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The intensive use of antibiotics in the veterinary sector, linked to the application 

of manure-derived amendments in agriculture, translates into increased 

environmental levels of chemical residues, AR bacteria (ARB) and antibiotic 

resistance genes (ARG). The aim of this review was to evaluate the current 

evidence regarding the impact of animal farming and manure application on 

the antibiotic resistance pool in the environment. Several studies reported 

correlations between the prevalence of clinically relevant ARB and the amount 

and classes of antibiotics used in animal farming (high resistance rates being 

reported for medically important antibiotics such as penicillins, tetracyclines, 

sulfonamides and fluoroquinolones). However, the results are difficult to 

compare, due to the diversity of the used antimicrobials quantification 

techniques and to the different amounts and types of antibiotics, exhibiting 

various degradation times, given in animal feed in different countries. The 

soils fertilized with manure-derived products harbor a higher and chronic 

abundance of ARB, multiple ARG and an enriched associated mobilome, which 

is also sometimes seen in the crops grown on the amended soils. Different 

manure processing techniques have various efficiencies in the removal of 

antibiotic residues, ARB and ARGs, but there is only a small amount of data 

from commercial farms. The efficiency of sludge anaerobic digestion appears 

to be dependent on the microbial communities composition, the ARB/ARG and 

operating temperature (mesophilic vs. thermophilic conditions). Composting 
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seems to reduce or eliminate most of antibiotics residues, enteric bacteria, 

ARB and different representative ARG in manure more rapidly and effectively 

than lagoon storage. Our review highlights that despite the body of research 

accumulated in the last years, there are still important knowledge gaps 

regarding the contribution of manure to the AMR emergence, accumulation, 

spread and risk of human exposure in countries with high clinical resistance 

rates. Land microbiome before and after manure application, efficiency of 

different manure treatment techniques in decreasing the AMR levels in the 

natural environments and along the food chain must be investigated in depth, 

covering different geographical regions and countries and using harmonized 

methodologies. The support of stakeholders is required for the development 

of specific best practices for prudent – cautious use of antibiotics on farm 

animals. The use of human reserve antibiotics in veterinary medicine and 

of unprescribed animal antimicrobials should be  stopped and the use of 

antibiotics on farms must be  limited. This integrated approach is needed 

to determine the optimal conditions for the removal of antibiotic residues, 

ARB and ARG, to formulate specific recommendations for livestock manure 

treatment, storage and handling procedures and to translate them into 

practical on-farm management decisions, to ultimately prevent exposure of 

human population.

KEYWORDS

antimicrobial resistance, antibiotic resistant bacteria, antibiotic residues, antibiotic 
resistance genes, manure, anaerobic digestion

Introduction

Antimicrobial resistance (AMR) is ranked in the top 10 public 
health global challenges and top 20 global causes of mortality and 
morbidity according to WHO projections for 2030, causing a real 
health care crisis, worsened by the innovation gap in the 
development of novel antimicrobial drugs [World Health 
Organization (WHO), 2015, 2021]. Even if clinical use is the main 
driver for AMR increase in humans, the environment represents 
both an important AMR reservoir (natural or intrinsic resistance 
being an essential component of the armamentarium used by 
different microbial species to maximize competition, resist 
predation and colonize different niches) and an important 
transmission route to humans (Walsh, 2013; Nguyen et al., 2020).

The intensive use of antibiotics in the clinical, industrial, 
veterinary and agricultural sectors led to increased environmental 
levels of chemical residues, AR bacteria (ARB) and antibiotic 
resistance genes (ARG). It was estimated that the global 
antimicrobials consumed in livestock production was 93,309 
tonnes in 2017, and projected an increase of 11.5% by 2,030–
104,079 tonnes (95% CI: [69,062, 172,711]) (Boeckel et al., 2017; 
Tiseo et  al., 2020; Figure  1). The joint Food and Agriculture 
Organization of the United Nations (FAO), WHO and World 
Organization for Animal Health (OIE) expert meeting document 
on foodborne AMR shows that >80% of antimicrobials and 
dietary copper and zinc is excreted in active form (FAO and 

WHO, 2019) and accumulate in different environmental  
compartments.

Under the selection pressure of different chemical 
contaminants released and accumulated in different 
environmental compartments, ARG can be exchanged through 
transduction or conjugation, between even distantly related 
bacteria (van Hoek et al., 2011; Vikesland et al., 2017; Popa et al., 
2018) or novel resistance factors could occur through mutation 
(Huijbers et al., 2019). Sub-inhibitory levels of selective agents 
such as antibiotics or heavy metals have been shown to increase 
the abundance of ARG and mobile genetic elements (MGEs) 
through co-resistance (selectable for different ARG on the same 
MGE) and cross-resistance (selectable for an ARG encoding for a 
common mechanism of resistance to both antibiotics and biocides; 
Jutkina et al., 2016; Zhang et al., 2018; Cao et al., 2020). Moreover, 
the ARG associated with dead bacteria or free DNA could also 
contribute to acquired resistance through transformation 
(Woegerbauer et al., 2020). Also, the environmental pollution with 
antibiotic residues may alter the soil microbiota composition, 
enriching soils with bacteria able to derive nutritional benefits 
from these drugs, resulting in their accelerated biodegradation 
(Topp et al., 2013).

The increase in manure inputs and/or agriculture derived 
antibiotics due to the intensification of livestock production raises 
serious concerns for both human and environmental health, 
following direct application of manures to farmlands (e.g., 
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exposure of crops and consumers to ARB, emergence/
accumulation/spread of resistance to antibiotics used human 
medicine etc.; Van Epps and Blaney, 2016; Wepking et al., 2017; 
Collignon and McEwen, 2019).

The aim of this review is to provide insights into the impact of 
animal farming and manure application on antibiotics residues 
and antibiotic resistance in the environment, to identify the 
knowledge gaps and highlight the best practices for livestock 
manure treatment, storage and handling procedures and for 
prudent-cautious use of antibiotics in livestock production.

