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High-throughput sequencing (HTS) methods are transforming our capacity

to detect pathogens and perform disease diagnosis. Although sequencing

advances have enabled accessible and point-of-care HTS, data analysis

pipelines have yet to provide robust tools for precise and certain diagnosis,

particularly in cases of low sequencing coverage. Lack of standardized

metrics and harmonized detection thresholds confound the problem further,

impeding the adoption and implementation of these solutions in real-world

applications. In this work, we tackle these issues and propose biologically-

informed viral genome assembly coverage as a method to improve diagnostic

certainty. We use the identification of viral replicases, an essential function of

viral life cycles, to define genome coverage thresholds in which biological

functions can be described. We validate the analysis pipeline, Viroscope,

using field samples, synthetic and published datasets, and demonstrate that

it provides sensitive and specific viral detection. Furthermore, we developed

Viroscope.io a web-service to provide on-demand HTS data viral diagnosis to

facilitate adoption and implementation by phytosanitary agencies to enable

precise viral diagnosis.

KEYWORDS

Viroscope, plant viral diagnostics, next-generation sequencing, genome assembly
coverage, replicase identification, phytopathology, high-throughput sequencing

Introduction

Plant viruses are among the most important pathogens for agriculture, causing losses
amounting up to more than $30 billion annually (Rao and Reddy, 2020; Rodríguez-
Verástegui et al., 2022). Facile and accurate detection of plant viruses is essential to
avoid propagation of these pathogens due to increasing global plant trade practices.
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Although methods such as high-throughput sequencing (HTS)
can enable unbiased detection, these techniques are still in the
process of being implemented. In addition, the standardization
of analysis pipelines to perform plant virus diagnosis is pending,
particularly in cases of low virus abundance (Jones et al., 2017;
Massart et al., 2017, 2019; Mehetre et al., 2021).

Plant viral diseases are of considerable concern for farmers,
researchers, and policy-makers since they are capable of
decimating food production and even eradicating whole species
(Legg and Thresh, 2000; Gonsalves et al., 2008; Moreno et al.,
2008). Viruses can have variable effects on the plant’s physiology,
from the slight decline in productivity and quality of products
to high levels of lethality. The latter was the case for the
citrus tristeza virus (CTV), which is estimated to have killed
over 100 million plants over several countries worldwide
(Jones, 2021). Species such as sweet cherry (Prunus avium)
have been traditionally multiplied using clonal propagation
leading to accumulation of a large number of viruses. This
is of particular concern since these pathogens may be latent
or may cause detectable symptoms in susceptible rootstocks
and/or scions (Umer et al., 2019). In addition, sweet cherry
trees can have heterogeneous virus titrations during different
seasons (Umer et al., 2019; Rodríguez-Verástegui et al.,
2022).

Abbreviations: ACLSV, apple chlorotic leaf spot virus; ACMV, African
cassava mosaic virus; AGCaV, apple green crinkle associated virus; ALPV,
aphid lethal paralysis virus; ApMV, apple mosaic virus; ASGV, apple
stem grooving virus; ASPV, apple stem pitting virus; BPEV, bell pepper
endornavirus; BSV, banana streak virus; BYDV, barley yellow dwarf virus;
CGRMV, cherry green ring mottle virus; CLCuV, cotton leaf curl virus;
CNRMV, cherry necrotic rusty mottle virus; CTV, citrus tristeza virus;
CVA, cherry virus A; CVEV, citrus vein enation virus; CYVMV, croton
yellow vein mosaic virus; DBV, dioscorea bacilliform RT virus; DNA,
deoxyribonucleic acid; EACMV, East African cassava mosaic virus; EMDV,
eggplant mottled dwarf virus; FDR, false discovery rate; GalLV, gaillardia
latent virus; GFkV, grapevine fleck virus; GLRaV-3, grapevine leafroll-
associated virus 3; GRBaV, grapevine red blotch-associated; GRLaV2,
grapevine leafroll-associated virus 2; GRSPaV, grapevine rupestris stem
pitting associated virus; GRVFV, grapevine rupestris vein feathering virus;
GVB, grapevine virus B; HSVd, hop stunt viroid; HTS, high-throughput
sequencing; LChV-1, little cherry virus 1; LChV-2, little cherry virus 2;
HTS, high-throuput sequencing (includes former NGS, next-generation
sequencing); ONT, Oxford Nanopore Technologies; PBNSPaV, plum
bark necrosis and stem pitting-associated virus; PBNSPaV, plum bark
necrosis stem pitting associated virus; PCR, polymerase chain reaction;
PDV, prune dwarf virus; PepLCBV, pepper leaf curl Bangladesh virus;
PepLCVB, pepper leaf curl virus betasatellite; PepMV, pepino mosaic
virus; PeSV, pea streak virus; PFBV, pelargonium flower break virus; PiVB,
pistacia emaravirus; PLRV, potato leafroll virus; PNRSV, prunus necrotic
ringspot virus; PPV, plum pox virus; PrVT, prunus virus T; PVS, potato
virus S; PVX, potato virus X; PVY, potato virus Y; qPCR, quantitative
PCR; RdDp, RNA dependent DNA polymerase; RdRp, RNA dependent
RNA polymerase; RNA, ribonucleic acid; RT-PCR, reverse transcriptase
PCR; SD, shoot development stage; SLCMV, Sri Lankan cassava mosaic
virus; SS, senescence stage; ToLCBDB, tomato leaf curl Bangladesh
betasatellite; ToLCGV, tomato leaf curl Gujarat virus; ToLCJoV, tomato
leaf curl virus; ToLCRnV, tomato leaf curl Ranchi virus; TSWV, tomato
spotted wilt virus; TVCV, tobacco vein clearing virus; VGAC, viral genome
assembly coverage; YCNMV, yam chlorotic necrosis virus; YMMV, yam
mild mosaic virus.

Plant import and export practices demand strict
phytosanitary controls to avoid propagation of pathogens
between countries. In some cases, quarantines for up to several
years are required before clearing plant material for import,
creating a barrier for the expedite transfer of newly developed
varieties with improved traits. During quarantine, plants are
monitored for evidence of viral symptoms as well as being
repeatedly and directly tested for disease using molecular
diagnostic assays (Jones, 2009; Massart et al., 2017).

The two most successfully established plant virus detection
methods are enzyme-linked immunosorbent assay (ELISA)
and real-time polymerase chain reaction (PCR, or quantitative
qPCR). ELISA detects structural protein motifs of the virus
and can have a broad capability to detect variants, but
exhibits limited sensitivity of detection for cases of low
virus abundance. On the other hand, PCR-based assays (i.e.,
PCR, RT-PCR, qPCR) are considered the gold standard for
detection of a virus presence, however it requires a priori
knowledge of virus target sequences. Thus, PCR-based methods
are biased, depending on the availability of the sequences
to design the analysis and can fail to detect virus variants.
In spite of the advantages or disadvantages of these two
methods, both techniques show high levels of reproducibility,
capability for automation and are relatively low-cost for
industry standards (Boonham et al., 2014; Chauhan et al.,
2019).

Methods such as HTS can help to address food security
from increasing threats of viral disease outbreak (Massart
et al., 2017; Mehetre et al., 2021). HTS enables unbiased
and hypothesis-free testing of plant samples, and is becoming
increasingly cost-effective, with price per base pair sequenced
dropping dramatically over the past decade. Viruses detection
by HTS comprises: (1) nucleic acid extraction from the plant
material, (2) library preparation (enriching virus sequences
or depleting host sequences such as ribosomal RNA), (3)
high-throughput sequencing, (4) raw data quality control and
removal of poor quality reads and adaptor sequences, (5)
removal of host reads, (6) mapping to a virus database, and/or
de novo assembly of reads, (7) read counting and/or coverage
calculation, (8) identification of present viruses using read
and coverage cutoffs (Villamor et al., 2019). Specifically, the
bioinformatic identification pipeline (involving aforementioned
steps 4 through 8) is essential for accurate diagnosis. The
potential of HTS has been recognized by several phytosanitary
agencies where scientific committees and workshops have been
held to address how to implement the plant diseases protection
are looking to improve the availability of diagnostic tools and
are currently revising their diagnostic standards (Adams et al.,
2018; Jones and Naidú, 2019).

The success of a HTS-based virus diagnosis is highly
dependent on proper computing infrastructure and
bioinformatics expertise (Jones et al., 2017; Umer et al.,
2019; Kutnjak et al., 2021). Also, substantial virology knowledge
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is required to suitably interpret the results (Gaafar et al.,
2021). Although the vast majority of virus diagnostic tools
have been focused on human clinical samples –VirusFinder
and VERSE (Wang et al., 2013, 2015), VIP (Li et al., 2016),
VirusSeeker (Zhao et al., 2017)– some efforts have been focused
specifically on plants –VirFind (Ho and Tzanetakis, 2014),
VSD toolkit (Barrero et al., 2017), Virtool (Rott et al., 2017)
and PVDP (Gutiérrez et al., 2021). However, bioinformatic
pipelines have presented challenges for standardization and
incongruences in frequently used metrics such as read counts,
genome coverage or a combination of both criteria are common
(Visser et al., 2016; Rott et al., 2017; Malapi-Wight et al.,
2021; Soltani et al., 2021; Hanafi et al., 2022). Also, threshold
harmonization is required to establish virus detection using
HTS (Ruiz-García et al., 2021), particularly in cases with low
sequencing coverage.

Low sequencing coverage presents a complex diagnostic
challenge for virus detection. It may be due to a number of
causes, such as low viral titre, insufficient depth of sequencing,
sample cross-contamination, remnants of a past infection or
even a latent phase of a virus. Most plant viruses have an RNA
genome that adopts a basic replication mechanism consisting
in the RdRp enzyme (RNA-dependent RNA Polymerase) as the
responsible for transcription and replication (Hull, 2014). In
other words, the identification of such an essential biological
functionality in viruses may aid in interpreting cases of low
sequencing coverage, as it implies capacity for propagation and
thus, potential infectivity.

Here, we present Viroscope, a diagnostic pipeline that
improves virus detection accuracy by using biologically-
informed viral genome assembly coverage (VGAC). We
introduce the identification of replicases to evaluate how
different VGAC threshold levels correlate with functional
aspects of virus biology. In addition, we evaluate the
performance of Viroscope with field samples of sweet cherry,
simulated datasets and external datasets, demonstrating that
VGAC is a robust measure for virus detection using total RNA
HTS data using Illumina and Nanopore sequencing. Finally,
we have implemented the pipeline in the form of a web
application called Viroscope.io1 to enable cloud-based HTS data
virus diagnosis.

