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To combat the continued pandemic of COVID-19, multiplex serological assays 

have been developed to comprehensively monitor the humoral immune 

response and help to design new vaccination protocols to different SARS-

CoV-2 variants. However, multiplex beads and stably transfected cell lines 

require stringent production and storage conditions, and assays based on 

flow cytometry is time-consuming and its application is therefore restricted. 

Here, we  describe a phage display system to distinguish the differences of 

immune response to antigenic domains of multiple SARS-CoV-2 variants 

simultaneously. Compared with linear peptides, the recombinant antigens 

displayed on the phage surface have shown some function that requires the 

correct folding to form a stable structure, and the binding efficiency between 

the recombinant phage and existing antibodies is reduced by mutations on 

antigens known to be  important for antigen–antibody interaction. By using 

Phage display mediated immuno-multiplex quantitative PCR (Pi-mqPCR), 

the binding efficiency between the antibody and antigens of different SARS-

CoV-2 variants can be measured in one amplification reaction. Overall, these 

data show that this assay is a valuable tool to evaluate the humoral response 

to the same antigen of different SARS-CoV-2 variants or antigens of different 

pathogens. Combined with high-throughput DNA sequencing technology, 

this phage display system can be  further applied in monitoring humoral 

immune response in a large population before and after vaccination.
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Introduction

Since coronavirus disease-2019 (COVID-19) emerged at the 
end of 2019, the continued severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) pandemic has caused a worldwide 
public health crisis. A member of the β-coronavirus genus, SARS-
CoV-2, has a 29,903 bp genome that codes for structural proteins, 
including envelope (E), spike (S), nucleocapsid (N), and 
membrane (M), and nonstructural proteins required for virus 
infection (Khailany et al., 2020). In the process of virus infection, 
the receptor-binding domain (RBD) of spike can bind angiotensin-
converting enzyme 2 (ACE2) and mediate SARS-CoV-2 entry into 
the cell (Lan et al., 2020). Because of its importance in terms of 
virus tropism and infectivity, the S protein has become the target 
of most vaccines and antibody drugs (Barnes et  al., 2020). 
However, as a single-stranded positive-strand RNA virus with a 
high mutation rate, mutations have accumulated during the 
SARS-CoV-2 pandemic, and the variants with increased fitness 
and potential to escape the immune response have developed, 
increasing the chance of spread (Harvey et al., 2020).

Since it was first reported in January 2020, the variant with the 
D614G mutation has replaced the wild type and become the 
mainstream variant worldwide. Many studies have shown that 
D614G can significantly enhance the infectivity of SARS-CoV-2, 
but this mutation does not affect the neutralizing effect of 
monoclonal antibodies (Yurkovetskiy et al., 2020). At the end of 
2020, the variant B.1.351 (Beta) was first reported in South Africa 
and repeatedly connected with immune escape. B.1.351 has three 
mutations in the RBD region, K417N, E484K, and N501Y. Some 
research has shown that E484K and N501Y change the spatial 
structure of the RBD and reduce the binding efficiency of existing 
antibodies (Weisblum et  al., 2020). B.1.617.2 (Delta) was first 
discovered in India and became a mainstream variant in 2021. The 
mutations L452R and T478K in the RBD region may help the 
virus resist neutralization (Wall et  al., 2021). In addition, the 
P681R mutation improves the replication efficiency of the virus in 
the human airway system (Saito et al., 2022). In November 2021, 
variant B.1.1.529 was named Omicron, which overtook the Delta 
strain in a short time and currently dominates globally. The 
Omicron variant has more than 50 mutations, 30 of which are 
located in spike. Because of its enhanced transmissibility and 
immune evasion capability, Omicron has caused unprecedented 
concerns worldwide (Callaway, 2021). In the context of increasing 
vaccination rates and the emergence of variants, evaluating the 
humoral immune status in a human population toward the 
different variants and adjusting the countermeasures will play an 
essential role in counteracting the spread of the virus.