Livestock production as a source 
of antibiotic residues

One of the critical points to mitigate dissemination, 
accumulation and transmission of AMR into the environment is to 
identify the reservoirs of ARB, ARG and antibiotics. Worldwide, it is 
estimated that 73% of all antibiotics are used in livestock farming, 
not in human medicine, supporting a growing awareness of the 
associated risks (Boeckel et  al., 2017; Van et  al., 2020). A large 
proportion of these antimicrobials are used for controlling infectious 
diseases that would otherwise inflict severe losses or even prevent 
intensive production completely (Aarestrup, 2015). WHO reports 
that 57% of all antimicrobials used in animal production are essential 

for human medicine (Figure  2). In this regard, CIA (critically 
important antimicrobials) lists have been created by WHO and 
national governments in order to prioritize and protect the most 
essential antibiotics [World Health Organization (WHO), 2019].

The FDA has highlighted three CIA classes, i.e., third 
generation cephalosporins, macrolides and fluoroquinolones as 
the critically important classes. According to the most recent FDA 
(2020) report on antibiotic sales, these three CIA classes accounted 
for around 5% of total antibiotics sales for use in farm animals 
(FDA, 2020). The same three, along with fourth generation 
cephalosporins, were tagged by WHO as priorities for attention 
and funding in the battle against AMR.

In the US, 70%–80% of the total antibiotics sold per year are 
used in animals (Elliott et al., 2017) and according to the FDA, 
57% of medically important ones belong to the same classes as 
drugs used in human health (FDA, 2020). In the US, 82% of the 
medically important antibiotics were estimated to be used in cattle 
(41%) and swine (941%; FDA, 2020). Tetracyclines are among the 
most widely used in the US, accounting for 66%–67% of the 
medically important antimicrobials, being primarily sold for use 
in cattle and swine (FDA, 2019, 2020; Scott et al., 2019).

According to the fourth edition of OIE annual report on 
antimicrobial agents intended for use in animals, in Europe, 
bovines account for the highest percentage of antibiotic 
consumption (38.3%) followed by swine (27.1%; OIE, 2018). The 

FIGURE 1

Reported sales of veterinary antimicrobials by country in 2017 (Tiseo et al., 2020). The figure is created using Biorender.com.
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total use of antibiotics in the EU has been estimated in different 
studies to range from 20 to 188 mg kg−1 of animal (slaughtered 
pigs, poultry and cattle plus estimated biomass of live dairy cattle; 
Grave et al., 2010; Pikkemaat et al., 2016). In the EU, tetracyclines 
accounted for <40% (35.3%) in 2016 (OIE, 2018).

Antibiotics administered to animals modify the gut 
microbiota signatures, as demonstrated for chlortetracycline, 
sulfamethazine, and penicillin which induced, after 14 days of 
administration in swine, an increase in Escherichia coli 
populations, known for its pathogenic potential, but also in the 
abundance and diversity of ARGs, some of them, such as 
aminoglycoside O-phosphotransferases, conferring resistance to 
antibiotics that were not administered, demonstrating the 
potential for indirect selection of resistance to classes of antibiotics 
not fed (Looft et al., 2011). Moreover, the decrease of gut diversity 
by antibiotics might facilitate the overgrowth of already resistant 
microbes and the HGT of ARGs. It has been demonstrated that 
antibiotics could promote the HGT by: (i) activation of the SOS 
response, which increases the transfer of diverse mobile genetic 
elements (pathogenicity islands, integrating conjugative element, 
conjugative transposons, plasmids etc.; Couce and Blázquez, 
2009); (ii) promoting transduction, by stimulating prophage 
excision and host cell lysis and also the receptor strain (Hastings 
et  al., 2004; Lopatkin et  al., 2016); (iii) increasing PT, as 
demonstrated, e.g., for ESBL carrying plasmids in E. coli (Liu et al., 
2019). Moreover, the mutations and recombinations are also 
increased in the presence of antibiotic stress (Couce and 
Blázquez, 2009).

Antibiotics released in the natural environment could affect 
microbial diversity with important ecological consequences 
(Duygan et al., 2021).

The use of antibiotics in livestock production is mirrored by 
the presence of these agents in animal manures. Animal manures 
are mixtures of animal feces, urine, bedding materials and other 
materials associated with animal production (Shober and 
Maguire, 2018). Due to their high organic nutrient content of 
animal manures, they are widely used as natural fertilizers to 
increase food production yields. The antibiotic residue 
concentrations found in manures vary from study to study 
(Table 1). There are at least three reasons for this occurrence: (i) 
the diversity of the quantification techniques, recovery efficiencies, 
sensitivity and reliability measures; (ii) having different quantities 
and types of antibiotics, with different degradation times (DT) 
given in animal feed which differ from country to country; (iii) 
different fate of antibiotics in the animal gut (catabolization 
pathway, the resulting residues) and soil (biodegradation depends 
on the structure of soil microbiota etc.). In relation to the first 
reason, suitable analytical methods for the quantification of 
antibiotics in the complex sample matrix represented by animal 
manure and treatment products are needed. A single liquid–liquid 
extraction step and analysis via liquid chromatography (LC) and 
triple quadrupole mass spectrometry, with a detection limit 
ranging from 0.01 to 0.08 mg/kg has been developed for the 
analysis of different sulfonamides and tetracyclines in biogas plant 
input and output samples (Spielmeyer et al., 2014). Antibiotics can 
be  removed by physical adsorption, chemical oxidation, 

FIGURE 2

Major classes of antibiotics and representatives used in livestock production. The figure is created using Biorender.com.
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TABLE 1 The amount of antibiotics detected in poultry, swine and cattle manure in different countries.