Materials and methods

Collection of field samples and nucleic
acid extraction

Sweet cherries are one of the major stone fruits cultivars in
south-central Chile. For this study, a sweet cherry production

1 https://www.viroscope.io

farm located in the O’Higgins region was selected. The plant
material was randomly collected from four different >5 years
old P. avium specimens. In this field, elite varieties ‘Lapins’
and ‘Santina’ were the most common cultivars. Hence, each
sample was called L1, L2 and S1 and S2, respectively. In
order to evaluate differences in plant virus diagnosis due to
season conditions (factors such as changes in temperature,
light, and/or plant nutrition), the same plants were sampled at
two different principal growth stages as previously described
for Prunus sp.: Stage 3 or shoot development (SD) and Stage
9 or senescence (SS, beginning of dormancy) (Fadón et al.,
2015). Each growth stage corresponds to the Spring and the
end of Summer season, respectively. A total of eight leaves
(four apical and fourequal-sized middle-aged) from the canopy
of an individual tree were sampled and placed in RNAlater
solution (Invitrogen). Then, the samples were transported to the
laboratory in refrigerated containers and stored at −80◦C until
their use.

For total RNA extraction, leaves in RNAlater were pooled
and ground in a liquid nitrogen cooled ceramic mortar,
and 100 mg of ground sample was processed using the
SpectrumTM plant total RNA kit (Sigma-Aldrich, St. Louis,
MO, USA), according to the manufacturer’s instructions. Total
RNA concentration and quality was assessed using an optical
microplate reader (BioTek Synergy H1, Santa Clara, California,
USA), through fluorometry (Promega Quantus fluorometer,
Madison, Wisconsin, USA) and integrity was verified through
agarose gel electrophoresis (Rio, 2015). Purified extracts were
stored at−80◦C until further processing.

RNA-sequencing of field samples

For RNA-sequencing, 2 µg of total RNA from each of the
field samples was sent to Novogene Corporation Inc. (USA)
(samples SD-L1, SD-L2, SD-S1 and SD-S2) and Macrogen Co.,
Ltd (Korea) (samples SS-L1, SS-L2, SS-S1 and SS-S2). Ribosomal
RNA depletion was performed using Ribo-Zero Plant (Illumina,
USA), and library construction was executed using NEBNext
Ultra RNA Library Prep kit (New England Biolabs, USA),
and sequenced on a NovaSeq6000, using a 150 bp paired-
end cycle.

High-throughput sequencing datasets
from field samples and processing

Raw reads from field samples (SD/SS-L1, SD/SS-L2, SD/SS-
S1, SD/SS-S2; Supplementary Table 1) were filtered using fastp
(Chen et al., 2018) keeping reads with an average quality greater
or equal to 20. Single reads, reads shorter than 50 bp and reads
containing “N” nucleotides were discarded, and adapters were
automatically trimmed.
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In order to assay the dependency of the prediction on the
size of data, sequencing data of field samples were subjected
to a jackknife process. Reads were randomly selected from the
original data to obtain sets of different depths of sequencing,
namely 100K, 500K, 1M, 5M, 10M, and 15M reads. Each
selection was repeated 10 times. Subsampling read repetitions as
well as sequence manipulation were performed using the seqtk
subsampling routine (using the repetition number as a seed for
paired reads) and seqkit (Shen et al., 2016).

High-throughput sequencing datasets
from simulation and subsampling

Artificial HTS datasets of 20M paired-end reads of 150 bp
(Supplementary Table 1) were generated using the software
ART (Huang et al., 2012) and seqkit (Shen et al., 2016). Two
of these datasets were intended to simulate actual field samples
containing the 11 viruses of the Pavium panel-I (see section Read
assignment and viral panels below). In the first dataset (Synab
dataset), virus abundance was based on experimental data
(average distribution as seen in real sequencing data of samples
SD-L1, SD-L2, SD-S1 and SD-S2), whereas the second dataset
(Synhom dataset) assumed an even distribution of virus read
abundance (Supplementary Tables 2, 3). Both sets were then
subjected to subsampling to get different depths of sequencing
(100K, 500K, 1M, 5M, 10M, and 15M reads) in a jackknife
process (10 repetitions).

Another dataset of 20M paired-end reads (150 bp) was
generated (Mut dataset), where all the viruses (from Pavium
panel-I) were randomly mutated at different rates (5, 10, 15, 20,
25, and 30%). In this case, a jackknife process with subsampling
of 10M reads each was done for 10 repetitions (using repetition
number as seed for subsampling). Mutation-Simulator (version
2.0.3) (Kühl et al., 2021) was used to simulate the mutations on
the viruses.

Two additional datasets were built to further investigate the
relationship between virus abundance and depth of sequencing.
In this case, datasets of 20M total paired-end reads (150 bp)
containing at most 3% of viral reads (600K reads) from the
viruses with the shortest (cherry virus A, CVA) and the longest
(little cherry virus 1, LChV-1) genomes from the Pavium panel-
I were surveyed (Cva and Lchv1 datatsets). Subsets containing
0.05, 0.1, 0.5, 1, 5, 10% of such 3% of representation of
the viral reads defined above were generated. For example,
a 20M total read set with 10% of 3% viral reads contains
0.1 × 0.03 × 20M = 60K viral reads, while at 0.5% of 3%
viral abundance it contains 3K reads. The remaining reads
consisted of background sequences from plant, human, bacteria,
and random sequences in the same proportion as listed in
Supplementary Table 2. To compensate for the decreasing
number of reads, the difference was replaced by bacterial reads.
Each of these sets was in turn subsampled in a jackknife

process to obtain 10 subsets at different depths of sequencing
(100K, 500K, 1M, 2M, 3M, 4M, 5M, 6M, 7M, 8M, 9M, and
10M random reads).

High-throughput sequencing datasets
from published reports

Several external datasets containing HTS data were surveyed
and tested (Supplementary Table 1). A total of 32 datasets were
tested: ten datasets are part of a challenge for identifying viruses
in HTS data under different conditions (Tamisier et al., 2021;
single-end (SE) or paired-end (PE) semi-artificial short reads);
one dataset is part of an analysis using a plant transcriptome to
identify viruses (Jo et al., 2016; RNAseq, SE reads); one dataset
comes from the study of the pepper virome (Jo et al., 2017;
RNAseq, PE reads); one dataset is part of a study of small
RNAs produced by Dicer-like enzymes as a defense strategy of
a plant when infected by a virus (Barrero et al., 2017; sRNAseq,
SE reads); 14 datasets come from a report describing the use
of Oxford Nanopore’s MinION to detect and genotype potato
viruses (Della Bartola et al., 2020; RNAseq, ONT reads); one
dataset intended to report the genome sequence of a virus based
on Oxford Nanopore (Leiva et al., 2020; DNA, ONT reads); three
datasets accounting for the identification of genomes of viruses
affecting crops in sub-Saharan Africa (Boykin et al., 2018; DNA,
ONT reads); and one dataset from a study that demonstrates the
use of MinION sequencing to detect and characterize viruses
infecting water yam plants (Filloux et al., 2018; RNAseq, ONT
reads). All the datasets contain a sum of 46 different viruses
to be detected and 62 cases (a “case” is defined as a “virus
to be detected in a dataset,” for example, there are two cases
when virus A is present in dataset 1 and 2, or when virus
A and virus B are present in dataset 1), which were divided
into three groups (some of the viruses are included in more
than one dataset): Viromock datasets V1-V10 (18 viruses; 15
cases), SmallRNA datasets R1-R3 (21 viruses and one viroid; 22
cases), and Nanopore datasets N1-N19 (10 viruses; 25 cases).
All the viruses that must be detected in each group as well as
additional details of these datasets are listed in Supplementary
Table 4.

Read assignment and viral panels

For read assignment (taxonomic classification of reads
according to a panel of virus genomes), two widely used
software for metagenome exploration were tested, namely
Kraken2 (Wood et al., 2019) and Centrifuge (Kim et al., 2016),
which are the fastest and more sensible algorithms according
to a benchmark previously published (Miossec et al., 2020).
Minimap2, a classical algorithm used to compare local read
alignment (Li, 2018) was also tested in the read assignment
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process. All software was run with default parameters, except
Kraken2 whose database was built by lowering the default
parameter k (kmer length) from 35 to 31 to increase its
sensitivity.

For all the dataset groups (Supplementary Table 1),
ad hoc viral panels were built in order to set the proper
databases required by each software. In the case of both the
field samples (SD/SS-L1, SD/SS-L2, SD/SS-S1, SD/SS-S2) and
simulated datasets (Synab, Synhom, Mut, Cva, Lchv1), the
analysis was carried out using 11 viruses which affect Prunus
sp., some of which were previously reported in Chile: apple
chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV),
cherry green ring mottle virus (CGRMV), cherry necrotic rusty
mottle virus (CNRMV), cherry virus A (CVA), little cherry
virus 1 (LChV-1), plum bark necrosis stem pitting-associated
virus (PBNSPaV), prune dwarf virus (PDV), prunus necrotic
ringspot virus (PNRSV) and plum pox virus (PPV) (Fiore
et al., 2016), and absent such as little cherry virus 2 (LChV-
2). This set of viruses was called “Pavium panel-I” and the
respective database included reference sequences from NCBI
(Supplementary Table 3). Additionally, an extended database
of this panel was built by incorporating the different isolates
of the 11 viruses. A total of 1,011 sequences were obtained
from NCBI (including the original 11 reference sequences)
using all sequences under defined taxID and keeping only
complete genomes, which were clustered with CD-HIT (Fu
et al., 2012). Using the requisite of 90% sequence identity, 139
clusters were obtained, whose representative sequences became
the Pavium panel-II (Supplementary Table 5). Although a lower
sequence identity can account for the same virus species, the
rationale of this requirement is just to identify virus species
considering the possible sequence differences, which is not
affordable when using only reference sequences. The use of
90% of sequence identity comes from the mutation simulation
analysis (see section “Results”), which is a proper trade-off
between incorporating more virus isolates into the panel and not
including all the sequences.

Regarding the external published datasets, viral panels and
the respective reference databases were built for each group
according to the viruses that must be detected in each of
them (Supplementary Table 4). Therefore, the panels Viromock
[18 viruses: bell pepper endornavirus (BPEV), banana streak
virus (BSV), barley yellow dwarf virus (BYDV), African cassava
mosaic virus (ACMV), citrus tristeza virus (CTV), citrus vein
enation virus (CVEV), eggplant mottled dwarf virus (EMDV),
grapevine red blotch-associated (GRBaV), grapevine leafroll-
associated virus 2 (GRLaV2), grapevine rupestris stem pitting
associated virus (GRSPaV), grapevine rupestris vein feathering
virus (GRVFV), little cherry virus 1 (LChV-1), plum bark
necrosis stem pitting associated virus (PBNSPaV), pepino
mosaic virus (PepMV), pelargonium flower break virus (PFBV),
pistacia emaravirus (PiVB), potato virus Y (PVY), and tomato
spotted wilt virus (TSWV)], SmallRNA [21 viruses: apple

green crinkle associated virus (AGCaV), aphid lethal paralysis
virus (ALPV), apple stem grooving virus (ASGV), apple stem
pitting virus (ASPV), bell pepper endornavirus (BPEV), cotton
leaf curl virus (CLCuV), croton yellow vein mosaic virus
(CYVMV), gaillardia latent virus (GalLV), grapevine fleck
virus (GFkV), grapevine leafroll-associated virus 3 (GLRaV-
3), grapevine rupestris stem pitting associated virus (GRSPaV),
grapevine virus B (GVB), pepper leaf curl Bangladesh virus
(PepLCBV), pepper leaf curl virus betasatellite (PepLCVB), pea
streak virus (PeSV), prunus virus T (PrVT), tomato leaf curl
Bangladesh betasatellite (ToLCBDB), tomato leaf curl gujarat
virus (ToLCGV), tomato leaf curl virus (ToLCJoV), tomato
leaf curl ranchi virus (ToLCRnV), and tobacco vein clearing
virus (TVCV) and Nanopore (10 viruses: African cassava mosaic
virus (ACMV), dioscorea bacilliform RT virus (DBV), East
African cassava mosaic virus (EACMV), potato leafroll virus
(PLRV), potato virus S (PVS), potato virus X (PVX), potato
virus Y (PVY), Sri Lankan cassava mosaic virus (SLCMV), yam
chlorotic necrosis virus (YCNMV), and yam mild mosaic virus
(YMMV)] were created. In the case of the Viromock datasets,
the viruses present in the datasets V11-V18 were included in
the panel, but the datasets were not surveyed since they were
generated for identification of viral isolates and did not contain
background sequences.