Serological assays have been performed on linear peptides or 
full-length antigen proteins, and their binding activity has been 
observed with antibodies. Since the COVID-19 pandemic started, 
many serological assays based on the spike, nucleocapsid, and 
other proteins of SARS-CoV-2 have been developed (Torres et al., 
2019; Candel et al., 2020; Zhao et al., 2020). These assays employ 
different techniques, such as ELISA, lateral flow immunoassay 

(LFIA), and chemiluminescence enzyme immunoassay (CLIA). 
However, most of these techniques detect only the antibody level 
to a certain kind of protein in a test. Based on fluorescence 
immunoassays, Luminex can assay the presence or absence of 
antibodies to three different SARS-CoV-2 antigens, such as S1, the 
RBD, and nucleocapsid (xMAP®, 2022). In 2021, Niklas et al. 
transfected wild-type (WT) or mutant S proteins into the Ramos 
human B lymphoma cell line and used a color-based barcoded 
spike flow cytometric assay (BSFA), which allows comparison of 
the level of antibodies to the S protein of WT SARS-CoV-2 and 
variants (Vesper et al., 2021). However, multiplex beads and stably 
transfected cell lines which used in fluorescence immunoassays 
require stringent production and storage conditions, and assays 
based on flow cytometry will still be restricted by throughput. 
Peptide microarrays can immobilize short peptides on solid planar 
supports and detect different pathogen-related peptides or 
epitopes in high throughput (Wang et al., 2020; Vengesai et al., 
2022). Based on recombinant antigens, protein microarray can 
be also used to assay the antibody response to different antigens 
of SARS-COV-2. But considering the high cost of a commercial 
protein microarray, this method will still be  limited in large 
population assay (Bostan et al., 2020; Krishnamurthy et al., 2020; 
Hein et al., 2022). Phage immunoprecipitation sequencing (PhIP-
Seq) was first reported in 2011, and phage-displayed antigen 
libraries are encoded by synthetic oligonucleotides. After 
immunoprecipitation with serum samples, deep DNA sequencing 
can permit the quantification of each peptide’s antibody-
dependent enrichment (Larman et al., 2011). In this way, humoral 
immune assays can utilize to DNA sequencing, significantly 
improving the throughput of the assay (Table 1). However, because 
of the limited length of the synthetic oligonucleotide library, this 
phage display method can detect only linear epitope-directed 
antibodies (Mohan et al., 2018). Stoddard et al. (2021) captured 
immunogenic peptides spanning the entire proteome of SARS-
CoV-2 in a phage-displayed antigen library. Through the humoral 
immune assays of 19 COVID-19 patients, S, N, and ORF1ab were 
identified as highly immunogenic regions. However, due to the 
conformational tendency, this study did not identify any antibody-
dependent enrichment in the RBD.

Here, we describe a polyvalent phage display system based on 
the fusion of the entire RBD of SARS-CoV-2 with the M13 
bacteriophage Protein III and display it on the phage surface. In 

TABLE 1 The throughput of common serological assays to  
SARS-CoV-2.

Test type Throughput

ELISA Single detection

Lateral flow immunoassay (LFIA) Single detection

Chemiluminescence enzyme immunoassay (CLIA) Single detection

Fluorescence immunoassays (FIA) Multiple assays

Peptide microarrays High-throughput assay

PhIP-Seq High-throughput assay
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addition to detecting linear epitope-directed antibodies, the 
recombinant antigens displayed on the phage surface has shown 
some function that requires the correct folding to form a stable 
structure compared with linear peptides, including reduced 
binding efficiency of existing antibodies by mutations and binding 
with receptor ACE2. By using Phage display mediated immuno-
multiplex quantitative PCR (Pi-mqPCR), the binding efficiency 
between the antibody and different SARS-CoV-2 variants was 
compared in the same amplified reaction. In this way, antigen–
antibody reaction can be turned into DNA assays and significantly 
improve the throughput of the assay (Figure 1).

Materials and methods

Plasmids and bacterial strains

The plasmid pUC19 containing the codon-optimized genes 
for the SARS-CoV-2 spike RBD (WT), spike NTD, nucleocapsid 
protein, and hemagglutinin HA1 subunit was commercially 
synthesized (GENERAL BLOT). The gene for the SARS-CoV-2 
spike RBD (Omicron) was a gift from Dr. Zhaohui Qian. The 

protein sequences used for our phage display system were from 
the SARS-CoV-2 Wuhan strain (MN908947), SARS-CoV-2 
Omicron strain (R40B60 BHP 3321001247/2021), influenza virus 
A/Perth/16/2009(H3N2; KM821346), and A/WSN/1933(H1N1; 
HE802059). M13KO7 helper phage was provided by New England 
Biolabs. Competent Escherichia coli TG1 and DH5α cells were 
obtained from Biomed.