Animal manure Classes of antibiotics 
(antibiotics)

Concentration (mg/kg) Country References

Poultry Quinolones

(Enrofloxacin)

0–1,421

0–31

0–8

China

Egypt

Austria

Zhao et al. (2010)

Leal et al. (2012)

Martínez-Carballo et al. (2007)

Sulfonamides 0–6 Austria Martínez-Carballo et al. (2007)

Sulfonamides

(Sulfadiazine)

0-51 China Zhao et al. (2010)

Tetracyclines

(Chlortetracycline)

0-66 US Furtula et al. (2010)

Diaminopyrimidines

(Trimethoprim)

0–17 Austria Martínez-Carballo et al. (2007)

Swine Quinolones

(Enrofloxacin)

0.006–0.033 Belgium Rasschaert et al. (2020)

Sulfonamides 0–100

0–0.2

0.1–0.23

0.2–1.0

US

China

Switzerland

Germany

Campagnolo et al. (2002)

Zhao et al. (2010)

Haller et al. (2002)

Hamscher et al. (2005)

Sulfonamides

(Sulfadiazine)

0.02-3 Belgium van den Meersche et al. (2016)

Polymyxins

(Colistin)

0.6–48.6 Belgium van den Meersche et al. (2016)

Tetracyclines 0.6–66

0.009–0.025

0.042–0.698

Germany

Belgium

Denmark

Harms and Bauer (2012)

Rasschaert et al. (2020)

Harms and Bauer (2012)

Tetracyclines

(Oxytetracycline)

0.011–3.8 Belgium, Spain

Italy

Carballo et al. (2016), van den Meersche et al. 

(2016), and Rasschaert et al. (2020)

Tetracyclines

(Chlortetracycline)

0.013-0.058

0.56

Belgium

Spain

Rasschaert et al. (2020)

Carballo et al. (2016)

Tetracyclines

(Doxycycline)

0.4 – 22 Belgium

Netherlands

Spain

Berendsen et al. (2015), Carballo et al. (2016), 

van den Meersche et al. (2016), and Rasschaert 

et al. (2020)

Cattle Quinolones

(Danofloxacin, Difloxacin 

Enrofloxacin Ciprofloxacin)

0.4–46 China Zhao et al. (2010) and Li et al. (2013)

Sulfonamides 0–0.4

0–10

US

China

Watanabe et al. (2010) and Wallace and Aga 

(2016)

Zhao et al. (2010) and Li et al. (2013)

Tetracyclines 0–1.2

0.4–27

US

China

Watanabe et al. (2010) and Wallace and Aga 

(2016)

Storteboom et al. (2007) and Li et al. (2013)

Tetracyclines

(Oxytetracycline)

0-20

0–0.5

0.210–103

Italy

US

China

De Liguoro et al. (2003)

Watanabe et al. (2010) and Wallace and Aga 

(2016)

Storteboom et al. (2007) and Zhao et al. (2010)

Tetracyclines

(Chlortetracycline)

0-0.1

0.02–0.5

0.2–27

US

Germany, Spain

China

Watanabe et al. (2010) and Wallace and Aga 

(2016)

Storteboom et al. (2007), Kemper (2008), and 

Carballo et al. (2013)

Zhao et al. (2010) and Li et al. (2013)

Tetracyclines

(Doxycycline)

0-0.02

0.4–10

Germany, Spain

China

Kemper (2008) and Carballo et al. (2013)

Zhao et al. (2010) and Li et al. (2013)
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photodegradation, and biodegradation (Liu et al., 2021). Although 
biodegradation is receiving increasing attention due to its multiple 
advantages (green, low cost and easy to perform operation), it 
must be taken into account that many of the clinically important 
antibiotics are not easily biodegradable (Alexy et al., 2004).

Fluoroquinolone, sulfonamide, and tetracycline classes are the 
most widely detected antibiotics in different types of manure 
(Table  1). One study has shown that the consumption of 
tetracyclines, as the most frequently detected antibiotics in 
agricultural soils fertilized with animal manure, was directly 
correlated with the size of size of the farm and the amounts of 
tetracyclines found in the fertilized soils (Carballo et al., 2016).

As shown in Table  1, the amount of antibiotics in swine, 
poultry and cattle manure ranged between 0.01 and 100 mg/kg, 
the concentration can be  higher, of >1,000 mg/kg, however 
(Youngquist et al., 2016).

The highest concentrations are reported in poultry, for 
fluoroquinolones, in cattle for oxytetracycline and for 
sulfonamides in swine manure (Figure 3).

Therefore, antibiotic residues enter the environment through 
the use of animal wastes, raising increasing concerns about their 
contribution to the AMR reservoir (Amador et al., 2019; Tyrrell 
et al., 2019).

Some of the antibiotic residues are excreted intact in manure, 
where they form complexes with soluble organics, preventing 
their degradation and removal during manure storage (Massé 
et al., 2014). Other antibiotics such as sulfamethazine, tylosin and 
chlortetracycline are rapidly degraded in manure amended soils, 
the half-live or DT50 ranging from 2 to 42 days (Halling-Sørensen 
et al., 2005; Carlson and Mabury, 2006; Accinelli et al., 2007; Topp 
et  al., 2013). The half-life of oxytetracycline in manure from 
calves was 30 days but the compound was still detectable in this 

FIGURE 3

Graphic representation of the highest concentrations of antibiotics detected in animal manure (cattle, poultry, swine), reported in different studies. 
The figure is created using Biorender.com.
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matrix (820 μg/kg) after 5 months maturation (De Liguoro 
et al., 2003).

Animal manure as a reservoir of 
ARB and ARG

Currently, the application of manure and slurry in agriculture 
is considered as a key contributor in the flow of ARG among 
humans, animals and terrestrial and aquatic environments 
(Figure 4; Topp et al., 2018; Durso and Cook, 2019). Many studies 
have shown that the application of manure from antibiotic-treated 
animals to soil was found to enlarge the reservoir of clinically 
relevant ARB and ARG (Table 2) when compared to soils that 

received inorganic fertilizers or no fertilizers (Storteboom et al., 
2010; Heuer et al., 2011; Cao et al., 2020).