Viral genome assembly coverage

Reads assigned to a viral reference sequence were de novo
assembled. SPAdes (Bankevich et al., 2012) was used to perform
the assembly on Illumina reads (in ‘–sc’ mode and with ‘–
careful’ option), whereas Canu (Koren et al., 2017) was used
to assemble Oxford Nanopore reads. In either case, contigs
obtained in the assembly process were then remapped to the
respective reference genome. In this case, the mapping was
performed using Minimap2 (with ‘-map-ont’ option to map
contigs), and the genome coverage (percentage of the reference
genome that is covered by the assembled contigs) was calculated
by SAMtools/BCFtools (Danecek et al., 2021), with the following
commands:

$ minimap2 -ax map-ont reference_genome.fasta
contigs.fastq -o aligned_contigs.sam

$ samtools view -bh -o aligned_contigs.bam
aligned_contigs.sam

$ samtools coverage aligned_contigs.bam
And the VGAC was calculated as:

VGAC =
∑n

i CBi∑n
i SLi

where, CBi is the number of covered bases with depth≥ 1 for the
segment i of the virus, and SLi is the length of the segment i of
the virus (most of the viruses contain only one genome segment,
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so n = 1 in these cases). Thus, the VGAC is a value that ranges
between 0 and 1 (and can also be expressed as percentage).

Replicase identification

Consensus regions were determined from mapped
contigs onto the reference genome of the virus using
SAMtools/BCFtools. These consensus regions were calculated as
follows:

$ samtools mpileup -uf reference_genome.fasta -o mpile.vcf
aligned_contigs.bam

$ bcftools call -c –ploidy 1 -o call_mpile.vcf mpile.vcf
$ vcfutils.pl vcf2fq call_mpile.vcf > consensus.fastq
Each consensus region was compared against a repository of

protein sequences related to a virus replication (e.g., replicase
or polymerase). This repository was built from RVDB-prot
(version 23.0, 2021-12; Bigot et al., 2019) and contains 17,708
records. To build this repository, RVDB-prot was filtered
using terms accounting for replicase or polymerase activity.
The terms searched for were: ”replicase,” “RNA dependent
RNA polymerase” (RdRp), “RdRp,” “RNA dependent DNA
polymerase” (RdDp), “RdDp,” and “polymerase,” which allowed
for recovering 13,576 sequences. In addition, the term “reverse
transcriptase” (which is a synonym of “RdDp”) was searched,
producing 59,525 records. In this case, records belonging
to “homo,” “human,” “hepatitis,” and “hiv” were filtered out,
remaining 4,114 sequences, which were incorporated into our
repository. In the course of evaluating the different panels,
some of the virus sequences did not account for the presence
of a coding sequence related to replicase or polymerase
activities. However, all these cases were manually inspected
and found to encode in fact a protein either with a name
containing none of the terms searched above, being absent
in RVDB-prot or being part of a polyprotein. Finally, all
of them were incorporated into our viral replicase protein
repository.

The comparison of the consensus regions was performed
using Diamond (Buchfink et al., 2021) with its blastx
module. The resulting hits were then filtered by similarity
(80 or 90%) and length of alignment (80 or 90%). At the
80/80 schema, a replicase was said to be identified in the
respective consensus region if it contained 80% similarity and
80% sequence alignment (90/90 represents a more stringent
schema).

Overall performance on external
datasets

In order to estimate the performance of the different stages
of the pipeline on the external datasets, several measures were
calculated: sensitivity, specificity, precision, accuracy, and false

discovery rate (FDR). These measures were determined as
follows:

Sensitivity =
TP

TP + FN
, Specificity

=
TN

TN + FP
, Precision =

TP
TP + FP

,

Accuracy =
TP + TN

TP + TN + FP + FN
, FDR =

FP
TP + FP

,

where TP (true positives) is the number of cases that were
detected that must be detected, FP (false positives) is the number
of cases that were detected that should have been not detected. In
this sense, for negatives, FN (false negatives) corresponds to the
number of cases that were not detected that should have been
detected, and TN (true negatives) is the number of cases that
were not detected that in fact were not present. Since datasets
are reported to have only the viruses to be detected, FP and TN
values were estimated from the rest of viruses of the respective
panel which should account for misassigned reads by at least
one software. For example, in the Viromock datasets there are
15 actual cases to be detected, but the read assignment together
yielded 51 additional cases detected, so a maximum of 51 TN
cases were assumed to exist in these datasets. The measures
listed above were determined for read assignment (the case is
assumed to be a TP when existing at least one assigned read),
and for detection of replicases (the case is assumed to be a TP
either when matching the 80/80 or the 90/90 schema). In the
case of VGAC, the measures were calculated for the thresholds
0.1 (the case is assumed to be a TP when VGAC ≥ 0.1), 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Finally, in order to estimate
the similarity between measures for VGAC and the detection
of replicases, the euclidean distance d between the measures for
VGAC and for the schema 80/80 was determined as:

d (m) =

√∑
s

(
mVGACs −m80/80s

)2

where m could be sensitivity, specificity, precision, accuracy, or
FDR, and s runs on the three software (Centrifuge, Kraken2 and
Minimap2).

Reverse transcription-polymerase
chain reaction analysis

The presence of the viral pathogens in each individual
sample collected at shoot development stage (SD-L1, SD-L2
and SD-S1 and SD-S2) and senescence stage (SS-L1, SS-L2
and SS-S1 and SS-S2) were confirmed by reverse transcription-
polymerase chain reaction (RT-PCR). The two-step RT-PCR
for SD samples (Shoot Development) was performed by
Laboratorio de Virología, Universidad de Chile (N. Fiore,
personal communication, October 21, 2020), named here as
“PCR external.” On the other hand, in the case of samples
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obtained during the senescence stage (SS-L1, SS-L2 and SS-
S1 and SS-S2), the presence of the viral pathogens was
confirmed by a two-step RT-PCR performed in this study.
This method was optimized to detect the 11 viruses of
the Pavium panel-I, and results were recorded as “PCR
internal.” Primers of this panel were exclusively designed for
this study based on a local viral sequences database and
OligoPerfectTM designer software (ThermoFisher Scientific)
(Supplementary Table 6). The phytoene desaturase 1 (PDS1)
is a plant gene that exhibits constitutive expression and was
used in our RT-PCR experiments as an internal control for
RNA extraction and reverse transcription. In addition, the
11 purified amplicons were used for positive controls to
corroborate amplification of molecular targets of appropriate
size (Supplementary Figure 6E).

First-strand cDNA synthesis was performed using 70 ng
of total RNA. The reverse transcription (RT) mix contained
200 units of recombinant Moloney Murine Leukemia Virus
(MMLV) reverse transcriptase (Promega), 20 units of RNAsin
(Promega), 1 mM dNTPs, and 1 uM of random hexamers
(Promega). The reaction was performed at 20 uL final volume
and was incubated at 37◦C for 60 min followed by enzyme
inactivation at 70◦C for 5 min. The PCR mix (final volume of 25
uL) contained 1 uL of the cDNA, 1X (2,5 uL) GoTaq G2 Flexi
Buffer (Promega), 0.15 uM of each primer (Supplementary
Table 6), 3 mM MgCl2, 0.2 mM dNTPs, and 1.25 units of GoTaq
G2 Flexi DNA polymerase (Promega). Cycling conditions for all
primer pairs consisted of initial denaturation at 95◦C for 2 min
followed by 35 cycles at 95◦C for 15 s, 60◦C for 30 s, 72◦C for
1 min and a final extension at 72◦C for 5 min. PCR products
were analyzed by gel electrophoresis using 3% agarose in a 1X
TBE buffer, and staining with 1:10.000 v/v SybrSafe (Invitrogen
Life Technologies).

Results

Overview of Viroscope

The Viroscope pipeline consists of two distinct steps for
plant virus diagnosis based on HTS data (Figure 1A). First, a
rigorous data analysis step encompassing: (1) read assignment,
(2) de novo assembly of assigned reads, (3) reference mapping of
assembled contigs, (4) genome coverage calculation of mapped
contigs, (5) consensus calling, and (6) replicase identification
in consensus sequences. In a second step, Viroscope detects
pathogens by considering the VGAC values obtained by three
read assignment algorithms and the identification of replicases.
The validation of the pipeline was performed with three types
of datasets: field samples from a sweet cherry farm, simulated
datasets, and publicly available datasets (including different
library preparation methods and sequencing technologies).
The Viroscope results for field samples were also validated

using RT-PCR methods to compare and study diagnostic
sensitivity according to the different cutoff levels investigated.
The Viroscope algorithm and the experimental design of this
study are shown in Figure 1B.

Read assignment in field samples

In order to assess the viral abundance in sweet cherry
samples, read assignment was performed using three different
software, namely Centrifuge, Kraken2 and Minimap2. The goal
of this study was not to evaluate the different software, but
to incorporate more than one perspective in the analysis
since different algorithms could yield diverse results. Samples
from four cherry plants specimens (SD-L1, SD-L2, SD-S1
and SD-S2) collected at the shoot development stage were
sequenced using Illumina, yielding 17M–22M paired-end reads
each (Supplementary Table 1), and read-subsampling was
performed to evaluate the relationship between read assignment
and depth of sequencing. The read assignment was carried out
using a reference database called “Pavium panel I” comprising
11 viruses, namely ACLSV, ApMV, CGRMV, CNRMV, CVA,
LChV-1, LChV-2, PBNSPaV, PDV, PNRSV and PPV (Fiore et al.,
2016).

