showed that dietary RBC1 improved the body gain/feed intake (G/F) of

weaned piglets than the CON diet, and the RBC2 diet improved the average

daily gain and G/F than CON and AB diets from days 15 to 28 (P < 0.05).

Supplementation of RBC2 improved the apparent total tract digestibility of dry

matter, nitrogen, and gross energy in weaned piglets compared to controls

from days 15 to 28 (P < 0.05). Dietary AB, RBC1, and RBC2 enhanced the

ileal villus height (VH) and VH/crypt depth (CD), and these two indicators

were greater in the RBC2-treated piglets than in the AB- and RBC1-treated

piglets (P < 0.05). The activity of serum superoxide dismutase (SOD) was

enhanced by dietary AB, RBC1, and RBC2 (P < 0.05). Serum glutathione (GSH)

concentration was elevated by dietary RBC1 and RBC2 (P < 0.05). According to

16S rRNA sequence analysis, AB- and RBC2-treated piglets had a higher relative

abundance of Firmicutes and Lachnospiraceae in the colon digesta, and more

abundant Lactobacillus was found in RBC1-treated piglets, as compared to

the CON group. Additionally, RBC2 supplementation increased the α diversity
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[Chao1, PD-whole-tree, and observed operational taxonomic units (OTUs)]

compared to the CON group. Taken together, the dietary RBC improved the

growth performance of weaned piglets. In addition, 10 g/kg of RBC2 in the

diet achieved better e�ects on higher ADG, ileal villi morphology, and stronger

antioxidant capacity than dietary AB and RBC1 in weaning piglets.

KEYWORDS

weaning piglets, growth performance, nutrients digestibility, antioxidant property,

intestinal morphology, microbiota community

Introduction

From the onset of weaning, piglets face many stressors

including changed diet (from breast nursing to pelleted feed),

separation from sows, and living with unacquainted piglets

(Montagne et al., 2004; Campbell et al., 2013). Upon weaning,

changes in diet have a profound influence on newly weaned

piglets since they are equipped with an immature digestive

system that cannot digest and absorb feed adequately, leading to

the proliferation of Escherichia coli easily in the gut (Upadhaya

et al., 2018; Shuai et al., 2019). Meanwhile, adverse effects of

weaning are also followed by villous atrophy, crypt hyperplasia,

and descendent brush border enzyme activity (Pluske et al.,

1997). These issues affect the normal growth speed of piglets.

Reportedly, the presence of antibiotics (AB) alleviates

diarrhea by killing or preventing the proliferation of pathogenic

bacteria (Neuman et al., 2018), prompting animal growth from

weaning stress (Ma et al., 2021). In 2006, the European Union

banned AB, and China followed suit in 2020 because AB residues

in meat products affect the food chain and its resistance genes

can be altered by microbiota in the gut and soil (Lin et al., 2017;

Ma et al., 2021). Therefore, healthy alternatives are urgently

needed to replace AB.

As a fermented product, yeast culture (YC) fermented by

live yeast, like Saccharomyces cerevisiae (Saied et al., 2011;

Dávila-Ramírez et al., 2020), is commonly used as a feed

additive, and it contains yeast cell wall polysaccharides, vitamins,

minerals, proteins, and enzymes (Song et al., 2021). One of

them, marine Rhodotorula benthica culture (RBC) is obtained by

fermentation of Rhodotorula benthica and contains astaxanthin

compared to YC but no live Rhodotorula benthica. Probiotic

Rhodotorula benthica unusually secretes astaxanthin which is the

source of vitamin A in animals and effectively scavenges free

radicals more than vitamin E in the body (Elwan et al., 2018;

Wang et al., 2018). According to research, YC has advantages

on livestock embodying improved feed intake, average daily

gain (ADG), feed conversion ratio (G: F) of finishing pigs,

and ADG of fattening lambs (Haddad and Goussous, 2005;

Lei and Kim, 2014; Dávila-Ramírez et al., 2020; Song et al.,

2021). These benefits from increased nutrient digestibility by

YC and mannan-oligosaccharide (yeast component) enhance

the intestinal morphology of the small intestine by inducing

more goblet cells and higher ileal villous height (De Los

Santos et al., 2007; Ayiku et al., 2020). Since Rhodotorula

benthica is frequently used in the feed of aquatic animals, few

studies have been conducted on livestock (Wang et al., 2015).

In 2020, a study reported that dietary fermentation product

of Rhodotorula improved the egg quality and modulated the

intestinal microbiota of hens (Sun et al., 2020). After that, Ge

et al. (2021) found that mice drinking water with Rhodotorula

mucilaginosa for half-month exhibited higher immunoglobulin

G (IgG) and immunoglobulin A (IgA) in the serum, and a

high abundance of Firmicutes and Lactobacillus in the feces.

However, there has been no reported data regarding the effect

of RBC on the weaned piglets. Therefore, this trial aimed to

explore the effects of RBC supplementation in diets on the

growth performance, nutrient digestibility, and intestinal health

of weaned piglets.

Materials and methods

This experiment was conducted at the experiment base

in Ya’an (Sichuan, China). All experimental and animal

management procedures conformed to the Animal Care

and Use Committee of Sichuan Agricultural University

(Sichuan, China) and followed animal protection law (approval

number: 20160125).

RBC preparation

Marine Rhodotorula benthica strains are detached, selected,

and purified after culturing on a slant medium containing

seawater. The strains undergo liquid fermentation expansion

and transformation for 36 h on a solid fermentation medium

under anaerobic conditions. With a temperature of 50–

60◦C, marine Rhododendron benthica break their wall after

fermentation for 6–10 h and then are dried under 50–60◦C.