Several studies reported correlations between the prevalence 
of clinically relevant ARB and the amount and classes of antibiotics 
used in livestock production (Landers et al., 2012; Chantziaras 
et al., 2013; EMA, 2019). In the Netherlands, levels ranging from 
10*2 to 10*4 CFU/g of E. coli, spores of sulfite reducing Clostridia 
and intestinal enterococci have been found in the input stream and 
were correlated with the presence of these microorganisms in the 
RO-concentrate of nine installations producing mineral 
concentrate from pig slurry (Hoeksma et al., 2015, 2020, 2021).

However, most studies investigating the presence of ARB 
in livestock have focused on Enterobacteriaceae including 
Escherichia coli and zoonotic Salmonella spp. (Feßler and 

TABLE 2 ARB found in manure.

Animal manure Bacteria Antibiotic resistance 
patterns

Resistance 
phenotype (%)

Location References

Poultry manure Enterobacteriaceae TET, SXT, CHL, AMC MDR (71%) Portugal Amador et al. (2019)

Pig manure Enterobacteriaceae TET, SXT, CHL, AMC, ATM, 

CTX

MDR (79%) Portugal Amador et al. (2019)

Cattle manure Enterobacteriaceae AMC, TET, CHL, SXT MEM MDR (69%) Portugal Amador et al. (2019)

Pig manure E. coli CHL, SXT, DOX, S, AK, CS, 

IMP, NN

ESBL (1.6%)

MDR (52.2)

Germany Hölzel et al. (2010)

Pig manure Enterococcus faecalis DOX, ERY, RIF, IMP, LZD MDR (76.2%) Germany Hölzel et al. (2010)

Pig manure E. faecium RIF, ERY, DA, DOX, EFX, FOS, 

MOX, S

MDR (87.9%) Germany Hölzel et al. (2010)

Mixed manure of 

livestock husbandry

E. coli ESBL Germany Schauss et al. (2015)

Pig manure Salmonella S, SXZ, TET, CTF, CRO, FOX MDR (58.73%) US Pornsukarom and Thakur 

(2016)

Poultry manure E. faecium VAN, TET, SXT, CIP, ERY, BA VRE (14.4%) Greece Tzavaras et al. (2012)

Poultry manure E. faecium QD, ERY, CIP, DA, GEN US Graham et al. (2009)

Poultry manure E. faecalis DA, GEN, ERY, TET US Graham et al. (2009)

Poultry manure Staphylococcus ERY, SG, TET US Graham et al. (2009)

Chicken and pig 

manure

E. coli AMC, CTX, GEN, KAN, TE, 

CIP, ERY, SXT, CHL, VAN

China Yang et al. (2017)

Cattle manure E. coli AMP, AZT, CTX, CAZ, CHL, 

CIP, GEN, NA, SXT, TET, TMP

Belgium Huygens et al. (2021)

Faecal samples of 

broilers, pigs, dairy 

cows, calves

E. coli AMP, AMC, CTX, CRO, TET, 

SXT, TMP, CHL, GEN

ESBL/AmpC (32.6% in 

broilers)

ESBL/AmpC (32.6% in veal 

calves)

ESBL/AmpC (10% in pig)

MDR (31.4 in broilers; 

27.3%) in pigs; 27% in 

calves, 2.1% in dairy cattle

Netherlands MARAN (2018)

Fecal specimen of 

broiler pigs and dairy 

cattle

E. coli ESBL Germany Friese et al. (2013)

TET, tetracycline; DOX, doxycycline; S, sulphonamides; TMP, trimethoprim; SXT, cotrimoxazole; CHL, chloramphenicol; AMC, amoxicillin + clavulanic acid; ATM, aztreonam; MEM, 
meropenem; IMP, imipenem; CTX, cefotaxime; CTF, ceftiofur; CRO, ceftriaxone; FOX, cefoxitin; AK, amikacin; NN, tobramycin; GEN, gentamicin; KAN, kanamycin; CS, colistin 
sulfate; ERY, erythromycin; DA, clindamycin; RIF, rifampicin; LZD, linezolid; FOS, fosfomycin; NA, nalidixic acid; EFX, enrofloxacin; MOX, moxifloxacin; CIP, ciprofloxacin; VAN, 
vancomycin; BA, boronic acid; QD, quinupristin-dalfopristin; SG, streptogramin.
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Schwarz, 2017) and fewer have focused on other genera, such 
as Enterococcus, Staphylococcus etc. (Oliver et al., 2020). The 
available reports indicated high resistance rates for the most 
frequently used antibiotic classes: beta-lactams (Dandachi 
et al., 2018), tetracyclines and sulfonamides (Amador et al., 
2019). For some of the nine European countries included in 
a cross-sectional study, an association was observed between 
the use of penicillins and resistance to ampicillin in isolates 
from healthy broilers (Hou et al., 2017; Ceccarelli et al., 2020). 
The E. coli isolates from broilers exhibited the highest 
resistance to (fluoro) quinolones, and multidrug resistance 
(MDR) was also detected in broilers and fattening turkeys 
(Ceccarelli et al., 2020). The decrease of colistin usage in the 
veterinary medicine world widely led to the decrease of 
colistin resistance to very low levels (Doi, 2019; Miguela-
Villoldo et  al., 2022). In the Netherlands, a considerably 
reduced antimicrobial consumption in food-producing 
animals was correlated with a low prevalence of ARB from 
broilers (MARAN, 2018). Similarly, in Germany, the level of 
AMR in commensal E. coli from livestock has been 
significantly decreased (EFSA, 2018).