Construction of the recombinant phage

The M13KO7 helper phage was used to infect a culture of TG1 
cells. After growth overnight at 37°C, the TIANprep Mini Plasmid 
Kit (TIANGEN) was used to extract the double-stranded DNA 
(dsDNA) phage chromosome. The insert genes and the M13KO7 
phage chromosome were amplified by PCR with primers 
containing 20 base pair overlap. The PCR products were assembled 
by an EasyGeno Assembly Cloning Kit (TIANGEN) at 50°C for 
30 min. The assembly mix was transformed into competent DH5α 
cells. The point mutations in the RBD region were generated by 
QuikChange Lightning (Agilent). The recombinant phage 
chromosome was sequenced (GENEWIZ), and the sequencing 

A B

C

FIGURE 1

Schematic illustration of the polyvalent phage display system and the Pi-mqPCR assay. (A) Construction and synthesis of the recombinant phage. 
(B) Phage immunoprecipitation. (C) Real-time immuno-PCR and high-throughput DNA sequencing assay.
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results were analyzed by SnapGene 4.2 software. To produce the 
recombinant phage, the DH5α strain transformed with the 
recombinant phage chromosome was grown overnight at 37°C and 
centrifuged for 15 min at 8,000 × rpm at 4°C. The supernatant was 
collected, and the recombinant phage particles were precipitated by 
adding 20% (w/v) polyethylene glycol (PEG) 8,000 solution to 
2.5 M NaCl (LABLEAD) in distilled water. Following incubation on 
ice for 1 h, the mixture was centrifuged for 30 min at 10,000 × rpm 
at 4°C, and the pellet was resuspended in 1 ml of PBS and stored at 
4°C. After incubation at 95°C for 15 min, real-time fluorescent 
quantitative PCR was used to detect the titer of the phage.

Western blot assay

Before denaturation at 99°C for 20 min, 10 μl of 5× SDS–
PAGE Sample Loading Buffer (LABLEAD) was added to 40 μl of 
phage (109 copies/μl). Then, the samples were electrophoresed on 
LabPAGE 4–12% 11-well gels (LABLEAD) and transferred to a 
nitrocellulose membrane (APPLYGEN). The nitrocellulose 
membrane was blocked with 5% skim milk for 2 h, after which the 
anti-myc tag antibody (R&D Systems) was added and incubated 
overnight at 4°C. The membrane was washed three times with 
TBST (LABLEAD) and then incubated with a horseradish 
peroxidase-labeled goat anti-mouse IgG secondary antibody 
(1:5000, APPLYGEN) at room temperature for 1 h. After washing 
the membrane three times with TBST, SuperSignal West Pico 
PLUS Chemiluminescent Substrate (Thermo Fisher) was added, 
and the ChemiDoc MP Imaging System (Bio-Rad) was used to 
record images.

Phage immunoprecipitation

The binding protein was coated in a 96-well microplate with 
50 μl of ELISA Coating Buffer (Solarbio) and incubated at 4°C 
overnight. After washing five times with PBST (LABLEAD), 
blocking was performed with a 2% BSA (LABLEAD) solution in 
PBST for 2 h at 37°C. Following further washing with PBST four 
times, 50 μl/well recombinant phage (1011 copies/ml) was added 
to the microplate for 1 h at 37°C. After washing five times with 
PBST, 100 μl of DNase/RNase-free water (Solarbio) was added to 
each well of the microplate and incubated at 95°C for 20 min. The 
eluted phage particles were used as DNA templates in real-time 
quantitative PCR.

Real-time immuno-PCR assay

For the real-time fluorescent quantitative PCR, 10 μl of 2× 
Realab Green PCR Fast Mixture [LABLEAD, forward primer 
(0.5 μM), reverse primer (0.5 μM); Table  2] and 1 μl of eluted 
phage templates were added to each PCR tube. DNase/RNase-free 
water was added to bring the up volume to 20 μl. The thermal 

cycle conditions included 95°C for 30 s, followed by 40 cycles of 
95°C for 10 s and 60°C for 30 s. The amplification system of 
multiplex real-time fluorescent quantitative PCR consisted of 5 μl 
of 2× FastFire qPCR PreMix (TIANGEN), forward primer 
(0.3 μM), reverse primer (0.3 μM), four types of probes (0.4 μM 
each), 0.5 μl of eluted phages, and sterilized water to a final volume 
of 10 μl. After 1 min of incubation at 95°C, 40 PCR cycles were 
performed according to the following temperature regime: 95°C 
for 5 s, 57°C for 10 s, and 72°C for 20 s. The amplification was 
performed using a Stratagene Mx3005P real-time PCR system 
(Agilent). The copies of phage chromosomes were determined by 
plotting Ct versus 10-fold serial dilutions of target gene fragments 
with known DNA concentrations.