The product is in powder form and not in pellet form, and
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its ingredients have been assayed using the Food Standards of

China (GB/T 15673-2009 for crude protein, GB/T 23745-2009

for astaxanthin, DB22/T 2462-2016 for methionine, and GB/T

18868-2002 for lysine). The RBC contained crude protein≥45%

(w/w), yeast cell wall polysaccharides (β- glucan and mannan

oligosaccharide) ≥100 mg/kg, small peptide ≥5% (w/w), lysine

≥2.8% (w/w), astaxanthin ≥0.01% (w/w), and methionine

≥0.65% (w/w). The product was provided by Prosyn Biological

Technology Feed CO., LTD. (Guangzhou, China).

Experimental design and animal care

The experiment consisted of 96 Duroc × Landrace ×

Yorkshire weaning piglets (21-day-old) that were split based on

body weight and sex into 4 treatment groups. Each treatment

group included 6 replicate pens of 4 pigs per pen (2 males:

2 females) with a similar piglet weight of 7.7 ± 0.83 kg. Pigs

were supplemented with one of four diets, namely basal diet

without any additives (CON), basal diet + 25 mg/kg bacitracin

zinc + 5 mg/kg colistin sulfate (antibiotics group, AB), and 5

g/kg reduction in soybean meal of basal diet + 5 g/kg RBC

(RBC1 group) or 10 g/kg reduction in soybean meal of basal

diet +10 g/kg RBC (RBC2 group). Since the RBC product

had more than 45% protein content, we replaced the soybean

meal with the same percentage of RBC in the diet. The basal

diets [phase 1 (days 1–14) and phase 2 (days 15–28)], shown

in Table 1, were formulated to meet the recommendations of

the National Research Council (NRC, 2012; USA) for piglets

weighing 11 to 25 kg. The period of the feeding trial was 28 days.

Pigs were reared in the house where chamber temperature (24–

28◦C) and humidity of 55-70% were controlled. Additionally,

they can drink and consume feed ad libitum via a nipple

drinker and feeder. Bacitracin zinc (purity of 15% w/w) was

purchased from Shenzhen Tongde Veterinary Medicine Co.,

Ltd (Shenzhen, China), and colistin sulfate (purity of 10% w/w,

effectiveness ≥19,000 IU/mg) was bought from Hebei Baipin

Biological Technology Co., Ltd. (Heibei, China).

Growth performance and diarrhea score

Before checking individual body weight (BW) on the

morning of days 15 and 29, the feed was withdrawn 8 h in

advance. The given feed and the residual feed by individual pen

were recorded daily. Growth performance parameters included

ADG, average daily feed intake (ADFI), and G/F which was

calculated by dividing the ADG by ADFI. The dead piglets were

recorded daily to revise performance indices.

Diarrhea scores for each piglet were checked twice per day

at 09:00 h and 17:00 h, respectively. The calculation for diarrhea

rate was done using the formula of Giang et al. (2012). Feces

consistency scores criterion was as follows: 0, hard bar or

granular; 1, soft stools but shapeable; 2, unshaped; 3, watery

stool. According to the criterion, the piglet was in diarrhea when

the diarrhea score was not <2 scores. The diarrhea rate = total

number of piglets with diarrhea/ (number of all piglets× days of

this experiment)× 100%.

Sample collection

Immediately after BW measurement on days 15 and 29,

one female piglet/pen with BW closest to the average BW

of treatment was selected. Blood samples taken from the

anterior vena cava were put in two 5mL vacuum tubes (with

/without heparin sodium). Then, all heparin sodium tubes

were immediately sent to Sichuan Agricultural University Pet

Hospital (Ya’an, China) to determine the number of white

blood cells (WBCs) and lymphocytes (LYMs) through a BC-

2600 automatic blood cell analyzer (Mindray, China) for

quantitative analysis. The unit of WBC was 109/L, and the

LYM was %. The remaining tubes without heparin sodium were

centrifuged (3,500× g, 4◦C for 15min) to obtain serum that was

analyzed for immunoglobulin and antioxidant indicators and

stored (−20◦C).

The digestion trial was implemented twice from days 8 to

14 and from days 22 to 28. Chromic oxide (Cr2O3) as an

analytical marker, was mixed in diets (0.25% w/w). After 4-day

adaptation, fresh fecal samples were obtained by stimulating the

anal sphincters from 2 piglets in each pen from days 12 to 14 and

from days 26 to 28; then 3-day feces per pen were mixed in equal

proportions and stored (−20◦C).

At the termination of this trial, 7 piglets from each

treatment with BW closest to the average BW of treatment

were chosen and euthanized by injecting sodium pentobarbital

according to the manual. Their intestine was stripped from

the mesentery and immediately placed on ice. Sections (about

2 cm) from the middle of the individual duodenum, jejunum,

and ileum were cut and placed into 4% (v/v) paraformaldehyde

solution for histomorphometry measurement. Colonic chyme

was aseptically collected into sterile Eppendorf tubes and stored

in liquid nitrogen, then removed to the fridge at −80◦C for

analyzing microbiota.

Serum IgG, IgM, and antioxidant index
determination

Concentrations of serum IgG and IgM were determined

with porcine IgG and IgM ELISA kits (Nanjing Jiancheng

Bioengineering Institute, Nanjing, China) with a microplate

reader (SpectraMax
R©
190, Molecular Devices, USA) at 450 nm.

The logistic curves of IgG and IgM were built according to the

manufacturer’s instructions, and used the analysis software of

ELISA calc. The limits for IgG and IgM concentrations were 0.3–

90mg/mL and 0.1–30mg/mL, respectively. Coefficients of intra-
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TABLE 1 Ingredients and composition of basal diet.