Many studies have indicated that farmlands could host 
multiple ARG (Table 3; Baquero et al., 2008; Cheng et al., 2013; 
Udikovic-Kolic et al., 2014; Wichmann et al., 2014; Rahman 
et  al., 2018). Moreover, Graham et  al. (2016) suggested a 
historical association between ARG in animal manure and 
humans, demonstrating that higher β-lactam ARG levels were 
detected in soils fertilized with manure versus those amended 

with inorganic fertilizers, after the introduction of penicillin in 
1940 (Graham et al., 2016). A cross sectional study regarding 
possible correlations between antimicrobial usage and the pig 
faecal mobile resistome conducted in nine European countries 
provided robust evidence of direct ARG selection by the two 
widely used antimicrobial classes, i.e., macrolides and 
tetracyclines (Van Gompel et al., 2019). Additionally, cross-
resistance to macrolide and lincosamide usage and co-selection 
of ARG was also observed (Van Gompel et al., 2019). In a very 
recent study conducted in a high-density farming area of 
Northern Italy, it has been found that flumequine 
concentrations increased after manure application, positively 
correlated with the oqxA and qnrS genes abundance (Laconi 
et al., 2021). A recent metagenomic study evaluated the impact 
of bovine and poultry manure on the diversity and abundance 
of ARGs and the associated mobilome in soil and crops (Buta-
Hubeny et  al., 2022). The poultry manure contributed four 
times more than bovine manure to the total number of ARGs 
for different classes of antibiotics (tetracyclines, 
aminoglycosides, sulfonamides, bacitracin, chloramphenicol, 
and macrolide-lincosamide-streptogramin) found in manure, 
the fertilized soil and bacteria isolated from crops (Buta-
Hubeny et al., 2022).

Antibiotic resistance genes can persist in soil for >120 days 
(Gou et al., 2018; Han et al., 2018) and can take from three to 
6 months to attenuate to levels less than or equal to background 
(Chen et al., 2019; Lopatto et al., 2019). This implies that soils 
which are in constant agricultural use might continuously harbor 

FIGURE 4

Contribution of manure to the flux of antibiotics from livestock to the natural environment. The figure is created using Biorender.com.
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a relatively stable ARB population and ARG pool (Schmitt et al., 
2006; Cheng et al., 2013; Ruuskanen et al., 2016). However, more 
evidence, including quantitative data from exposure-relevant 
sites and environmental compartments is needed to evaluate the 
contribution of antibiotics containing manures to the 
environmental selection for AMR and its dispersal routes 
(Huijbers et al., 2015; Hassell et al., 2019). This evidence will 
allow the implementation of targeted monitoring programs and 
interventions to prevent resistant pathogens, as well as novel 
ARG, from reaching humans (Bengtsson-Palme et  al., 2018; 
MARAN, 2018).

Studies are also reporting evidence for the potential of 
ARG transfer between animal-related and human-associated 
bacteria (Hu H. et al., 2016a, Hu Y. et al., 2016b; Pal et al., 
2016; Pérez-Valera et  al., 2019; Yuan et  al., 2020). Manure 
offers some particular features, such as nutrients richness, 
high abundance and diversity of bacterial populations and 

antibiotic residues, that could favor the ARGs dissemination 
by horizontal gene transfer (Heuer et al., 2011; Lima et al., 
2020). The insertion sequences (IS), including those associated 
with the mobility of ARGs in the population of ESKAPE 
pathogens, are introduced to soil with manure and remain 
stable for up to several months, indicating an increased risk of 
rapid ARG transfer, particularly when associated with bacteria 
from phylum Proteobacteria (Buta-Hubeny et al., 2022).

The abundance of 95 ARGs and MGEs from soils fertilized 
with dairy cow manure-derived amendments (slurry, fresh 
manure, aged manure), and plants (wheat grain and lettuce) was 
analyzed by high-throughput qPCR. The structure of soil 
prokaryotic communities was determined by 16S rRNA 
amplicon sequencing and qPCR (Jauregi et al., 2021). A higher 
ARGs abundance was found in slurry vs. fresh or aged manure, 
in soil vs. plant samples, and in wheat grain vs. lettuce (Jauregi 
et al., 2021; Zalewska et al., 2021).

TABLE 3 The ARGs detected in animal manure.

Animal manure ARG in manure amended 
soil

References

Pig and chicken aad Pu et al. (2019)

Pig and chicken aphA3 Pu et al. (2019)

Dairy blaCTX-M Marti et al. (2013), Hu H. et al. (2016a), Hu Y. et al. (2016b), and Nõlvak et al. (2016)

Dairy and pig ermB Marti et al. (2013), Marti et al. (2014), Hu H. et al. (2016a), Hu Y. et al. (2016b), Pu et al. (2019),  

Van den Meersche et al. (2019), and Van den Meersche et al. (2020)

Pig ermF Van den Meersche et al. (2020)

Dairy sul1 Munir and Xagoraraki (2011), Marti et al. (2013), Pruden et al. (2013), Fahrenfeld et al. (2014), 

Ross and Topp (2015), Sun et al. (2015), Nõlvak et al. (2016), Ruuskanen et al. (2016), and 

Woegerbauer et al. (2020)

Pig and chicken sul2 Selvam et al. (2012),   Pu et al. (2019), and Van den Meersche et al. (2019)

Dairy tet(A) Marti et al. (2013), Hu H. et al. (2016a), Hu Y. et al. (2016b), Nõlvak et al. (2016), Sandberg and 

LaPara (2016), and Yuan et al. (2020)

Dairy and pig tet(W) Selvam et al. (2012),  Kyselková et al. (2013),  Fahrenfeld et al. (2014), Kyselková et al. (2015), 

Sandberg and LaPara (2016),  Pu et al. (2019), and Woegerbauer et al. (2020)

Dairy cattle and swine tet(M) Sun et al. (2015) and Van den Meersche et al. (2020)

Dairy manure tet(X) Sandberg and LaPara (2016) and Woegerbauer et al. (2020)

Pig and chicken tet(L) Pu et al. (2019)

Pig and chicken tet(O) Pu et al. (2019)

Pig and chicken tet(Q) Selvam et al. (2012),  Pu et al. (2019), and Van den Meersche et al. (2019)

Dairy intI1 Marti et al. (2013), Marti et al. (2014), Kyselková et al. (2015), Hu H. et al. (2016a), Hu Y. et al. 