Statistical analysis

In this study, statistical analysis was performed by GraphPad 
Prism 8.0 (GraphPad Software) by using a t-test, and p < 0.05 was 
considered significant. Experimental data were expressed as the 
mean ± standard error of the mean.

Results

Construction and synthesis of the 
recombinant phage

To construct the phage displaying polyvalence, the 
RBD-coding gene was inserted into the genome of M13 
bacteriophage between the signal sequence and Gene III. A myc 
tag was used to detect the expression of the recombinant protein 
(Figure  2D). Western blot results indicated that recombinant 
protein III migrated at the expected molecular weight of 
approximately 65 kDa (Ledsgaard et al., 2018; Tai et al., 2020), 
while Protein III of wild-type M13KO7 could not bind with the 
anti-myc-tag antibody (Figure 2A).

The binding activity of recombinant phage was evaluated by 
real-time fluorescent quantitative PCR. After incubation at 95°C 
for 20 min, both the microplates coated with anti-RBD antibody 
(Sino Biological, Cat. # 40150-R007, RRID Number: 
AB_2827979) and anti-myc-tag antibody (APPLYGEN, Cat. # 
C1302-100) showed significant enrichment of phage DNA 

TABLE 2 Primer and probe sequences used in multiplex real-time 
fluorescent quantitative PCR.

Primer/probe Sequence (5′–3′)

Forward primer ACTGCGGCGAGCGGAAAT

Reverse primer GCCACCACTGATTTGAGCG

Probe-1 FAM-AACAACTGGACCGACCG-BHQ1

Probe-2 CY5-CTGGCTCTGCGTGCTGTGCTC-BHQ2

Probe-3 ROX-CTCAAACCCCCGCGCGTTCCCC-MGB

Probe-4 VIC-TCCAAGCGCTCGCATCGTGG-BHQ1
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(Figure 2B). The result shows that the recombinant protein has 
displayed on the surface of the phage and could be identified by 
the antibodies.

The function of the recombinant RBD 
constructs

To test the function of the recombinant RBD constructs, 
we coated the recombinant human ACE2 protein in the microplate 
and assayed the enrichment of recombinant phage and WT 
M13KO7 after immunoprecipitation. In contrast with M13KO7, 
quantitative PCR showed that the recombinant phage can bind 
with human ACE2 protein in a concentration-dependent manner 
(Figure  2C). Next, we  wanted to learn more about how the 
mutations in the phage-displayed RBD construct influenced the 
recognition of anti-RBD antibodies. We  introduced the 
RBD-displayed phage with L452R, T478K mutations (B.1.617.2, 
Delta variant), L452Q, F490S mutations (C37, Lambda variant), 
L452R, E484Q mutations (B.1.617.1, Kappa variant), and N501Y, 
E484K mutations, which are characteristic of the Alpha and Beta 
variants (Figure  3B). After immunoprecipitation with two 
commercially available anti-RBD antibodies (R007 and R118), 
quantitative PCR showed that the enrichment of recombinant 
phage could be  reduced by mutations in the RBD construct, 
especially the L452R, T478K, N501Y, and E484K mutations 
(Figures 3A,B). These data demonstrate that the recombinant RBD 
displayed on the surface of the phage has more function which 
requires the correct folding to form a stable structure than linear 
peptides (Chen et al., 2020).

Phage display mediated 
immuno-multiplex quantitative PCR 
assay

To directly assay the enrichment of different recombinant 
phage, a sequence that could be identified by probes was inserted 
into the phage chromosome (Figure 2D). Based on this system, 
Pi-mqPCR can compare the binding activity of recombinant 
phages displaying different antigens through the same 
amplification reaction. To identify the binding specificity between 
the recombinant phage and different antibodies, we  first 
constructed a recombinant phage with the N-terminal domain of 
the S protein and a C-terminal truncated version of the 
nucleocapsid protein from SARS-CoV-2. In addition, the 
hemagglutinin HA1 subunit from influenza virus A/
Perth/16/2009(H3N2) and A/WSN/1933(H1N1) was also chosen 
to construct the recombinant phage. After coating the microplate 
with the corresponding antibodies, different recombinant phages 
were then equally mixed for immunoprecipitation (Figure 4A). 
The result of Pi-mqPCR shows that all the types of recombinant 
phage showed enrichment in only the microplate coated with the 
respective labeled antibodies. Based on this result, we found that 
this system can be used to identify different antibodies not only 
targeting different viruses (Figure 4B) but also targeting different 
regions of SARS-CoV-2 (Figure 4C).