Items (as-fed, %) Day 1–14 Day 15–28

CON AB RBC1 RBC2 CON AB RBC1 RBC2

Corn 18 18 18 18 38.16 38.16 38.16 38.16

Extruded corn 17.99 17.99 17.99 17.99 10 10 10 10

Soybean meal 10.40 10.40 9.90 9.40 18.04 18.04 17.54 17.04

Extruded soybean 13 13 13 13 10 10 10 10

Extruded wheat 5 5 5 5 5 5 5 5

Extruded rice 10 10 10 10 3 3 3 3

Fish meal 5 5 5 5 4 4 4 4

SDPP 3 3 3 3 – – – –

Whey powder 13 13 13 13 7 7 7 7

Soy oil 1.86 1.86 1.86 1.86 2.07 2.07 2.07 2.07

CaHPO3 0.45 0.45 0.45 0.45 0.54 0.54 0.54 0.54

Limestone 0.95 0.95 0.95 0.95 0.83 0.83 0.83 0.83

Bacitracin Zinc 0 0.0025 0 0 0 0.0025 0 0

Colistin sulfate 0 0.0005 0 0 0 0.0005 0 0

RBC 0 0 0.5 1 0 0 0.5 1

Salt 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

L-lysine HCl 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36

DL-Methionine 0.1 0.1 0.1 0.1 0.07 0.07 0.07 0.07

L-Threonine 0.1 0.1 0.1 0.1 0.11 0.11 0.11 0.11

L-Tryptophan – – – – 0.02 0.02 0.02 0.02

Vitamin/trace element Premixa 0.5 0.5 0.5 0.5 – – – –

Vitamin/trace element Premixb – – – – 0.5 0.5 0.5 0.5

Calculated nutrient composition, %

NE, kcal/kg 2,596 2,596 2,594 2,591 2,570 2,570 2,567 2,565

CP 20.03 20.03 20.05 20.07 19.78 19.78 19.80 19.82

Ca 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Available phosphorus 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Calculated standardized ideal digestible value, %

d-Lys 1.20 1.20 1.20 1.20 1.18 1.18 1.18 1.18

d-Met 0.39 3.9 3.9 3.9 3.6 3.6 3.6 3.6

d-Thr 0.79 0.79 0.79 0.79 0.73 0.73 0.73 0.73

d-Trp 0.23 0.23 0.23 0.23 0.2 0.2 0.2 0.2

Analyzed nutrient values, %

DE, MJ/kg 14.91 14.91 14.94 14.96 14.73 14.72 14.80 14.81

CP 20.11 20.10 20.13 20.15 19.82 19.82 19.88 19.87

Lys 1.32 1.32 1.35 1.37 1.30 1.30 1.34 1.35

Met+Cys 0.59 0.59 0.61 0.62 0.61 0.60 0.61 0.63

aProvided per kg of complete diet: vitamin A, 2,200 IU; vitamin D3, 220 IU; vitamin E, 16 IU; vitamin K3, 0.5mg; vitamin B12, 0.0175mg; riboflavin, 3.5mg; niacin, 30mg; thiamine, 10mg;

choline, 500mg; folic acid, 0.3mg; vitamin B1, 1mg; vitamin B6, 7mg; biotin, 0.05mg; Zn (as ZnSO4), 100mg; Mn (as MnO2), 4mg; Fe (as FeSO4·7H2O), 100mg; Cu (as CuSO4·5H2O),

6mg; I (as KI), 0.14mg; Se (as Na2SeO3·5H2O), 0.3 mg.
bProvided per kg of complete diet: vitamin A, 1,750 IU; vitamin D3, 220 IU; vitamin E, 11 IU; vitamin K3, 0.5mg; riboflavin, 3mg; niacin, 30mg; thiamine, 1mg; d-pantothenic, 9mg;

choline, 400mg; vitamin B12 , 15 µg; folic acid, 0.3mg; vitamin B6, 3mg; biotin, 0.05mg; Zn (as ZnSO4), 80mg; Mn (as MnO2), 3mg; Fe (as FeSO4·7H2O), 100mg; Cu (as CuSO4·5H2O),

5mg; I (as KI), 0.14mg; Se (as Na2SeO3·5H2O), 0.25 mg.

and inter-sample variations were all <10 and 12% for IgG and

IgM, respectively.

The content of reduced glutathione (GSH) and

malondialdehyde (MDA) and the activity of superoxide

dismutase (SOD) were assayed using specific assay kits

(Product code: A006-2, A003-1, A001-3, Nanjing Institute

of Jiancheng Biological Engineering, Nanjing, China)

according to the manufacturer’s instruction. A microplate
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reader (SpectraMax
R©
190, Molecular Devices, USA) with the

absorbance of 405, 532, and 450 nm for GSH, MDA, and SOD,

respectively was recommended to read the numbers. Parallel

determination was conducted for each sample.

Detection of intestinal morphology

The fixed jejunal segments were rinsed with running water

for 30min and subsequently dehydrated with absolute ethanol

at varying concentrations. These tissues were cleared with

xylene, embedded in wax, and sliced into 5 µm-thick slices

using a Leica RM2235 microtome (Leica, Germany). Finally,

these slices were dewaxed and stained with hematoxylin-eosin.

For each well-oriented villus, 10 measurements were recorded

for both villus height (VH) and crypt depth (CD) using

Image Pro Plus 6.0. The average of these 10 measurements

was taken to represent the VH and CD for each tissue.

The V/C ratio was obtained by dividing the VH by the

CD value.