According to the read assignment process, the number of
mapped reads increased in regard to the depth of sequencing
in a linear fashion (Figure 2A and Supplementary Figure 1).
Differences were observed according to the bioinformatic tool
used: Centrifuge and Kraken2 showed higher read assignment
in relation to Minimap2. In addition, read assignment by only
one software was observed for the case of CGRMV in sample L1,
whose reads were assigned by Centrifuge but not by Kraken2 nor
by Minimap2 (Figure 2A). Similar discrepancies were obtained
in the cases of ACLSV for SD-L1 (reads assigned only by
Kraken2), ApMV for SD-L1 (by Centrifuge), LChV-1 for SD-
L1 (by Kraken2), LChV-1 for SD-L2 (by Kraken2), ACLSV for
SD-S1 (by Centrifuge), ApMV for SD-S1 (by Centrifuge), and
LChV-1 for SD-S1 (by Kraken2), although with a relatively low
number of reads (Supplementary Figure 1).

Viral genome assembly coverage in
field samples

Inspection of read assignment by the different software and
their relation with assembly coverages at different depth of
sequencing was carried out in order to evaluate and analyze
detection issues. This was performed to study cases of low
abundance of reads or possible misassignment. The detection
of viruses was assessed through the VGAC, which accounts
for a full or partial viral genome recovery using HTS data. As
shown in Figure 2B, the virus detection was dependent on the
sample and the abundance of viral sequences, for instance the
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FIGURE 1

Overview of Viroscope, the data analysis pipeline and experimental validation strategy. (A) Overview of Viroscope. Viroscope is a total RNA HTS
data analysis pipeline that enables accurate viral detection by performing read assignment, de novo assembly with reference-based mapping
and pseudo-annotation to obtain VGAC metrics (Viral Genome Assembly Coverage) and identification of viral replicases. These metrics inform
the interpretation of viral presence from HTS reads to provide accurate diagnosis, contributing to the implementation of HTS for plant viral
diagnosis in real-world applications. (B) The Viroscope pipeline and experimental validation strategy. Viroscope performs read assignment from
total RNA HTS (Illumina or Nanopore) reads using 3 read assignment software against a curated database of target viruses. Then, mapped reads
are collected and used for de novo assembly either using SPAdes or Canu (for Illumina and Nanopore reads, respectively). Assembled contigs
are used to perform reference-based mapping to obtain a consensus of mapped contigs to calculate VGAC. Then, the pipeline searches for the
presence of replicases using Diamond using the RVDB-prot database. Finally these metrics are used for interpretation of viral presence
according to specific cutoffs for diagnosis. Four experimental sets were used to validate the pipeline, sweet cherry field samples, a simulated
dataset, a mutation dataset and external published datasets.

cases CNRMV for SD-L1 (VGAC = 1.0 at 1M reads), CGRMV
for SD-S1 (VGAC ≈ 0.72 at 15M reads), CNRMV for SD-S1
(VGAC ≈ 0.90 at 15M reads), PDV for SD-S1 (VGAC ≈ 0.60
at 15M reads), CNRMV for SD-L2 (VGAC = 1.0 at 15M reads),
CGRMV for SD-S2 (VGAC≈ 0.10 at 15M reads), and CNRMV
for SD-S2 (VGAC ≈ 0.85 at 15M reads). In all the cases where
only one software was able to assign reads and VGAC resulted
to be ≈ 0 (e.g., CGRMV for SD-L1) (Supplementary Figure 2),
the assigned reads could not assemble contigs, suggesting these
were spurious or misassigned reads.

Read assignment in simulated data

Depth of sequencing and the abundance of viral reads
certainly influence the capability to perform the virus detection.
In order to study the relationship between sequencing coverage
and the VGAC, two synthetic HTS datasets with known viral
composition were created for further analysis. The first dataset
contained reads from five viruses based on the mean viral
distribution of the field samples (Synab dataset) and the second
one contained a homogeneous distribution of reads from
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FIGURE 2

Read assignment and assembly coverage with HTS data from field samples. Ten subsets of randomly selected reads from sequencing data for
field samples of cherry plants at the shoot development stage (SD-L1, SD-L2, SD-S1, and SD-S2) were built at different depths of sequencing.
Three bioinformatic algorithms were tested, namely Centrifuge, Kraken2, and Minimap2. All the dots represent the average of 10 measures.
VGAC was calculated according to “Materials and methods” and with the reads assigned by the different algorithms at the respective depth of
sequencing. (A) Read assignment at different depths of sequencing (note the different scales of the ordinates) using the Pavium panel-I.
(B) VGAC obtained from the assembly of assigned reads (ranges from 0 to 1). Only the cases for CGRMV, CNRMV, and PDV are presented, but
full versions containing all of the target viruses are depicted in Supplementary Figures 1, 2. Average values (dots) as well as standard deviations
are listed in Supplementary Table 11. SD, shoot development stage; VGAC, viral genome assembly coverage; CGRMV, cherry green ring mottle
virus; CNRMV, cherry necrotic rusty mottle virus; PDV, prune dwarf virus.

Pavium panel-I, which are composed of 11 viruses (Synhom
dataset). In order to mimic real samples, both datasets were
built so that they contained background sequences, that is, they
were mixed with reads derived from human (2%), plant (75%),

bacteria (15%) and random sequences (5%). In both cases, the
total quantity of viral reads was limited to 3% of total reads as
shown in the distribution listed in Supplementary Tables 2, 3,
which in turn is based on the average empirical distribution.
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When a homogeneous distribution was used (synhom data
in Figure 3), no differences in read assignment and VGAC
amongst all viruses was observed (see Supplementary Figure 3
for more details). As expected, higher depth of sequencing
resulted in higher read assignment consistent with what was
seen in the field samples. These results were independent of both
the virus (e.g., length or number of segments) and the assessed
software, and no differences were observed regarding the VGAC
values either. Moreover, complete viruses were assembled even
at the lowest depth of sequencing (100K reads).

In the simulated data with empirical distribution (synab
data in Figure 3), read assignment was proportional to the
depth of sequencing and to viral abundance. Viruses used in
the simulated data were CGRMV, CNRMV, CVA, PDV, and
PNRSV (those with percentage > 0 in Supplementary Table 3),
so reads assigned to the LChV-1 genome were considered
as a misassignment. In fact, this virus showed no assembly
(VGAC = 0) at each depth of sequencing, confirming such a
misassignment (Figure 3). These results are consistent with the
above observation that the VGAC was sensitive to both the
depth of sequencing and the relative abundance of the viral reads
in the field samples (e.g., the cases for CGRMV and CNRMV).

Read assignment and viral genome
assembly coverage in simulated
mutation data

Further simulated datasets were generated so as to assess
the tolerance of the different software to viral mutation rates.
Subsets of 10M paired reads sampled from a set of 20M reads
were used. At a 10% mutation rate, all the software were able
to assign reads, and even at 20%, there was still a portion
of an average ∼2,900 out of 27,000 reads assigned to the
viral genomes (Figure 4 and Supplementary Figure 4). Read
assignment was not dependent on the viruses, which were
homogeneously distributed in the simulated samples. Amongst
the algorithms assessed, Centrifuge outperformed in the read
assignment process in general, which was more evident at
higher mutation rates. In this case, Minimap2 resulted to be the
least tolerant tool toward mutations. Although an increase in
the mutation rate appeared to have more impact on the read
assignment, at a 20% mutation rate the number of reads was
still sufficient to assemble contigs at least with Centrifuge and
Kraken2 (VGAC≈ 1).

Assembly coverage, viral abundance
and replicase identification

In order to explore beyond the presence of reads and to
examine the biological relevance of the assemblies obtained at
different sequencing depths and viral abundance, the VGAC

was analyzed in terms of the presence of replicases in the
assembled contigs. This was performed to understand whether
the assembled portion of the virus could encode a relevant
biological function to support the use of specific VGAC cutoffs
for virus detection.

A series of simulated samples containing an increasing
amount of viral reads with at most 3% of the total reads were
generated (see section “Materials and methods”). In this case,
only the viruses with the shortest and the longest genomes
in the Pavium panel-I were surveyed (i.e., CVA and LChV-1,
respectively). Simulated data (Cva and Lchv1 datasets) showed
that all assessed software reached similar levels of VGAC values.
At the lowest depth of sequencing (100K), virus abundance was
critical since VGAC turned out to be relevant only from 5%
(CVA and LChV-1) of the viral read composition (Figure 5).
However, the VGAC value increased at lower viral abundance as
the depth of sequencing increased. At the lowest viral abundance
(0.05%), the maximum VGAC values obtained at 10M total
reads were 0.97 in the case of CVA and 0.89 for LChV-1. In
extreme scenarios (e.g., 0.05% of total viral reads) the depth
of sequencing became critical. Thus, at 10M total reads, the
number of viral reads was∼150 (enough to assemble the longest
virus), but at 100K total reads, this number was ∼1.5 reads,
making the assembly of a viral genome not possible (thus VGAC
≈ 0).

Further, a set of 17,708 viral proteins related to replication
(e.g., replicase or polymerase) obtained from RVDB-prot (Bigot
et al., 2019) was used to identify replicases in the assembled
contigs. A minimum of 90% alignment length and 90%
similarity between the assemblies and the set of replicases
yielded a high correlation (R2 > 0.9) between the VGAC and
the presence of replicases, which is expected as long as a full
length virus can be assembled (Figure 5). When lowering the
parameters to 80% alignment length and 80% similarity, there
was a subtle increase in the recovery of replicases at lower depth
of sequencing and lower viral abundance. At these parameters,
correlation between the VGAC and the presence of replicases
still remained high (R2 > 0.9).

Altogether, according to the simulations and independently
of the software used, the identification of replicases began at
a VGAC ≈ 0.3 for the lowest depth of sequencing case (100K
total reads) or at VGAC ≈ 0.4 for the lowest viral abundance
case (0.05%), which represents basically a minimum of 15 viral
reads for CVA or 30 reads for LChV-1 required for being able
to identify a replicase in some of the simulations (Figure 5).
Coincidentally, the LChV-1 genome is 16,934 bp length and
CVA is 7,383 bp length, which reflects the requirement of twice
the number of reads for the identification.

Additionally, the presence of replicases was evaluated
for the simulated mutation datasets, where the identification
was expected to be affected according to the mutation
rate since changes in the nucleotide sequence may alter
the encoded protein. The identification of replicases was
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FIGURE 3

Read assignment and coverage in synthetic data. Synthetic HTS data were generated to simulate actual samples. The Pavium panel-I
comprising 11 viral genomes was used to build samples containing 3% of viral reads from a 20 million paired-end reads. Samples were built with
both a homogeneous distribution of viral reads (synhom) and based on an average distribution of actual samples (synab) (Supplementary
Tables 2, 3). In all cases, 10 subsets of randomly selected reads were built at different depths of sequencing. Assigned reads are shown in the
two first column charts and VGAC is shown in the last two column charts. A full version containing all of the target viruses is depicted in
Supplementary Figure 3. Average values (dots) as well as standard deviations are listed in Supplementary Table 11. VGAC, viral genome
assembly coverage; CGRMV, cherry green ring mottle virus; CNRMV, cherry necrotic rusty mottle virus; LChV-1, little cherry virus 1; PDV, prune
dwarf virus.

severely hampered over a 15% mutation rate (Figure 4
and Supplementary Figure 4), but a VGAC of 1 was
still obtained, and even at 20% using Centrifuge and
Kraken2. These results were the basis for establishing a
90% sequence identity threshold for clustering and to
incorporate different isolates in a reference database used
in the read assignment process (i.e., for building the Pavium
panel-II).