(2016b), Nõlvak et al. (2016), and Woegerbauer et al. (2020)

Pig and chicken mexF, vgb, vanSC Pu et al. (2019)

Dairy cattle and swine farms blaOXA-58 Ruuskanen et al. (2016)

Cattle, swine, poultry, and pork OXA-type β-lactamases Li et al. (2015)

Cattle ampC Wepking et al. (2017)

Cattle β-lactam-resistance genes 

(blaCEP-04 gene)

Fang et al. (2015)

Pig gyrA, parC Selvam et al. (2012)

Pig qnrS, tetW, ermB, sul1, blaKPC, Gros et al. (2019)

Dairy cattle, chickens and swine 

manure

ermA, ermB, blaOXA-1, oqxA Laconi et al. (2021)
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Manure treatment impacts on 
persistence, selection, enrichment 
and dissemination of AMR

The available manure processing technologies are currently 
not taking into consideration, in terms of treatment performance, 
the removal of antibiotics, ARG and ARB, although evidence 
exists that ARB and ARG are not completely eliminated during 
manure treatments, contributing to the environmental resistome 
(Hou et al., 2017; Figure 5).

In a recent review, it has been shown that the uncovered 
lagoons are the least effective removing tetracycline resistance 
gene; however, their performance could be gradually improved if 
covered lagoons and biofiltration are sequentially added. Further, 
mesophilic digestion was not effective, in contrast with 
thermophilic AD. Aerobic thermophilic composting and 
postdigestion composting reduced ARGs by >80% (Agga et al., 
2022). These results suggest that different manure management 
practices have different efficiencies in removing antibiotics, ARB 
and ARG. In the following sections of the manuscript, we will 
focus on the efficiency of anaerobic digestion (AD) and 
composting techniques.

Liquid (with a dry matter content of 6%–12% or less if 
flushing is applied) or solid (with a dry matter content of 
20%–65%) animal manure are treated by different technologies to 
obtain organic fertilizer products. In the first step, the liquid 
manure is separated into two fractions, i.e., the liquid (3%–6% 
dried matter content), which is generally applied as fertilizer and 
the solid one.

The tetracycline residues are largely removed from the liquid 
fraction, the antibiotic being absorbed onto the solid fraction of 
manure. Thus reduction of the antibiotic load in the liquid fraction 
is an important first step in manure treatment (Wallace et al., 
2018). On the contrary, to their poor absorption in the animal gut 
and/or reversible metabolization, sulfonamides are excreted in 

significant amounts and are persisting in the liquid manure and 
then entering the environment. In the groundwater samples from 
Lower Saxony agricultural areas, sulfonamides were detected in 
concentrations up to 100 ng L−1 (Spielmeyer et al., 2017).

The solid fraction can be  further composted, dried and 
eventually pelletized or incinerated, while the liquid fraction can 
be used as fertilizer (eventually contributing to the dissemination 
of antibiotic residues, ARG and zoonotic bacteria into the 
environment) or further treated by different procedures (Lyngsø 
et al., 2011; Dungan et al., 2018; Van den Meersche et al., 2019; 
Oliver et al., 2020).

Both liquid and solid manure can be  used for biogas 
production in AD systems, which are the most frequent treatments 
in Europe, being applied to treat 6.4% of the total manure 
production in 2010 (LIFE+MANEV, 2015).

Another common treatment of manure is represented by 
composting (microbial decomposition of organic matter under 
controlled aerobic conditions), the resulting product being more 
suitable for direct soil application. The aerobic composting process 
begins with the activity of mesophilic organisms, at 20–45°C, 
which will generate the appropriate conditions for the activity of 
thermophilic fungi and bacteria, with optimum growth 
temperature of 50–70°C. Regular turning of the pile will speed up 
the decomposition process, from several months in case of 
extensive outdoor composting in windrows with limited turning 
to 1–2 weeks in intensive tunnel composting with forced aeration 
(Melse and de Buisonjé, 2020).

Effect of AD and composting on 
antibiotic residues

Anaerobic digestion
The rates of degradation of antibiotics during AD are 

dependent on their chemical structure, but also on manure 
characteristics and type, the reported degradation rates differing 
from study to study (Arikan et  al., 2009; Alvarez et  al., 2010; 
Kasumba et al., 2020; Lee et al., 2020).

Tetracycline and sulfonamide antibiotics were shown to 
persist in the animal manure (swine, cattle, and poultry) after AD, 
which can potentially lead to the emergence and persistence of 
tetracycline resistant bacteria in the environment when the AD 
byproducts are applied on soils for crop production (Spielmeyer 
et  al., 2014, 2015, 2017; Kasumba et  al., 2020). In case of 
tetracyclines, the DT50 during AD reported in different studies 
varied from >300 to 3.8 days in comparison with composting 
(Figure 6).

Composting
Composting reduces or eliminates many antibiotic residues in 

manure mainly by temperature dependent abiotic processes such 
as adsorption and/or degradation rather than biotic processes 
(Dolliver et al., 2008; Arikan et al., 2009; Wu et al., 2011; Kim 
et al., 2012; Ray et al., 2017; Liu et al., 2018; Cheng et al., 2019). 

FIGURE 5

Effects of manure treatment on ABs and ARB, ARGs. The figure is 
created using Biorender.com.
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For most antibiotics the calculated half-lives during composting 
ranged from 0.9 to 16 days (Oliver et al., 2020; Figure 6). In the 
case of cow manure stockpiles, the degradation of antibiotics takes 
place in weeks, months or longer and is dependent on the type of 
antibiotics, and interaction between different antibiotics (Oliver 
et al., 2020). For example, chlortetracycline was found to decline 
rapidly, with <1% of the starting concentration detectable after day 
17, in stockpiled cattle manure. However, the degradation rate 
slowed down to 56 days when chlortetracycline and sulfamethazine 
were both present in a stockpile (Sura et al., 2014). These results 
suggest that when multiple antibiotics are present, some of them 
could inhibit the bacteria able to degrade other antibiotics (Oliver 
et al., 2020). However, in case of other antibiotics associations, the 
degradation rates are enhanced probably due to the selection of 
compost microbial associations able to act on multiple compounds 
(Storteboom et al., 2007; Arikan et al., 2009).