16S ribosomal RNA (rRNA) sequencing

The frozen colonic digesta at −80◦C were thawed

and extracted for total DNA using QIAamp PowerFecal

Pro DNA kit (Qiagen, Hilden, Germany) following the

manufacturer’s instructions. The DNA samples for purity

and integrity examination were analyzed using a NanoDrop

2000 spectrophotometer (Thermo, Waltham, USA) and

electrophoresis (2% w/v gel). DNA concentration was quantified

by Equalbit1 × dsDNA HS Assay Kit (Vazyme Biotech Co.,

Ltd., Nanjing, China) and diluted to 1 ng/µL, and purified

by Qiagen Gel extraction kit (Qiagen, Germany). Library

construction using Ion Plus Fragment Library Kit 48 rxns

(Thermos Scientific, USA) and Illumina MiSeq sequencing

on IonS5TM was performed in Novogene Bioinformatics

Technology (Beijing, China). The hypervariable region

primers of V3-V4 and amplicons library of 16S rRNA

kept consistent with our previous description (Zhang Q.

et al., 2020). Raw reads were obtained from the spliced

sequences by removing the primer sequences and barcode,

and primers and adapters were removed from the raw

reads using the Cutadapt (V1.9.1), then clean reads were

obtained. Operational taxonomic units (OTUs) were

clustered by clean reads using Uparse software (http://

www.drive5.com/uparse/) with 97% identity. The feature

classifiers were trained according to SILVA 132 database

(http://www.arb-silva.de/). Alpha and beta diversities were

analyzed using QIIME (version 1.9.1; Caporaso et al.,

2010). Differential taxonomic markers for each group were

determined using linear discriminant analysis effect size

(LEfSe; Segata et al., 2011).

Statistical analysis

The data were analyzed by mixed procedure with PDIFF

(SAS 9.4 Inst., Inc., Cary, NC). The results were expressed as

means ± pooled standard error. The P-value was used for the

comparison of every 2 treatment groups from the least square

means. P < 0.05 was considered significant. Replicate pen was

the statistics for growth performance, diarrhea, and ATTD.

Intestinal morphology, serum indices, and grouped microbial

were analyzed using each euthanized piglet as an experiment

unit. The relative abundance of microorganisms was used as the

result of Metastat analysis. The Principal Co-ordinates Analysis

(PCoA) was visualized by the “vegan” package of R (2.15.3).

Results

Growth performance and diarrhea score

Supplementary RBC1 in the diet notably improved (P <

0.05) the G/F compared with the CON diet (Table 2) from days

15 to 28 and from days 1 to 28. Higher ADG and G/F (P < 0.05)

were found in the RBC2-treated piglets than in the controls from

days 15 to 28 and from days 1 to 28 (P < 0.05). Compared with

AB-treated piglets, the piglets fed with RBC2 diet had higher

ADG and G/F from days 15 to 28 and greater G/F from days

1 to 28 (P < 0.05). However, the differences were not observed

between CON vs. AB, AB vs. RBC1, or RBC1 vs. RBC2 groups.

As shown in Table 3, diarrhea scores of weaning piglets were

similar among groups.

Apparent total tract digestibility

Compared with the CON group, the piglets in the AB group

had higher ATTD of DM (P < 0.05) from days 1 to 14 and from

days 15 to 28 (Table 4), and this index was also higher in the

RBC1 group from days 15 to 28 (P = 0.004). The ATTD of GE

from days 1 to14, DM, N, and GE from days 15 to 28 were higher

(P < 0.05) in the RBC2 group than those in the CON group.

Intestinal morphology

Compared to piglets in the CON group, the basal diet

supplemented with AB or RBC1 was conducive to higher VH

and greater V/C ratio of piglets in the ileum (P < 0.01, Table 5);

while dietary RBC2 improved the jejunal VH, ileal VH, and V/C

(P < 0.05). Additionally, AB-treated piglets exhibited a higher

(P < 0.05) duodenal VH and V/C ratio, as compared to RBC1-

treated piglets. However, a greater ileal VH and V/C ratio of

piglets were found in the RBC2 group, as compared to the AB

group (P < 0.001). The RBC2 dose exhibited a better effect
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TABLE 2 E�ect of dietary RBC and AB supplementation on the growth performance of weaning piglets.

Items CON AB RBC1 RBC2 SEMa
P-value

CON vs. AB CON vs.

RBC1

CON vs.

RBC2

AB vs.

RBC1

AB vs.

RBC2

RBC1 vs. RBC2

BW, kg

Day 0 7.75 7.69 7.69 7.70 0.37 0.910 0.915 0.930 0.995 0.980 0.985

Day 14 10.41 10.76 10.60 10.72 0.46 0.595 0.775 0.639 0.804 0.950 0.853

Day 28 16.83 17.40 17.78 18.30 0.63 0.534 0.304 0.117 0.678 0.326 0.565

Day1–14

ADG, g/d 190 220 208 216 21 0.327 0.556 0.394 0.688 0.894 0.788

ADFI, g/d 265 292 290 295 24 0.447 0.476 0.393 0.962 0.923 0.886

G/F 0.728 0.741 0.723 0.734 0.040 0.814 0.928 0.914 0.745 0.898 0.843

Day 15–28

ADG, g/d 458 474 513 541 23 0.638 0.108 0.018 0.243 0.049 0.381

ADFI, g/d 721 747 714 727 50 0.709 0.937 0.931 0.652 0.774 0.869

G/F 0.638 0.649 0.724 0.750 0.028 0.772 0.039 0.010 0.070 0.019 0.525

Day 1–28

ADG, g/d 324 347 360 379 17 0.362 0.152 0.035 0.583 0.200 0.452

ADFI, g/d 493 519 502 511 32 0.559 0.832 0.691 0.709 0.850 0.853

G/F 0.661 0.674 0.724 0.743 0.019 0.623 0.032 0.007 0.086 0.020 0.481

aPooled standard error of means, n= 6.

TABLE 3 E�ect of dietary RBC and AB supplementation on the diarrhea score of weaning piglets (%).

Items CON AB RBC1 RBC2 SEMa
P-value

CON vs. AB CON vs.

RBC1

CON vs.

RBC2

AB vs.