Performance on external published
datasets

External datasets were used in order to challenge the
methodology proposed in this study. Ten illumina datasets (V1-
V10) comprising a panel of 18 viruses published by Tamisier
et al. (2021) were used (Viromock datasets; Supplementary
Table 4). In addition, three small RNA sequencing datasets (R1-
R3) published by Barrero et al. (2017) and Jo et al. (2016, 2017)
(SmallRNA datasets; Supplementary Table 4) were included in
this analysis by generating a panel of 21 viruses.

According to the performance on Viromock datasets
(Table 1 and Supplementary Table 7), the pipeline is able to
achieve the detection of viral reads, to assemble a partial or full
viral genome, and to detect replicases in 14 out of 15 cases under

the criterion of detection with at least two out of three software
(93% in both schemas 80/80 and 90/90). The case V3-GRLaV2
did not meet the criterion since replicase detection was possible
in the assembly from reads assigned only by one software
(Centrifuge, in both schemas) due to lower VGAC values. In the
same dataset the cases V3-GRSPaV and V3-GRVFV failed the
detection with the reads assigned by Minimap2. In those three
cases the VGAC values were less than 0.2, but replicases were
detected above this value.

Regarding SmallRNA datasets (Table 1 and Supplementary
Table 8), four cases could complete the pipeline (read-
assignment, assembly, pseudo-annotation) with at least two out
of three software (cases R1-PepLCBV, R1-BPEV, R1-GalLV, and
R1-TVCV). The case of BPEV showed a low number of reads
but enough to assemble a region to find a replicase (Centrifuge
and Kraken2). The GalLV case can be considered artifactual
since the actual replicase is encoded in the first 6,000 bp of the
5′-region of the reference genome (one segment of 8,659 bp
length), but a shorter replicase was found at the end of the 3′-
region (hence it was detected at very low VGAC values). In
the case of TVCV, low VGAC values were obtained, however
a contig could be assembled around position 4,300 bp of the
reference genome (which is 7,767 bp length) containing the
replicase. In the CLCuV case, there was a high number of reads,
however they could only assemble a contig that maps in the
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FIGURE 4

Simulated mutations in synthetic HTS data. Mutated virus genomes were simulated to generate synthetic HTS dataset to evaluate read
assignment tolerance to viral mutated variants. Each viral genome of the Pavium panel-I was randomly mutated at the different rates indicated
(5, 10, 15, 20, and 25%) at the far right of each chart. Albeit 20 million reads were generated for each mutation rate, a 10× subsampling of 10
million reads was performed, so dots represent a mean number of assigned reads. The distribution of viral reads in this case was homogeneous.
The cases of viruses CGRMV (cherry green ring mottle virus), CNRMV (cherry necrotic rusty mottle virus) and PDV (prune dwarf virus) are shown,
but a full version of this figure is depicted in Supplementary Figure 4. Dotted red line: expected number of assigned (mapped) reads according
to the distribution of reads. Average values (dots) as well as standard deviations are listed in Supplementary Table 11.

FIGURE 5

VGAC dependence on viral abundance, depth of sequencing and identification of replicases. In order to analyze the relationship of VGAC (viral
genome assembly coverage) on viral abundance, depth of sequencing and the presence of replicases, synthetic HTS data were generated with
different abundance of viral reads. The viruses with the shortest and the longest genome length of the Pavium panel-I were assayed only [CVA
(cherry virus A) and LChV-1 (little cherry virus 1) respectively]. The heatmap represents the VGAC obtained (indicated in each cell in the upper
value) at both the respective sequencing depth and the abundance (%) of the viral reads (represented in the vertical axis as% viral composition of
the corresponding 3% of viral reads of the sequencing depth); bottom numbers inside a cell indicates the number of replicases found in the
respective assembly of the 10 subsampled sets at 80% alignment length/80% similarity, and 90% alignment length/90% similarity (both numbers
separated by a pipe symbol).

central region of the reference genome, and the replicase in this
virus is at the 3′-region (hence no replicases detected). A similar
issue was observed in the case of CYVMV, where no contig

could be assembled for the 3′-region of the reference genome
where the replicase is located. In the PepLCVB and ToLCBDB
cases, despite the relatively high VGAC values, no replicases
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were found. This was expected since betasatellite viruses have
been reported to depend entirely on other viruses for replication,
movement, and transmission (Shafiq et al., 2020). In the
ToLCJoV case, the pipeline could be completed only with the
80/80 schema, but it could be considered artifactual since the
actual replicase of the virus is in the 3′-region, which could
not be assembled (the assembled contigs map to the 5′-half
of the reference genome, which contains a replicase encoded
in the 3′-to-5′ direction). In the ToLCRnV case, the pipeline
could detect replicases only at the 80/80 schema for Centrifuge
and Minimap2. This detection was possible since the consensus
contig assembled using the reads assigned by Centrifuge or
Minimap2 was longer than the consensus contig using the reads
assigned by Kraken2, thus the presence of a replicase in the first
case.

Replicases could not be detected in the datasets R2 and
R3 despite the existence of reads assigned by all software (R2)
or only with Centrifuge (R3). All these cases were manually
inspected verifying that either assembly was not possible (e.g.,
due to length of reads) or, due to reads being localized in a region
of the reference genome that did not contain at least 80% of
a replicase (e.g., the case R2-ASGV for Minimap2 depicted in
Supplementary Figure 5).

Additionally, Nanopore sequencing datasets composed of
19 samples (N1-N19) published by Boykin et al. (2018),
Filloux et al. (2018), Della Bartola et al. (2020), and Leiva
et al. (2020) (Nanopore datasets; Supplementary Table 4) were
also subjected to the pipeline, including 10 target viruses for
detection. According to the performance on these datasets
(Table 1 and Supplementary Table 9), the pipeline was
able to assign viral reads, to assemble a partial or full viral
genome, and to identify replicases in 24 out of 25 cases
(96%) using the criterion of two out of three software and
both schemas (80/80 and 90/90), and 1 case with no read
assignment (case N19-DBV). All the cases were also manually
inspected, finding that some of the replicases were detected
in assemblies with lower VGAC values. For example, in the
cases of N3-PVY (VGAC ≈ 0.5–0.7), N11-PVY (VGAC ≈
0.5), and N12-PLRV (VGAC ≈ 0.3) the 3′-regions of the
viruses could be assembled, which are the regions that encode
their respective replicases. In the case of N15-SLCMV (a 2-
segments virus), reads assigned by Kraken2 could assemble
one of the segments of the virus (thus VGAC ≈ 0.5),
which resulted to be the one encoding the replicase; in the
case of N16-ACMV (a 2-segments virus), reads assigned by
Minimap2 could assemble both segments of the virus (thus
VGAC > 0.9), and reads assigned by Centrifuge and Kraken2
could assemble one segment (VGAC ≈ 0.5), nonetheless the
three assemblies encoded the replicase (in this case, the number
of reads was less than 60, although with ∼3,200 bp length
on average; Supplementary Table 4). Finally, in the case of
N17-EACMV (a 2-segments virus), despite the number of
reads assigned by Minimap2, one segment could be assembled

(the one lacking the replicase; thus VGAC≈ 0.5). The Dataset
N19 was further investigated to confirm the lack of reads
assigned to DBV. Although the dataset was reported to have 156
ONT reads (Filloux et al., 2018), it was not possible to assign
them with the 3 software, nor additionally when using Diamond
and Blast tools.

Overall performance on external datasets is presented in
Table 2 (Supplementary Table 8). Since the datasets are
reported to have only the viruses that can be detected (true
positives), true negative and false positive cases were estimated
from the rest of viruses of the respective panel which account
for misassigned reads by at least one software (see Materials and
Methods). The three software performed with high sensitivity
at the read assignment level (average > 0.9), but specificity
was disparate amongst them with Minimap2 reaching the
highest degree (average = 0.82 in comparison with 0.26–0.36
reached by the other two software). Similar patterns, where
Minimap2 outperformed Centrifuge and Kraken2, were obtained
for precision (0.81 vs 0.55–0.56) and accuracy (0.85 vs 0.61–
0.60). This was in agreement with the FDR values, where
the pattern was the opposite, wherein Minimap2 showed the
lowest rate (0.19 vs 0.45–0.44). Regarding the metrics for
VGAC, sensitivity and accuracy values tended to be lower as
long as cutoffs became more stringent, meanwhile specificity,
precision, and FDR tended to improve reaching the maximal
(1) and the minimal values (0), respectively. In relation to
the detection of replicases, both schemas (80/80 and 90/90)
appeared to have identical measure values in the Viromock and
Nanopore datasets, while the use of either schema appeared
to have more impact in the SmallRNA datasets (for instance,
the average sensitivity at the 80/80 schema was 0.21, while in
the 90/90 schema, 0.14). Altogether, these measures provide
additional rationale for the high performance of the Viromock
(Illumina datasets) and Nanopore datasets (Table 2), in which
the pipeline could completely identify more than 93% of the
tested cases.

From these observations, the 80/80 schema appeared to
be more suitable for the detection of replicases since it
allows obtaining higher performance while still being composed
of stringent thresholds (80% similarity and 80% alignment
length). In that sense, a comparison of the measures obtained
under these thresholds with the measures for VGAC at the
different cutoffs, was carried out so as to find the cutoff at
which similar performance measures are obtained with such
a schema, accounting for the minimum VGAC in which
replicases could be identified. To identify this VGAC cutoff, the
euclidean distance between the measures (sensitivity, specificity,
accuracy, precision, and FDR) was calculated (see Section
“Materials and methods”). A minimal of the distances was
found at VGAC ≥ 0.2 for Viromock datasets, VGAC ≥ 0.4
for SmallRNA datasets, VGAC ≥ 0.1 for Nanopore datasets,
and VGAC ≥ 0.3 taking into account all the datasets
(Figure 6).
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TABLE 1 Summary of performance of pipeline on external datasets.