Effects of AD and composting on ARB 
and ARG

Anaerobic digestions
The efficiency of AD in the removal of ARB and ARG appears 

to be dependent on the digester operating temperature. Anaerobic 
digestion at thermophilic conditions seems to be  better than 
mesophilic AD at reducing ARB and ARG (Sun et  al., 2016; 

Wallace et al., 2018; Gros et al., 2019; Huang et al., 2019; Zou et al., 
2020). Zou et al. (2020) found that during thermophilic AD of pig 
manure, ARB numbers (sulfonamide / tetracycline resistant 
bacteria) were reduced by 4-log CFUs per gram dry manure, but 
only by approximately 1-log CFU at mesophilic temperature. Sun 
et al. (2016) observed that tetracycline resistance genes decreased 
when the operating temperature was in the thermophilic range. 
Eight out of 10 detected ARG declined at 55°C, but only five out 
of 10 and four out of 10 ARG decreased at 35°C and 20°C, 
respectively (Sun et al., 2016). However, Huang et al. (2019) found 
that thermophilic AD of swine manure did not achieve a better 
removal of abundance of total ARG compared to mesophilic AD.

Mesophilic AD seems to work only for certain ARB/ARG. For 
example, Wallace et al. (2018) noticed a significant reduction in 
sulfonamide resistance genes during mesophilic AD of cow 
manure, but no reduction effect on tetracycline resistance genes. 
Moreover, some other studies showed even an increase of the 
abundance of some ARG after mesophilic AD treatment such as 
sulfonamide, amphenicol and tetracycline resistance genes (Chen 
et al., 2010; Pu et al., 2018). Gros et al. (2019) observed that the 
mesophilic AD treatment, even though it was followed by solid–
liquid separation, has reduced only modestly the abundance of 
ARG for quinolones, tetracyclines, macrolides, sulfonamide and 
β-lactams, as the copy numbers detected in the solid and liquid 
digestate fractions were similar to those quantified in slurry and 
sludge (Gros et al., 2019).

FIGURE 6

Comparative representation of the DT50 of different antibiotics during AD and composting of different types of manure (poultry, swine, cattle, 
turkey), reported in different studies (Osman et al., 2006; Dolliver et al., 2008; Alvarez et al., 2010; Hu et al., 2011; Kim et al., 2012; Selvam et al., 
2012; Ray et al., 2017; Kasumba et al., 2020; Lee et al., 2020). The figure is created using Biorender.com.

https://doi.org/10.3389/fmicb.2022.965132
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.Biorender.com


Marutescu et al. 10.3389/fmicb.2022.965132

Frontiers in Microbiology 12 frontiersin.org

The different efficiency in removing ARG between mesophilic 
and thermophilic AD was linked to the microbial community 
composition of the sludge AD process (Agga et al., 2020). The 
microbial communities may decrease the antibiotic concentration 
during the mesophilic AD process, the subinhibitory antibiotic 
concentrations potentially acting as selection factors and 
promoting the propagation of ARB that could explain the 
increased abundance of ARG (Agga et al., 2020).

However, further studies for better understanding the ARG 
evolution under different setups are needed.

Although lab-scale AD has been demonstrated to reduce the 
abundance of ARG, there are only few data from commercial farms. 
The impact of on-farm AD on the decrease of enteric bacteria ARG, 
as well as of the frequency of horizontal transfer potential of ARG 
was evaluated in six commercial dairy farms in Ontario, Canada 
(Tran et al., 2021). Anaerobic digestion significantly decreased the 
viable coliform counts, the frequency of the horizontal transfer of 
ESBL genes as well as the abundance of sulphonamides, macrolides 
and beta-lactam resistance genes (Tran et al., 2021).

Composting techniques
Composting can reduce populations of ARB as well as ARG 

more effectively than other manure treatment processes, such as 
AD or simple manure stockpiling, but this depends on the type of 
manure and composting duration (Wang et al., 2015; Youngquist 
et al., 2016). In short-term cow manure stockpiles, the prevalence 
of antibiotic-resistant E. coli and Enterococcus spp. was not 
changed during 3 days (Walczak and Xu, 2011). In exchange, the 
composting of pig manure for 48 days led to a drastic decrease of 
ARB (Acinetobacter sp., Pseudomonas sp.) by 4–7 log units in 
cultivable erythromycin-resistant and tetracycline-resistant 
bacteria (especially for Acinetobacter sp. strains) and of associated 
ARG (Wang et al., 2015). Hartmann and colleagues detected ESBL 
producing E. coli that had an identical rep-PCR pattern in animal 
fecal samples, composted manure and the environment of farms 
including cultivated and pasture fertilized soils, suggesting that 
ARB may persist in finished composts and facilitate their 
dissemination in fertilized soils (Hartmann et al., 2012).

Composting of the solid fraction of swine manure resulted in 
a reduction of different ARG concentrations, i.e.: tet (Q), tet (W), 
tet (C), tet (G), tet (Z), tet (Y), tet (M), tet (W), tet (O), tet (T), erm 
(A), erm (C), erm (F), erm (T), erm (X), sul1, sul2, dfrA1, dfrA7, 
gyrA and parC (Selvam et al., 2012; Wang et al., 2012). The broiler 
chicken litter was evaluated before and after composting for the 
abundance of 10 gene targets associated with antibiotic resistance 
or horizontal gene transfer (qPCR) and the results were correlated 
with the composition of the bacterial communities (16S rRNA 
gene amplicon sequencing) and the abundance of viable enteric 
bacteria (viable plate count; Subirats et al., 2020). Composting 
significantly reduced the abundance of enteric bacteria, including 
those carrying antibiotic resistance in litter from broiler chickens 
fed both with antibiotic supplemented diet and with antibiotic-
free diet; the absolute abundance of all of the target genes 
decreased after composting except sul1, intI1, incW and erm(F) 
that remained stable (Subirats et al., 2020).