RBC1

AB vs.

RBC2

RBC1 vs. RBC2

Day 0–14 0.222 0.344 0.249 0.189 0.155 0.584 0.903 0.881 0.670 0.487 0.786

Day 15–28 0.753 0.523 0.524 0.429 0.135 0.243 0.243 0.104 0.999 0.624 0.624

Day 0–28 0.488 0.434 0.386 0.309 0.113 0.739 0.532 0.276 0.769 0.443 0.634

aPooled standard error of means, n= 6.

TABLE 4 E�ect of dietary RBC and AB supplementation on nutrients digestibility of weaning piglets (%).

Items CON AB RBC1 RBC2 SEMa
P-value

CON vs. AB CON vs.

RBC1

CON vs.

RBC2

AB vs.

RBC1

AB vs.

RBC2

RBC1 vs. RBC2

Day 1–14

DM 81.40 83.18 82.28 82.45 0.60 0.047 0.307 0.226 0.300 0.398 0.843

N 81.79 83.05 83.37 83.18 0.76 0.255 0.158 0.210 0.771 0.905 0.864

GE 79.80 81.80 81.06 83.29 0.98 0.162 0.373 0.020 0.596 0.295 0.122

Day 15–28

DM 77.36 80.67 81.50 82.22 0.90 0.017 0.004 0.001 0.526 0.237 0.573

N 78.19 79.39 80.27 82.36 1.12 0.458 0.206 0.016 0.587 0.076 0.202

GE 77.51 78.50 80.38 81.90 1.17 0.559 0.101 0.016 0.274 0.055 0.370

aPooled standard error of means, n= 6.
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TABLE 5 E�ect of dietary RBC and AB supplementation on the intestinal morphology of weaning piglets.

Items CON AB RBC1 RBC2 SEMa
P-value

CON vs. AB CON vs.

RBC1

CON vs.

RBC2

AB vs.

RBC1

AB vs.

RBC2

RBC1 vs. RBC2

Duodenum

VH, µm 373.17 381.00 367.17 378.83 4.47 0.229 0.353 0.380 0.041 0.735 0.078

CD, µm 242.00 236.50 243.33 239.33 3.41 0.267 0.785 0.586 0.172 0.563 0.416

V/C ratio 1.54 1.61 1.51 1.58 0.02 0.051 0.369 0.252 0.007 0.382 0.049

Jejunum

VH, µm 320.17 330.33 320.83 327.67 5.63 0.216 0.934 0.358 0.247 0.741 0.401

CD, µm 172.67 171.17 166.17 163.67 3.43 0.721 0.196 0.079 0.316 0.138 0.613

V/C ratio 1.86 1.93 1.93 2.01 0.05 0.263 0.261 0.029 0.996 0.243 0.245

Ileum

VH, µm 279.33 318.83 321.67 351.00 3.58 <0.001 <0.001 <0.001 0.582 <0.001 <0.001

CD, µm 153.00 149.67 156.33 146.83 2.84 0.417 0.417 0.141 0.113 0.489 0.028

V/C ratio 1.83 2.14 2.06 2.42 0.05 0.013 <0.001 0.002 0.246 <0.001 <0.001

aPooled standard error of means, n= 7.

TABLE 6 E�ect of RBC and AB supplementation on the blood profiles of weaning piglets.

Items CON AB RBC1 RBC2 SEMa
P-value

CON vs. AB CON vs.

RBC1

CON vs.

RBC2

AB vs.

RBC1

AB vs.

RBC2

RBC1 vs. RBC2

Day 14

IgG, µg/L 2.62 2.85 2.80 3.24 0.23 0.475 0.581 0.069 0.869 0.249 0.191

IgM, µg/L 0.198 0.298 0.272 0.338 0.07 0.301 0.446 0.154 0.780 0.676 0.488

WBC, 109 /L 23.02 21.67 22.48 21.56 0.74 0.210 0.612 0.178 0.444 0.921 0.389

LYM, % 73.82 74.28 74.18 76.15 2.09 0.876 0.903 0.439 0.973 0.535 0.513

Day 28

IgG, µg/L 4.20 4.23 4.67 4.40 0.42 0.960 0.435 0.687 0.464 0.720 0.702

IgM, µg/L 0.22 0.25 0.28 0.37 0.02 0.380 0.114 0.172 0.459 0.609 0.816

WBC, 109 /L 23.85 24.25 23.17 22.47 1.94 0.886 0.808 0.621 0.699 0.525 0.801

LYM, % 15.22 15.95 15.07 15.69 1.66 0.757 0.949 0.843 0.709 0.911 0.793

aPooled standard error of means, n= 6.

than the RBC1 dose on piglets, showing a higher VH in the

duodenum and ileum, shallower ileal CD, and greater ileal V/C

ratio (P < 0.05).

Blood characteristics and antioxidant
properties

Serum IgG, IgM, WBC, and LYM were not different among

groups on days 14 and 28 (Table 6). Serum SOD activity on day

14 from piglets fed with the AB diet was elevated (P = 0.001), as

shown in Table 7 when compared with the controls. The RBC1-

treated piglets had higher concentration of (P < 0.01) serum

GSH on days 14 and 28 and the SOD activity on day 28, as

compared to the piglets in the CON group, while piglets fed with

the RBC2 diet exhibited a higher GSH concentration on days

14 and 28 and the SOD activity on day 14 compared with the

controls (P < 0.001). The GSH concentration on days 14 and 28

was increased (P < 0.001), while the SOD activity was reduced

on day 14 but elevated on day 28 in piglets fed with RBC1 diet

(P < 0.05), as compared to that in the AB group; additionally,

RBC2-treated piglets had a higher GSH concentration on days

14 and 28 than AB-treated piglets (P < 0.001). Moreover, when

compared to RBC1-treated piglets, the dietary RBC2 induced

higher SOD activity on days 14 and 28 and GSH activity on day

14 (P < 0.05).
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TABLE 7 E�ect of dietary RBC and AB supplementation on serum antioxidant properties of weaning piglets.