VGAC Replicase detection (80/90)

Group Dataset Name Virus
abbreviation

Virus name C K M C K M

Viromock Dataset_1 V1 CTV Citrus tristeza virus 0.963 0.958 0.704 1/1 1/1 1/1

CVEV Citrus vein enation virus 0.991 0.991 0.985 1/1 1/1 1/1

Dataset_2 V2 CTV Citrus tristeza virus 0.986 0.992 0.911 1/1 1/1 1/1

CVEV Citrus vein enation virus 0.991 0.991 0.985 1/1 1/1 1/1

Dataset_3 V3 GRLaV2 Grapevine
leafroll-associated virus 2

0.235 0.169 0.038 1/1 0/0 0/0

GRSPaV Grapevine rupestris stem
pitting associated virus

0.232 0.249 0.078 1/1 1/1 0/0

GRVFV Grapevine rupestris vein
feathering virus

0.598 0.556 0.162 1/1 1/1 0/0

Dataset_4 V4 GRBaV Grapevine red
blotch-associated

1.000 1.000 1.000 1/1 1/1 1/1

GRSPaV Grapevine rupestris stem
pitting associated virus

0.997 0.996 0.990 1/1 1/1 1/1

Dataset_5 V5 PVY Potato virus Y 0.953 0.936 0.885 1/1 1/1 1/1

Dataset_6 V6 PVY Potato virus Y 0.914 0.901 0.804 1/1 1/1 1/1

Dataset_7 V7 TSWV Tomato spotted wilt
virus

0.994 0.995 0.994 1/1 1/1 1/1

Dataset_8 V8 PFBV Pelargonium flower
break virus

1.000 1.000 0.980 1/1 1/1 1/1

Dataset_9 V9 PiVB Pistacia emaravirus 1.000 1.000 0.995 1/1 1/1 1/1

Dataset_10 V10 PBNSPaV Plum bark necrosis stem
pitting associated virus

0.994 0.994 0.968 1/1 1/1 1/1

SmallRNA SRR1123893.2 R1 ALPV Aphid lethal paralysis
virus

0.137 0.137 0.120 0/0 0/0 0/0

BPEV Bell pepper endornavirus 0.589 0.572 0.246 1/1 1/1 0/0

CLCuV Cotton leaf curl virus 0.175 0.336 0.056 0/0 0/0 0/0

CYVMV Croton yellow vein
mosaic virus

0.378 0.353 0.282 0/0 0/0 0/0

GalLV Gaillardia latent virus 0.066 0.066 0.000 1/1 1/1 0/0

PeSV Pea streak virus 0.000 0.000 0.000 0/0 0/0 0/0

PepLCBV Pepper leaf curl
Bangladesh virus

0.817 0.829 0.781 1/1 1/1 1/1

PepLCVB Pepper leaf curl virus
betasatellite

0.767 0.830 0.770 0/0 0/0 0/0

TVCV Tobacco vein clearing
virus

0.120 0.126 0.065 1/1 1/1 0/0

ToLCBDB Tomato leaf curl
Bangladesh betasatellite

0.604 0.665 0.770 0/0 0/0 0/0

ToLCGV Tomato leaf curl Gujarat
virus

0.206 0.157 0.125 1/0 1/0 1/0

ToLCJoV Tomato leaf curl virus 0.052 0.044 0.000 0/0 0/0 0/0

ToLCRnV Tomato leaf curl Ranchi
virus

0.561 0.483 0.490 1/0 0/0 1/0

SRR1269627.2 R2 AGCaV Apple green crinkle
associated virus

0.007 0.000 0.000 0/0 0/0 0/0

(Continued)
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TABLE 1 (Continued)

VGAC Replicase detection (80/90)

Group Dataset Name Virus
abbreviation

Virus name C K M C K M

ASGV Apple stem grooving
virus

0.143 0.095 0.038 0/0 0/0 0/0

ASPV Apple stem pitting virus 0.007 0.000 0.000 0/0 0/0 0/0

PrVT Prunus virus T 0.000 0.000 0.000 0/0 0/0 0/0

SRR3680863.1 R3 GFkV Grapevine fleck virus 0.000 0.000 0.000 0/0 0/0 0/0

GLRaV-3 Grapevine
leafroll-associated virus 3

0.000 0.000 0.000 0/0 0/0 0/0

GRSPaV Grapevine rupestris stem
pitting associated virus

0.000 0.000 0.000 0/0 0/0 0/0

GVB Grapevine virus B 0.000 0.000 0.000 0/0 0/0 0/0

HSVd Hop stunt viroid 0.000 0.000 0.000 0/0 0/0 0/0

Nanopore SRR11431596 N1 PVY Potato virus Y 0.979 0.979 0.978 1/1 1/1 1/1

SRR11431597 N2 PVY Potato virus Y 0.988 0.991 0.989 1/1 1/1 1/1

SRR11431603 N3 PVS Potato virus S 0.998 0.998 0.998 1/1 1/1 1/1

PVX Potato virus X 0.998 0.998 0.998 1/1 1/1 1/1

PVY Potato virus Y 0.503 0.519 0.744 1/1 1/1 1/1

SRR11431604 N4 PLRV Potato leafroll virus 0.868 0.868 0.868 1/1 1/1 1/1

SRR11431605 N5 PVY Potato virus Y 0.981 0.981 0.981 1/1 1/1 1/1

SRR11431606 N6 PVY Potato virus Y 0.976 0.967 0.975 1/1 1/1 1/1

SRR11431608 N7 PVY Potato virus Y 0.980 0.980 0.980 1/1 1/1 1/1

SRR11431609 N8 PVY Potato virus Y 0.995 0.995 0.995 1/1 1/1 1/1

SRR11431610 N9 PVY Potato virus Y 0.979 0.979 0.979 1/1 1/1 1/1

SRR11431611 N10 PVY Potato virus Y 0.980 0.980 0.979 1/1 1/1 1/1

SRR11431612 N11 PVS Potato virus S 0.998 0.998 0.998 1/1 1/1 1/1

PVX Potato virus X 0.999 0.999 0.998 1/1 1/1 1/1

PVY Potato virus Y 0.482 0.490 0.544 1/1 1/1 1/1

SRR11431613 N12 PLRV Potato leafroll virus 0.273 0.273 0.273 1/1 1/1 1/1

SRR11431614 N13 PVY Potato virus Y 0.968 0.969 0.968 1/1 1/1 1/1

SRR11431615 N14 PVY Potato virus Y 0.975 0.968 0.975 1/1 1/1 1/1

SRR10491394 N15 SLCMV Sri Lankan cassava
mosaic virus

0.998 0.503 0.998 1/1 1/1 1/1

KE N16 ACMV African cassava mosaic
virus

0.502 0.502 0.987 1/1 1/1 1/1

TZ N17 EACMV East African cassava
mosaic virus

0.998 0.997 0.496 1/1 1/1 0/0

UG N18 ACMV African cassava mosaic
virus

0.993 0.992 0.994 1/1 1/1 1/1

(Continued)
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TABLE 1 (Continued)

VGAC Replicase detection (80/90)

Group Dataset Name Virus
abbreviation

Virus name C K M C K M

SRR7757921 N19 DBV Dioscorea bacilliform RT
virus

0.000 0.000 0.000 0/0 0/0 0/0

YCNMV Yam chlorotic necrosis
virus

0.962 0.912 0.964 1/1 1/1 1/1

YMMV Yam mild mosaic virus 0.916 0.916 0.916 1/1 1/1 1/1

Viruses that must be detected in each dataset are indicated. VGAC values run from 0 (blue) to 1 (red) through 0.5 (yellow). Replicase detection is also indicated, where 1 means a replicase
was found in the assembly, using 80% length coverage and 80% similarity, or 90% length coverage and 90% similarity ([80/90]). Those cases in which replicases are not detected, are
highlighted in red, while those in which replicases are detected only with the 80/80 schema, are highlighted in yellow. C, Centrifuge; K, Kraken2; M, Minimap2. For a full disclosure of
these data, refer to Supplementary Tables 7–9.

Comparison of Viroscope pipeline and
reverse transcriptase polymerase chain
reaction analysis

All sweet cherry samples used in this study were tested by
external and internal RT-PCR methods (see section “Materials
and methods”) to confirm the presence or absence of the 11
viruses previously evaluated by Illlumina sequencing (Table 3

and Supplementary Figure 6). Additionally, seasonal effects
were also assessed. Samples for the same plant specimens were
collected at spring (SD-L1, SD-L2, SD-S1, and SD-S2, from the
shoot development stage) and at the end of summer (SS-L1,
SS-L2, SS-S1, and SS-S2, from the senescence stage). A total
of 88 analyses by RT-PCR (external and internal) account for
the detection of the 11 viruses. The summary of the results
including the internal PCR, the external PCR, and the virus
detection through Viroscope is shown in Table 3. The diagnosis
performed by Viroscope used the following criteria based on
the results aforementioned: a VGAC ≥ 0.3 for a positive virus
detection; a VGAC between 0.1 and 0.3 for a positive virus
detection only when a replicase can be identified; a negative
detection for samples with VGAC < 0.1. Finally a requisite
of agreement between two of the three software used. In this
case, the Pavium panel-II was used as a reference database (see
Section “Materials and methods”). The detailed results of the
diagnosis conducted by the pipeline are depicted in Figure 7
(shoot development stage, SD) and Figure 8 (senescence stage,
SS).

High consistency between HTS-based detection and RT-
PCR analyses was observed, where 82 out of 88 (93.2%) matches
were obtained. The inconsistencies observed between the RT-
PCR analyses were detected only for sample S2, which was found
positive for the CNRMV in the SD stage by the external PCR
and negative in SS for the internal PCR, which was also the case
for PDV. Regarding the Viroscope pipeline, CNRMV resulted
in a positive case for both samples, that is, independently of
the season conditions. On the other hand, the diagnosis by
the pipeline agreed with each RT-PCR test in the case of PDV,

accounting for the seasonality of the sampling. Contrasting the
RT-PCR results obtained in the SD stage and the SS stage,
some discrepancies were found (2 out of 44 cases; 4.5%):
CNRMV in sample SS-S2 and PDV in sample SS-S2. These
results suggest that sampling season affects the sensitivity of
diagnosis, particularly having increased sensitivity in the shoot
development stage.

Noticeably, the diagnosis by Viroscope appeared to be more
sensible than RT-PCR methods (internal and external), since
samples SD-L1, SD-S1 and SD-S2 resulted to be positive for
ApMV (Figure 7), while none of the laboratories were able
to detect it (Table 3). This was more evident considering
the number of reads assigned by at least two of the three
software, which ranged from 10K to 20K reads in the SD-
L1 and SD-S2 samples, and 1.5K to 2.5K reads in the SD-S1
sample. Replicases were also identified by two of the three
algorithms with VGAC between 0.1 and 0.3. In addition, the
contigs obtained through de novo assembly step of the pipeline
were screened, finding that ApMV primers did not map to
the assembled sequences. On the other hand, the diagnosis for
CNRMV in sample SS-S2 was positive according to Viroscope
(VGAC = 1 and with identification of replicases), whereas for
PDV (sample SS-S1) and PNRSV (sample SS-L2) were negative
(VGAC = 0 in both cases). Although the number of reads for
PNRSV (sample SS-L2) reached over 4K reads assigned by two
out of the three algorithms, they were not able to assemble a
contig with a VGAC over 0.1, nor that contained a replicase
(Supplementary Figure 5). The specific cases of CNRMV, PDV
and PNRSV point toward a difference of sensitivity or issues
of amplification likely due mismatches in the primer binding
region (false negative), or cross-contamination during sample as
well as reagents manipulation (false positive). In fact, for PDV or
PNRSV, the inspection of sequences showed that the annealing
regions contained at least one mismatch to the primers used.

Comparing only the seasonal differences in diagnosis
obtained through Viroscope, six cases were detected in SD and
not in SS: ApMV in L1, L2 and S1; PDV in S1 and S2, and
PNRSV in L2. For all these cases VGAC was below the minimum
threshold and assigned reads dropped dramatically between
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TABLE 2 Performance on external datasets.