However, composting could lead to an apparently limited 
decrease in different representative ARG. For example, it has been 
shown that the chicken litter from broilers fed with bacitracin 
methylene disalicylate supplemented diet had an increased 
abundance of some ARGs, maintained after composting (Subirats 
et al., 2020). Le Devendec et al. (2016) indicated that, even after 
6 weeks of composting or storage, resistance plasmids could still 
be transferred, suggesting that, in these conditions, composting 
may be insufficient to completely eliminate the risk of spreading 
AMR through chicken manure. Other studies have also shown 
that many ARGs persist after composting, with over 50 of these 
ARGs detectable, for example, in finished cattle manure composts 
(Qian et al., 2016). Co-composting of pig and chicken manure did 
not reduce the diversity of ARG, and a total of 19 ARG subtypes 
and two transposon genes were still persistent (Gao et al., 2019).

Several studies have indicated that temperature is a critical 
factor to limit the proliferation and activity of ARB and ARG (He 
et al., 2014; Wang et al., 2017). It has been shown that thermophilic 
composting has a higher efficiency for ARG removal than 
mesophilic composting (Sun et al., 2015; Qian et al., 2016). Pu 
et al. observed a decline in ARB, ARG and transposons abundance 
after aerobic co-composting of pig and chicken manures. However, 
the diversity and abundance of ARG was increased at the 
temperature-decreasing stage (55°C–25°C, 14–20 days), compared 
with the temperature-increasing stage (55°C–60°C, 3–14 days). 
Three genes conferring resistance to amphenicol macrolide-
lincosamide-streptogramin B and vancomycin were highly 
enriched (101-fold, 420-fold, and 250-fold) at temperature 
decreasing stage (Pu et al., 2019).

Conclusions and perspectives

The four major knowledge gaps related to the environmental 
dimensions of AMR proposed by Larsson et  al. (2018), i.e., 
(Accinelli et al., 2007) the relative contributions of AMR from 
different sources (Agga et al., 2020) the role of the environment in 
the spread of AMR (Agga et al., 2022) the risk of human exposure 
to AMR in the environment, and (Alexy et  al., 2004) the 
development of mitigation strategies, are all applicable to livestock 
production and manure as sources of antibiotic residues and AMR 
(Jutkina et al., 2018).

Fertilization with natural products is one of the main routes 
responsible for the introduction of antibiotic residues, ARG and 
zoonotic bacteria from animals to soil and, for the possible 
further dissemination into drinking water systems. Thus, proper 
handling, treatment and storage of manure prior to land 
application are key aspects to control the dissemination of AMR 
into the environment.

However, additional research is needed for understanding 
the fate of ARG during different types of manure treatment, 
such as anaerobic digestion and composting and to determine 
the optimal conditions for removal of antibiotic residues, ARB 
and ARG, allowing for the development of specific best practices 
for livestock manure treatment plants. It must also 
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be  determined if different manure treatments are really 
removing or just diluting resistance. Relevant criteria should 
be developed and/or modified according to research results for 
achieving a high-level efficiency in microorganisms removal 
during manure treatment and processing.

Another key intervention necessary to curb the further AMR 
emergence and spread and to maintain the efficiency of antibiotics 
is to limit their use, emphasizing the need for a prudent – cautious 
– use of antibiotics on farm animals to avoid unnecessary selective 
pressure (Hölzel et  al., 2010). The proposed EU legislative 
framework, which will be enforced by 2022, bans the use of human 
reserve antibiotics in veterinary medicine and the use of 
unprescribed animal antimicrobials. Due to MDR organisms it is 
recommended that the “last resort” antibiotics and other clinically 
important antibiotic classes should be reserved for treatment of 
confirmed or suspected infections. An encouraging result of this 
measure is the decrease in the prevalence of colistin resistance 
genes in pig farm environments was reported in China after 
banning the use of colistin as an animal feed additive (Gao et al., 
2019). Additionally, in order to safeguard the future use of 
antibiotics for treatment of bacterial infections, both in animals 
and humans, prudent use centered on correct diagnosis, correct 
choice and use of antimicrobials, along with appropriate 
susceptibility testing needs to be further strengthened (Silley and 
Stephan, 2017). On the other hand, it should be considered that 
antibiotic use in livestock is a prerequisite of animal welfare, 
consumer protection and cost efficiency of animal production. 
Further limiting the use of antibiotics on these farms might have 
effects on animal welfare and therefore might be  difficult to 
implement (Wallace et  al., 2018). However, a reduction of the 
consumption of quinolones and third-and fourth generation 
cephalosporins in veterinary medicine has been confirmed by the 
first joint report of the European Centre for Disease Prevention 
and Control (ECDC), the European Food Safety Authority (EFSA) 
(2018) and the European Medicines Agency (EMA) (2019) on 
antibiotics consumption and antibiotic resistance in humans and 
food-producing animals (Anon, 2015).

Further research should be  also conducted to explore the 
potential dissemination routes of ARG among soil microorganisms 
and then to vegetables, to be able to take effective measures for 
controlling the persistence and dissemination of AMR in the 
vegetable production chain (Carballo et  al., 2013). Additional 
research should follow to elucidate which microorganisms 
participate in the ARG transmission in a certain environment and 
quantify them.

The answers to these questions are pending on the 
characterization of land microbiome before and after manure 
application, assessing the risk of different raw and pre-treated 

manure types with regards to AR dissemination, as well as the 
maintenance and rate of pathogen transfer from grassland to 
animals. This is an essential component of agri-food research to 
fully assess the risk that manure land spreading has on the transfer 
of AR pathogens into the food chain and to humans.

Most imperative is that stakeholders help advise these research 
efforts so that scientific findings are more easily translated into 
practical on-farm management decisions and support to best 
equip the involved actors with the resources and tools needed to 
respond to the global AMR crisis.
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