Items CON AB RBC1 RBC2 SEMa
P-value

CON vs. AB CON vs.

RBC1

CON vs.

RBC2

AB vs.

RBC1

AB vs.

RBC2

RBC1 vs. RBC2

Day 14

GSH, ug/mL 613.11 598.41 653.35 711.85 6.48 0.124 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

MDA, nmol/mL 6.78 6.25 6.26 6.35 0.31 0.239 0.247 0.332 0.985 0.829 0.844

SOD, U/mL 98.77 108.79 101.84 110.21 1.78 0.001 0.236 < 0.001 0.012 0.577 0.003

Day 28

GSH, ug/mL 595.50 602.19 673.85 663.03 3.67 0.158 <0.001 <0.001 <0.001 <0.001 0.051

MDA, nmol/mL 6.55 6.05 6.41 6.46 0.17 0.055 0.570 0.735 0.159 0.105 0.818

SOD, U/mL 104.82 106.55 113.70 106.40 1.55 0.440 0.001 0.480 0.004 0.946 0.003

aPooled standard error of means, n= 6.

Microbial composition in colonic digesta

In the present study, an average of 77,665 raw reads

and 72,560 clean reads were obtained for each group with

the length of the sequences ranging between 409 and 420

bp. The sequence number at the OTU level was 440,028

(Supplementary Figure S1), and it tended to reach a plateau,

suggesting that the majority of OTU samples were captured.

The α diversity indices in Figures 1A–F, 2A are represented by

richness (observed-OTUs, ACE, and Chao1), diversity (Simpson

and Shannon), goods-coverage (sequencing depth index), and

PD_ whole_ tree (index of phylogenetic diversity). A sharp

contrast between PRC2 and CON groups showed an increase

in Chao1, PD-whole-tree, and observed-OTUs (P < 0.05) in

the RBC2 group. Shannon and Simpson indicators were similar

among groups (P > 0.05). The unweighted Unifrac PCoA

plot (Figure 2B) visually indicated no separation of microbial

communities among groups (P > 0. 05). The ANOSIM R-

value of unweighted Unifrac distance (R = 0.026, P = 0.027;

Figure 2C) was close to zero, which represented the weak

separation of the microbiota community between CON and

RBC2 groups.

Relative abundance of microbiota at
phylum and genus levels

The top 10 predominant microorganisms at the phylum

level depicted in Figure 2D (Supplementary Table S1) showed

that bacteria belonging to Firmicutes (51.99%), Bacteroidetes

(31.04%), and Proteobacteria (5.27%) occupied more than 88%

of the total sequences. Supplementation of RBC and AB seemed

to change the microbiota abundance as Firmicutes (44.48%)

and Proteobacteria (9.95%) in the CON group, Firmicutes

(55.28%) and Proteobacteria (3.97%) in the AB group, and

Firmicutes (50.86%) and Proteobacteria (4.95%) in the RBC1

group, Firmicutes (57.32%) and Proteobacteria (2.18%) in the

RBC2 group. The relative abundance of Firmicutes in the AB

and RBC2 groups was higher (P = 0.015) when compared with

the CON group. The relative abundance of Euryarchaeota was

higher (P< 0.05) in the RBC2 group than in the RBC1 and CON

groups, and in the AB group than in the RBC1 group, while that

of Proteobacteria was lower in the RBC2 group than in the CON

group (P = 0.019).

At the genus level (Figure 2E, Supplementary Table S2), a

heatmap showed the top 30 microorganisms in the genus level

among the total number of 185 genera. Lactobacillus (6.73%),

Prevotella_9 (9.69%), Mitsuokella (4.86%), Succinivibrio

(4.65%), and Dialister (3.94%) had high relative abundance

in all colon digesta samples. Supplementation of RBC1

and RBC2 diets both lowered the relative abundance of

Acidaminococcus, as compared to the CON and AB diets

(P < 0.05). The Succinivibrio population was lowered in

the RBC2 group compared to the CON group (P = 0.023).

The relative abundance of Prevotella, Prevotellaceae_UCG-

003, and Ruminococcus were enriched in the RBC1-treated

piglets than in the piglets of the AB group (P < 0.05).

Rikenellaceae_RC9_gut_group and g__UCG-002 population

were enriched in the RBC2 group compared with the

RBC1group (P < 0.05).

LEfSe analysis in the OUT level

LEfSe analysis is used to assess the represented biomarker

for comparison among groups. Linear discriminant analysis

(score set 4) depicted in Figure 3A shows that the AB

group had a higher relative abundance of p_Firmicutes,

f _Lachnospiraceae, and o_ Lachnospirales in comparison to the

CON group. While in Figure 3B, the RBC1 group exhibited

enriched f _Lactobacillaceae, o_Lactobacillales, g_Lactobacillus,

and s_Lactobacillus_ johnsonii, as compared to the CON
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FIGURE 1

E�ect of dietary RBC and antibiotics (AB) supplementation on the α and β diversity in the colonic digesta of weaning piglets. (A–F)

Goods-coverage, Shannon, Simpson, ACE, Chao1, and Ph-whole tree indices of α diversity. n = 7 for each treatment. CON, basal diet; AB, basal

diet + 25 mg/kg bacitracin zinc+5 mg/kg colistin sulfate; RBC1, 5 g/kg reduction in soybean meal of basal diet +5 g/kg RBC; RBC2, 10 g/kg

reduction in soybean meal of basal diet +10 g/kg RBC. *Means P < 0.05.