Group Measure Read assignment VGAC ≥ 0.1 VGAC ≥ 0.3 80/80 Distance

C K M Ave C K M Ave C K M Ave C K M Ave VGAC0.1 VGAC0.3

Viromock Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.96 0.87 0.87 0.80 0.84 1.00 0.93 0.80 0.91 0.0943 0.1491

Specificity 0.24 0.24 0.86 0.44 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0000 0.0000

Precision 0.28 0.28 0.68 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0000 0.0000

Accuracy 0.41 0.41 0.89 0.57 1.00 1.00 0.97 0.99 0.97 0.97 0.95 0.96 1.00 0.98 0.95 0.98 0.0214 0.0339

FDR 0.72 0.72 0.32 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000

SmallRNA Sensitivity 1.00 0.77 0.77 0.85 0.50 0.45 0.36 0.44 0.27 0.32 0.18 0.26 0.27 0.23 0.14 0.21 0.3936 0.1016

Specificity 0.33 0.50 0.92 0.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0000 0.0000

Precision 0.73 0.74 0.94 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0000 0.0000

Accuracy 0.76 0.68 0.82 0.75 0.68 0.65 0.59 0.64 0.53 0.56 0.47 0.52 0.53 0.50 0.44 0.49 0.2547 0.0658

FDR 0.27 0.26 0.06 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000

Nanopore Sensitivity 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.92 0.92 0.92 0.92 0.96 0.96 0.92 0.95 0.0385 0.0544

Specificity 0.22 0.33 0.67 0.41 1.00 1.00 0.94 0.98 1.00 1.00 0.94 0.98 1.00 1.00 0.94 0.98 0.0000 0.0000

Precision 0.64 0.68 0.81 0.71 1.00 1.00 0.96 0.99 1.00 1.00 0.96 0.99 1.00 1.00 0.96 0.99 0.0015 0.0000

Accuracy 0.66 0.70 0.84 0.73 0.98 0.98 0.95 0.97 0.95 0.95 0.93 0.95 0.98 0.98 0.93 0.96 0.0227 0.0321

FDR 0.36 0.32 0.19 0.29 0.00 0.00 0.04 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.04 0.01 0.0015 0.0000

Average All Sensitivity 0.99 0.91 0.91 0.94 0.82 0.81 0.73 0.79 0.69 0.70 0.63 0.68 0.74 0.71 0.62 0.69 0.1662 0.0594

Specificity 0.26 0.36 0.82 0.48 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99 0.0000 0.0000

Precision 0.55 0.56 0.81 0.64 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.0005 0.0000

Accuracy 0.61 0.60 0.85 0.69 0.88 0.87 0.84 0.87 0.82 0.83 0.79 0.81 0.84 0.82 0.78 0.81 0.0955 0.0214

FDR 0.45 0.44 0.19 0.36 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.0005 0.0000

Average Viromock + Nanopore Sensitivity 0.98 0.98 0.98 0.98 0.98 0.98 0.91 0.96 0.89 0.89 0.86 0.88 0.98 0.95 0.86 0.93 0.0622 0.1007

Specificity 0.23 0.28 0.76 0.43 1.00 1.00 0.97 0.99 1.00 1.00 0.97 0.99 1.00 1.00 0.97 0.99 0.0000 0.0000

Precision 0.46 0.48 0.74 0.56 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99 1.00 1.00 0.98 0.99 0.0008 0.0000

Accuracy 0.53 0.56 0.87 0.65 0.99 0.99 0.96 0.98 0.96 0.96 0.94 0.96 0.99 0.98 0.94 0.97 0.0204 0.0326

FDR 0.54 0.52 0.26 0.44 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.01 0.0008 0.0000

Refer to “Materials and methods” for more details on these measures. Distance between measures of VGAC and 80/80 schema. For a full disclosure of these data, refer to Supplementary Table 10. C, Centrifuge; K, Kraken2; M, Minimap2; Ave, Average value.
The average values are indicated in bold.
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FIGURE 6

Distances between measures from external datasets. Comparison of the measures (accuracy, FDR, precision, sensitivity, and specificity)
obtained under different cutoffs of VGAC (viral genome assembly coverage) with the measures obtained for the identification of replicases
under the 80/80 schema. Comparison was carried out in terms of the distance between the measures according to “Materials and methods.”
For a detailed description refer to Supplementary Table 10.

both seasons. Furthermore, in the cases of SD-S1 and SD-S2
for PDV and SD-L2 for PNRSV were diagnosed as positive due
to VGAC > 0.3, but no replicases were identified. These results
again show that the shoot development stage enables increased
sensitivity for virus detection using HTS-based diagnosis.

Lastly, it is important to highlight the use of different
viral panels in the diagnosis process. According to the results
described so far, VGAC values were not enough to diagnose
LChV-1 as positive in sample SD-S2 when using the Pavium
panel-I (Supplementary Figure 2), whereas appearing positive
when using Pavium panel-II (Figure 7). The analysis of
sequences revealed that the reference genome of LChV-1 in the
first panel shares a 76% of sequence identity with the respective
reference genome selected in the second panel, which explains
the differences in the diagnosis.

Web application

The pipeline described in this study was implemented as a
web application, Viroscope, to enable diagnosis of viruses on-
demand from HTS data (accessible at https://www.viroscope.
io). Users submit HTS data and then create an analysis instance
for the pipeline to work and handle such data. Next, a predefined
viral panel is selected to perform virus detection. Once finished,
the pipeline outputs graphical results composed of a positivity

report and taxonomical profile accounting for the abundance
of each virus of the panel in the sample (Figure 9). The
identification of the viruses is based on a read assignment
by at least two of three algorithms (Kraken2, Centrifuge and
Minimap2) and detection cutoff parameters are provided for the
user to define, although suggestions are made according to the
results obtained in this study. Three possible outcomes can be
obtained from the pipeline: (i) a categorically positive diagnosis
which is defined when Viroscope was able to detect either the
presence of a replicase or a VGAC over the upper cutoff defined
by the user, (ii) a categorically negative result which implies
that read assignment was below the lower threshold of VGAC
required for virus detection and with absence of replicase; and
(iii) a positive∗ (positive depicting an asterisk) result which
establishes that read assignment resulted in a VGAC sufficient
for virus detection but lower than what is required to attribute
biological functionality. We surmise that lack of evidence for
viral replication in these cases requires confirmation by other
traditional methods to ensure diagnostic certainty.

Discussion

In the last two decades, HTS methods have become a reliable
tool for plant virus diagnostics including managing disease
risk, emergence, and the adoption of novel phytosanitary rules
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FIGURE 7

Diagnosis on field samples from the shoot development stage using Pavium panel-II. HTS data from field samples (SD-L1, SD-L2, SD-S1, and
SD-S2) were submitted to the pipeline using the Pavium panel-II. X-axis: VGAC scale (0–1); ordinate: abbreviated name of viruses; dotted lines:
VGAC cutoffs at 0.1 and 0.3; filled bars: replicase identified. Supplementary Figure 7 depicts these data together with read assignment levels.
SD, shoot development stage; VGAC, viral genome assembly coverage; ACLSV, apple chlorotic leaf spot virus; ApMV, apple mosaic virus;
CGRMV, cherry green ring mottle virus; CNRMV, cherry necrotic rusty mottle virus; CVA, cherry virus A; LChV-1, little cherry virus 1; LChV-2, little
cherry virus 2; PBNSPaV, plum bark necrosis stem pitting associated virus; PDV, prune dwarf virus; PNRSV, prunus necrotic ringspot virus; PPV,
plum pox virus.

FIGURE 8

Diagnosis on field samples from the senescence stage using Pavium panel-II. HTS data from field samples (SS-L1, SS-L2, SS-S1, and SS-S2) were
submitted to the pipeline using the Pavium panel-II. X-axis: VGAC scale (0–1); ordinate: abbreviated name of viruses; dotted lines: VGAC cutoffs
at 0.1 and 0.3; filled bars: replicase identified. Supplementary Figure 8 depicts these data together with read assignment levels. SS, senescence
stage; VGAC, viral genome assembly coverage; ACLSV, apple chlorotic leaf spot virus; ApMV, apple mosaic virus; CGRMV, cherry green ring
mottle virus; CNRMV, cherry necrotic rusty mottle virus; CVA, cherry virus A; LChV-1, little cherry virus 1; LChV-2, little cherry virus 2; PBNSPaV,
plum bark necrosis stem pitting associated virus; PDV, prune dwarf virus; PNRSV, prunus necrotic ringspot virus; PPV, plum pox virus.
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FIGURE 9

Viroscope.io. The Viroscope web application enables virus plant diagnostics using HTS data. It provides a user-interface to perform the
Viroscope pipeline, and yields the VGAC (viral genome assembly coverage) metric as well as the presence of replicases to interpret the data and
perform diagnosis. The process involves uploading HTS reads into the read library, selecting an analysis against a specific viral panel using
user-inputted thresholds. This generates the analysis which is processed in real-time. The analysis then displays the results in plots that provide
the metrics and suggests the diagnosis according to the selected thresholds, which is then confirmed by the user. The background image for
the Viroscope.io web app was purchased at Shutterstock.com under a standard license.

(Adams et al., 2018; Gauthier et al., 2022). Due to its untargeted
nature, HTS is capable of detecting multiple viruses (known
as well as novel ones) in infected material even when viruses
are present in very low concentrations (Hanafi et al., 2022). In
addition, it has proved to be a major advance for crops, imported
plants and germplasm in which disease symptoms are absent,
unspecific or only triggered by multiple viruses (Massart et al.,
2017; Mehetre et al., 2021). Currently, useful guidelines and
reports are available to facilitate and standardize the adoption of
HTS technologies in plant pest routine diagnostics (Gaafar et al.,
2021; Tamisier et al., 2021; Lebas et al., 2022). Nonetheless and
in face of a changing farming paradigm, more efforts on HTS
data analysis and its accurate interpretation must be established.

In this work, we developed Viroscope, a HTS data pipeline
for virus diagnosis in plants that uses the VGAC and replicase
identification to improve virus detection. One of the main
challenges of virus diagnosis from HTS data is to define the
virus presence when faced with a limiting amount of viral
reads. Further, detection of a pathogen does not necessarily
imply ongoing infection (Kiselev et al., 2020). We surmise
that detection of viral sequences along with their capability to

encode fundamental biological functions, such as replication,
can improve certainty of detection by evaluating a functional
aspect of the virus biology.

The tests to evaluate metrics showed that VGAC is a
more robust measure than read assignment for virus detection.
Read assignment can be prone to generate false positives in
circumstances where the host has sequences derived from viral
origin, such as endogenous viral elements (Massart et al.,
2019). For instance, badnaviruses can integrate their reverse-
transcriptase domains/regions into the host plant genome,
however their presence is not necessarily associated with
infection (Bhat et al., 2016; Serfraz et al., 2021). It also should
be mentioned that the majority of endogenous viral elements
are replication-defective mainly because of sequence decay
or host regulation mechanisms have co-evolved to suppress
their expression. Only five infective elements, all originated
from Caulimoviridae family viruses (which include Badnavirus
genus), have been reported in plants (Serfraz et al., 2021).
However, if a badnavirus replicase is detected in the dataset,
it is highly likely to be functional, and thus represent a
risk to provoke a potential systemic viral infection in certain
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TABLE 3 Pipeline validation by RT-PCR.