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.964531
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2022.964531

FIGURE 2

E�ect of dietary AB and RBC on the relative abundance of microbiota at the phylum and genus level, and PCoA and Adonism of weaned piglets.

(A) Operational taxonomic units (OTUs) number in each treatment group. (B) Principal coordinates analysis (PCoA). (C) Analysis of similarities

(ANOSIM) between CON and RBC2 group. (D) Microbiota abundance at the phyla level. (E) Microbiota abundance at the genus level. n = 7 for

each treatment. CON, basal diet; AB, basal diet + 25 mg/kg bacitracin zinc+5 mg/kg colistin sulfate; RBC1, 5 g/kg reduction in soybean meal of

basal diet + 5 g/kg RBC; RBC2, 10 g/kg reduction in soybean meal of basal diet + 10 g/kg RBC. *Means P < 0.05.
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group whereas g_Provotella_7 was abundant. In Figure 3C,

p_Firmicutes, c_Clostridia, s_Lactobacillus_ johnsonii,

f_Lachnospiraceae, o_Lachnospirales, and f_Paludibacteraceae

were increased in the RBC2-treated piglets when compared

to the CON group where g_Prevotella_7, o_Veillonellales_

Selenomonadales, and c_ Negativicutes were enriched.

Compared to the microbiota abundance of AB-treated

piglets (Figure 3D), piglets fed with RBC1 diet had more

g_Prevotella populations in the colon, while o_Erysipelotrichales

and g_ Acidminococcus were enriched in the AB-treated piglets;

meanwhile, s_Lactobacillus_johnsonii and g_UCG_002 were

enriched in the colon digesta from piglets fed withRBC2

diet (Figure 3E). When compared to RBC1-treated piglets

(Figure 3F); more abundant g_UCG_002 was found in piglets

fed with RBC2 diet.

Discussion

Natural marine red yeast strains are rich in protein,

astaxanthin, and enzyme and characterize high salt

tolerance; therefore, they are commonly used as feed

additives in aquaculture (Matrosova and Politaeva,

2021; Yun et al., 2021). RBC without live yeast also

has the above features but it has fewer applications

on animals. For a long time, overcoming weaning

syndrome in piglets has always been a research hotspot;

thus, we look forward to the influences of RBC on

weaning piglets.

In this study, RBC1 and RBC2 supplementation as the

alternative to soybean meal in the basal diet improved the ADG

and G/F of piglets except in the phase of days 1–14. This result

was partially in line with the findings of Dávila-Ramírez et al.

(2020), that dietary Saccharomyces cerevisiae culture at the dose

of 0.2% and 0.3% both improved the final BW, ADG, and ADFI

of growing pigs, and the results of Lee et al. (2018), showed

that 0.5% fermented YC improved the ADG and feed intake of

weaned piglets. Moreover, supplementation of RBC at the dose

of 10 g/kg improved the ADG and G/F of piglets more than the

effect of diet-containing AB. To our knowledge, the feed intake

is a vital factor for growth speed (Bruininx et al., 2001), but there

was a similar ADFI among groups. Indeed, supplementary RBC

and AB in the diet did not change the dietary nutritional value

or physical character; consequently, there was no improvement

in the feed intake, and it was normal. Meanwhile, the immunity

response of piglets was not affected by RBC although RBC could

promote serum protein and albumin synthesis (Saied et al.,

2011). Of note, Cui et al. (2019) and Song et al. (2021) reported

that the elevated growthmay not be related to the feed intake but

to digestibility.

The nutrient digestibility and absorption and piglet diarrhea

indicators are also decisive factors for growth performance

(Haddad and Goussous, 2005; Hu et al., 2015). In this study,

although the diarrhea scores were not affected by dietary

additives, the RBC2 supplementation improved DM, GE, and

N digestibility, and greater DM digestibility was also found in

AB and RBC1-treated piglets. These agreed with the effects of

fermented YC products on elevating the nutritional digestibility

and growth performance of lambs without affecting intakes

(Lei and Kim, 2014; Zhang et al., 2019). RBC product contains

biologically active substances, such as bioactive peptide, which

can be absorbed by villous epithelial cells of the small intestine

and stimulates the activity of chorionic brush border enzymes

(Wang et al., 2017), as well as modulates the nutrient digestibility

(Bao and Wu, 2021). Additionally, the protein from fermented

RBC is the most water-soluble protein with easy absorption,

which may increase the ATTD of N (Hu et al., 2008). Moreover,

RBC containing lysing also prompts nutrient absorption (Zeng

et al., 2013). Of course, it was no doubt that improvements

in nutritional absorption and growth performance were closely

related to the improved gut environment induced by ingredients

of RBC.

Intestinal morphology indices that are common standards

to estimate the ability of the intestine for nutrient digestion

and absorption are widely reported. The potential of yeast

derivative that induces morphology on higher VH and greater

V/C ratio of weaned piglets or growing-finishing pigs (Zhang

et al., 2005; Gang et al., 2017; He et al., 2021), and goblet cell

density of broilers (Reisinger et al., 2012) have been reported.

In the current study, the RBC induced a higher ileal V/H

and V/C ratio, and the dietary RBC2 greatly affected the ileal

morphology more than the AB and RBC1 diet. Earlier studies

prove that mannan-oligosaccharides, a component of yeast cells,

prevent the villi from contacting pathogens (Sims et al., 2004;

Castillo et al., 2008), likeClostridium perfringens and Salmonella,

is beneficial to maintain the normal function of mucosa and

reduce diarrhea during the weaning period (Gao et al., 2008).

Admittedly, AB had the capability of improving the VH and

V/C in the small intestine (Oliver and Wells, 2013; Long et al.,

2018) due to inhibiting harmful bacteria. This result exhibited

that the supplementation of RBC at the dose of 10 g/kg improved

the ileal VH and V/C compared to AB-treated piglets. On the

one hand, a higher villus manifests faster cell renewal and more

mature epithelia and increases the absorptive area of the villus

(Gao et al., 2008). On the other hand, taller VH improves the

secretion of digestive enzyme activity from the tips of the villi

(Hampson, 1986), leading to elevated ATTD. Additionally, a

higher magnitude of the V/C ratio directly indicates the strength

of absorption (Pluske et al., 1996). Hence, in this research,

the larger V/C ratio in RBC treatments may contribute to the

higher digestibility.

Oxidant stress results in weaker growth performance and

lower nutrient digestibility of weaned pigs (Yuan et al., 2007).

In the current study, the dietary inclusion of RBC improved
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FIGURE 3

LEfSe analysis of digesta microbiota. (A) CON vs. AB group, (B) CON vs. RBC1 group, (C) CON vs. RBC2 group, (D) AB vs. RBC1group, (E) AB vs.

RBC2 group, (F) RBC1 vs. RBC2 group. n = 7 for each treatment. CON, basal diet; AB, basal diet + 25 mg/kg bacitracin zinc+5 mg/kg colistin

sulfate; RBC1, 5 g/kg reduction in soybean meal of basal diet +5 g/kg RBC; RBC2, 10 g/kg reduction in soybean meal of basal diet +10 g/kg RBC.

the GSH content more than CON and AB diets on days

14 and 28, with RBC2 achieving the optimal effect. The

GSH can be an index to evaluate the antioxidant capacity

of the body because it possesses vital physiological functions,

such as free radical scavenging, detoxication, and maintaining

cellular immunity (Tang et al., 2008). Supplementation of

AB, RBC1, and RBC2 enhanced the SOD activity in the

serum. SOD is a type of antioxidant enzyme that removes

harmful free radicals from the cellular environment (Fattman

et al., 2003). According to researchers, the astaxanthin that is

present in the RBC with the structure of a hydroxyl and a

keto group can neutralize free radicals, and scavenge singlet

oxygen, peroxyl, and hydroxyl radicals (Hardo et al., 2020),

and this function has been proved in finishing pigs and fishes

(Lei and Kim, 2014; Li et al., 2017). Subsequently, methionine

was reported to eliminate reactive oxygen species by methionine

residues or through GSH synthesis (Zeitz et al., 2017). The

RBC containing methionine is attributed to its higher GSH; this

was not observed in the AB group, which was in response to

stronger antioxidant capacities in the RBC groups than in the

AB group.

Reportedly, gut microbial populations in pigs are influenced

by dietary ingredients, such as trace elements, AB, and beneficial

bacteria (Zhang et al., 2016). Meanwhile, they also modulate

nutrient digestibility and serve as an important barrier pathogen

(Fouhse et al., 2016).

The increased PD_ whole_ tree, observed-OTUs, and

Chao1 in the RBC2 group indicated that the dietary RBC at
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the dose of 10 g/kg increased the richness of colonic flora

compared to the controls. At the phylum level, Firmicutes, more

abundant in AB and RBC2 group, are positively interrelated

in energy absorption and produce acetate and lactate (Hu

et al., 2020; Oh et al., 2021). Also, Euryarchaeota enriched

in the RBC2 is well-known for working at metabolizing

nutrients and metabolites of other bacteria, resulting in elevated

short-chain fatty acid concentration, such as acetate (Primec

et al., 2019). The abundant 2 phyla may be connected to

improved GE digestibility of RBC piglets. The increased

Acidaminococcus in the AB group, Lachnospiraceae, and

Paludibacteraceae in the RBC2 group, involve fermenting

fibers, polysaccharides, and glutamate (Ren et al., 2019;

Tian et al., 2019; Zhang L. et al., 2020; Ryazanov et al.,

2021). As we know, RBC contains abundant yeast cell

polysaccharides, which may stimulate the proliferation of

Euryarchaeota, Lachnospiraceae, and Paludibacteraceae.

Importantly, Lachnospiraceae and Paludibacteraceae protect

intestinal cells from injury (Berger et al., 2021). In addition,

the abundant genus, Lactobacillus in the RBC1 group is

well-known to improve nutrient digestibility and against

intestinal Escherichia coli in weaned piglets (Dowarah et al.,

2017; Wang et al., 2019). Moreover, Lactobacillus_ johnsonii

belonging to the genus, Lactobacillus is useful for inhibiting

Clostridium perfringens in the chicks (La Ragione et al., 2004).

Prevotella with the characteristic of decomposing starch and

plant polysaccharides has strong catabolism of mucin (Gao

et al., 2022). This changed abundance of microbiota reflected

the dietary supplementation of AB and RBC at the dose of

5 and 10 g/kg, respectively, played a function in modulating

the microbiota.

Conclusion

In this study, the comparative effect of AB and RBC doses on

weaning piglets was explored. The RBC1 supplementation at the

dose of 5 g/kg improved the G/F and ATTD of DM of weaned

piglets than the CON diet, while 10 g/kg of RBC improved the

G/F and ADG than CON and AB diet; it also improved the

ATTD of DM, N, and GE than the AB diet. These improved

indicators may result in elevating the intestinal morphology

of the jejunum and ileum and antioxidant properties in the

serum (GSH and SOD) of weaning piglets by RBC. Meanwhile,

AB supplementation also elevated the digestibility of DM, N,

and GE, and the ileum intestinal morphology of weaning

piglets than the controls. Additionally, the supplementation of

AB, RBC1, and RBC2 modulated the microbiota in the colon

but the RBC2 had a more profound influence on improving

the α diversity than the controls. Taken together, the dietary

RBC at the dose of 10 g/kg achieved a better effect on the

weaning piglets than AB; thus, 10 g/kg of RBC could be an

alternative to AB.
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