Virus1 Season2 Virus detection3 Samples

L1 L2 S1 S2

ACLSV SD PCR (external) − − − −

Viroscope − − − −

SS PCR (internal) − − − −

Viroscope − − − −

ApMV SD PCR (external) − − − −

Viroscope + − + +

SS PCR (internal) − − − −

Viroscope − − − −

CGRMV SD PCR (external) − − + +

Viroscope − − + +

SS PCR (internal) − − + +

Viroscope − − + +

CNRMV SD PCR (external) + + + +

Viroscope + + + +

SS PCR (internal) + + + −

Viroscope + + + +

CVA SD PCR (external) + + + +

Viroscope + + + +

SS PCR (internal) + + + +

Viroscope + + + +

LChV−1 SD PCR (external) − − − +

Viroscope − − − +

SS PCR (internal) − − − +

Viroscope − − − +

LChV−2 SD PCR (external) − − − −

Viroscope − − − −

SS PCR (internal) − − − −

Viroscope − − − −

PBNSPaV SD PCR (external) − − − −

Viroscope − − − −

SS PCR (internal) − − − −

Viroscope − − − −

PDV SD PCR (external) + + + +

Viroscope + + + +

SS PCR (internal) + + + −

Viroscope + + − −

(Continued)

TABLE 3 (Continued)

Virus1 Season2 Virus detection3 Samples

L1 L2 S1 S2

PNRSV SD PCR (external) + + + +

Viroscope + + + +

SS PCR (internal) + + + +

Viroscope + − + +

PPV SD PCR (external) − − − −

Viroscope − − − −

SS PCR (internal) − − − −

Viroscope − − − −

PDS-1 Internal control + + + +

PDS-1, Phytoene desaturase 1, as internal control gene.
1Virus: ACLSV, apple chlorotic leaf spot virus; ApMV, apple mosaic virus; CGRMV,
cherry green ring mottle virus; CNRMV, cherry necrotic rusty mottle virus; CVA, cherry
virus A; LChV-1, little cherry virus 1; LChV-2, little cherry virus 2; PBNSPaV, plum bark
necrosis stem pitting associated virus; PDV, prune dwarf virus; PNRSV, prunus necrotic
ringspot virus; PPV, plum pox virus.
2Season: corresponding to Shoot Development (SD) and Senescence (SS) stages at spring
or end of summer season, respectively.
3Virus detection by RT-PCR method corresponds to this study and external lab. NGS
data was obtained by Illumina sequencing.
(−) no amplification was observed by two step RT-PCR analysis when visualized the PCR
products by eletroforesis in agarose gel (3%) in TBE buffer.
(+) signal on PCR products when visualized by eletroforesis in agarose gel
(3%) in TBE buffer.

circumstances (Bhat et al., 2016), supporting the positive
diagnosis conveyed by Viroscope. Furthermore, the number of
reads is directly influenced by sequencing depth and library
preparation bias, and direct comparisons between datasets
require normalization. In contrast, the use of VGAC is a better
unifying measure despite the sequencing technology used, as
depth of sequencing can differ in several orders of magnitude
between platforms and laboratories, whilst VGAC is the result
of an assembly, accounting for read length as well. VGAC rather
than sequencing coverage demonstrated to be a better metric, as
the latter can exhibit artificially high numbers when reads cover
only a small portion of the genome or when contigs correspond
to different viral variants, which can also exacerbate detection.

In turn, replicase identification from the assembled contigs
enabled investigating the biological implication of different
VGAC thresholds. Defining cutoffs for virus detection is
extremely challenging and involves selecting a value that
maximizes both sensitivity and specificity. We observed that
replicases could be consistently identified only over a VGAC of
0.3, allowing us to define this threshold empirically as a level that
enables a biological interpretation of the metric. Additionally,
using replicases presence (or any other essential viral function)
is already an excellent criteria for virus diagnosis in cases of even
lower VGAC values.
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Validation against external datasets shows that Viroscope
has high diagnostic sensitivity and specificity for total RNA
sequencing data. In contrast, small RNA data showed poor
performance for virus detection with VGAC. Additionally,
Nanopore sequencing data was used to evaluate if our pipeline
is applicable to long-reads, where a 96% of agreement was
obtained in comparison with the original publications (Boykin
et al., 2018; Filloux et al., 2018; Della Bartola et al., 2020; and
Leiva et al., 2020). Long-read sequencing platforms have an
advantage over short-read sequencing for VGAC as, regardless
of the lower base calling quality, longer reads enable the
complete reconstruction of a viral genome with fewer reads
(e.g., ACMV in sample N16). The overall performance is in
agreement with the type of dataset analyzed, that is, the use
of small RNA data appears to have a major impact on the
sensitivity and the accuracy when VGAC or the replicase
identification are concerned. This also reflects the fact that a
greater VGAC cutoff is needed to obtain replicases, in contrast
to Nanopore or the Illumina total RNA reads for which lower
cutoffs were reported. Certainly, VGAC values are affected
by the ability of the pipeline to assemble viruses (with the
correct read assignment), hence the higher cutoffs in that type
of data. In any event, the use of the VGAC allows to reach
the maximum specificity and the minimum FDR even with
VGAC ≥ 0.1, accounting for the elimination of false positives
and false negatives from the minimum VGAC cutoff tested,
being particularly evident in the performance for the Viromock
and Nanopore datasets. Taking into account only total RNA
sequencing data (Viromock and Nanopore datasets), a VGAC
cutoff of ≥ 0.1 results in an average sensitivity of 96%, a
specificity of 99% and a FDR of 1%, which shows that Viroscope
provides reliable detection.

Analysis of field samples by sequencing and RT-PCR showed
that HTS-based virus diagnosis is more sensitive than RT-PCR
and that seasonality of sampling influences viral abundance.
Comparisons between RT-PCR panels showed that for both
spring and summer samples, virus detection by RT-PCR had a
93.2% correspondence to HTS-based detection using Viroscope,
where differences were due to false negative cases and false
positive cases of detection by RT-PCR. Additionally, problems
with PCR design bias were evident in one case in which
primers contained mismatches to a viral variant. Further, the
seasonality of sampling affected the capability to detect six
viruses in summer through HTS. However, all viruses that
could not be detected (ApMV, PDV, PNRSV) were Illarviruses,
a genus named after exhibiting lability and described to be
thermolabile (Hull, 2014). Our observations are consistent with
previous work showing that virus detection can be affected by
seasonal sampling and growing stage of the plant (Villamor
et al., 2022). The cases of PDV and PNRSV are particularly
interesting since no replicases were identified in the SD stage.
For PNRSV, an approximate of 4K reads were assigned, but
this did not produce an assembly with sufficient VGAC to

be diagnosed as positive. Reads were mapped to a specific
region in the 5′-end of one of the RNA segments of the viral
genome. Possible explanations for false-positive detection using
HTS include the presence of endogenous viral elements, an
overcome infection, host sequences being mapped to the virus,
sample cross-contamination during library preparation or index
misassignment (cross-talk) of RNA-Seq reads due to Illumina
instruments using flow cells design (Gauthier et al., 2022).
Nevertheless, this and the ApMV cases emphasize the need to
better understand viral physiology and the use of essential viral
functions during detection for a certain diagnosis.

Viroscope uses a predefined panel of viral targets to perform
diagnosis. This is due to the intended use of Viroscope as a
viral diagnosis pipeline for phytosanitary detection rather than
for discovery. We found that compiling a database of viral
sequences using published reference sequences was insufficient
to provide identification, as databases are generally biased
toward submissions from certain geographical locations or
particular pathogens. One such case occurred in the detection
of LChV-1, as it could be identified by both PCR panels but
not through Viroscope (using Pavium panel-I). The inclusion
of other viral isolates to generate a clustered database (Pavium
panel-II) enabled the successful identification through the
pipeline. Despite this improvement in the diagnosis (if read
assignment is concerned), more misassigned cases could be
obtained as a side effect. The pipeline resulted to be sufficiently
robust when VGAC and/or the identification of replicases
are taken into account as misassigned reads were unable to
assemble contigs. This finding is of paramount importance
when considering performing the diagnosis in particular
geographic contexts since viral isolates could be endemic
or affect specific plant varieties, thus the panel construction
should consider these distinctive features. Moreover, the viral
variants can be dissimilar enough to have an impact on the
diagnosis. Noticeably, the isolate included in the Pavium panel-
II that allowed the identification of LChV-1 shares a 76% of
sequence identity with the respective reference genome present
in the Pavium panel-I.

HTS is now considered as the gold standard in molecular
diagnostics of viral infections since it is a universal technique
which is more precise at profiling pathogens (Rott et al., 2017;
Massart et al., 2019; Kiselev et al., 2020; Mehetre et al., 2021;
Ruiz-García et al., 2021; Soltani et al., 2021). As we have
discussed in this work, plant HTS-based virus diagnostics
is still facing many challenges related to both the analysis
(standardization of metrics, harmonization of cutoff
thresholds, biological interpretation), and at the regulatory-
level implementation (detection of unregulated pathogens,
ease-of-use and adoption). This work addresses some of the
issues regarding the bioinformatics analysis and interpretation
which we believe can aid in the ongoing discussion about
how to implement these methods in real-world scenarios.
Substantial research is still required to evaluate biological

Frontiers in Microbiology 22 frontiersin.org

https://doi.org/10.3389/fmicb.2022.967021
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-967021 October 19, 2022 Time: 11:59 # 23

Valenzuela et al. 10.3389/fmicb.2022.967021

aspects of virus biology, particularly in cases of low abundance
and low VGAC. Functional annotation may aid in increasing
certainty of diagnosis in virus detection in these cases of low
abundance, due to its direct implication in viral physiology
and potential infectivity. Additionally, cross-contamination can
occur at different steps of the laboratory process (i.e., nucleic
acid extraction, library preparation, and/or sequencing) (Rott
et al., 2017; Gauthier et al., 2022; Lebas et al., 2022). This is
a fundamental issue that still needs to be addressed at ‘in-
vitro’ and ‘in-silico’ level during virus diagnosis using HTS
pipelines. In agreement with many scientific researchers in the
field (Rott et al., 2017; Adams et al., 2018; Jones and Naidú, 2019;
Mehetre et al., 2021; Gauthier et al., 2022; Lebas et al., 2022;
Villamor et al., 2022), we endorse that plant pathogen molecular
diagnostics by HTS is becoming a more cost-effective and
scalable solution with new accessible sequencing technologies
already available to perform precise diagnosis. The enormous
benefit of HTS applied to plant health is indispensable to
ensure reliable diagnosis of known and unknown pathogens
and will contribute to more sustainable agriculture and safer
international plant trade practices.
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