Having demonstrated that Pi-mqPCR system works well in 
the evaluation of binding specificity, we next used it to identify the 
phage-displayed RBD constructs from different variants. 
We observed binding activity between the phage displaying the 
RBD of the Delta variant (B.1.617.2) and Omicron variant 

A B C

D

FIGURE 2

Construction and synthesis of the recombinant phage. (A) Detection of the expression of the myc tag on wild-type M13KO7 and the recombinant 
phage by Western blotting. (B) The enrichment of the recombinant phage among the antibodies targeted to the spike protein of SARS-CoV-2 and 
myc tag; ***p < 0.001. (C) The enrichment of the RBD-displaying phage and the wild-type M13KO7 by ACE2. (D) The phage vectors used to express 
the polyvalent display phage. The values shown are the average of three independent experiments and their standard errors.
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(B.1.1.529) and that with N501Y and E484K mutations and four 
commercially available anti-RBD antibodies (Sino Biological), 
including a polyclonal antibody (T62: Cat. # 40591-T62) and three 
monoclonal antibodies (R007: Cat. # 40150-R007, RRID Number: 
AB_2827979, R118: Cat. # 40592-R118, and MM48: Cat. # 40591-
MM48). In addition, six anti-SARS-CoV-2 RBD nanobodies 
selected in previous research (N1-N6) were also used for 
immunoprecipitation with the recombinant phage. We observed 
that all four types of recombinant phage could bind the polyclonal 
antibody in a concentration-dependent manner. However, 
compared with the wild type, the recombinant phage that 
displayed RBD mutants showed more reduced enrichment 
(Figure 5A). Interestingly, the titration of the three RBD-specific 
monoclonal antibodies showed a significant difference in the 
enrichment between the RBD constructs from wild-type and 
different SARS-CoV-2 variants. The RBD constructs from the 
Delta variant could still be recognized by the antibodies R007 and 
R118 in a concentration-dependent manner. However, the binding 
activity of the phage-displayed RBD with N501Y and E484K point 
mutations could be observed only at high concentrations of R007 
and MM48, while the RBD region from Omicron showed little 
enrichment with all three monoclonal antibodies (Figures 5B–D). 

Similar to the monoclonal antibodies, the six types of anti-
SARS-CoV-2 RBD nanobodies showed a greater decline in 
binding activity with RBD constructs from different variants, 
especially the Omicron variant (Figure  6). In addition, 
we compared the binding activity between nanobody N4, N6, and 
SARS-CoV-2 (2019-nCoV) Spike RBD Recombinant Protein from 
wild type (Sino Biological, Cat: 40592-V05H) and Omicron 
variant (Sino Biological, Cat: 40592-V05H3). In line with 
Pi-mqPCR, the result of the standard ELISA-based method 
showed that the binding activity between nanobody N4, N6, and 
RBD Recombinant Protein from Omicron variant reduced 
significantly compared with the wild type 
(Supplementary Figure S1). These results are in line with research 
showing that mutations in the RBD region reduce the binding 
efficiency of existing antibodies by changing the spatial structure 
of the RBD (Garcia-Beltran et al., 2021; Li et al., 2021; Liu C, et al., 
2021; Liu Z, et al., 2021; Mlcochova et al., 2021), and the Omicron 
variant shows the most resistance to neutralization by monoclonal 
and convalescent plasma antibodies (Zhang et al., 2022). Based on 
these data, the phage-displayed antigen system can be used to 
evaluate the fine specificity of the antibody response to different 
SARS-CoV-2 variants.

A

B

FIGURE 3

(A) The binding activity between the recombinant phage with different mutations in the RBD construct and two commercially available anti-RBD 
antibodies. (B) Schematic drawing of the phage of the phage-displayed RBD construct with different mutations. The values shown are the average 
of three independent experiments and their standard errors.
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Discussion

In this study, we constructed a polyvalent antigen display 
system based on the M13 bacteriophage. We show here that the 
recombinant antigen could be displayed on the surface of the 
phage and identified by antibodies. Interestingly, we observed 
binding activity between ACE2 and the phage that displayed 
the RBD region of SARS-CoV-2. These data demonstrated that 
the phage-displayed antigen has properties similar to the 
protein found on the viral membrane. Based on this result, the 
phage-displayed antigen can be used not only to detect linear-
directed antibodies but also in some research that requires the 
correct structure. For example, Uppalapati et  al. (2022) 
reconstituted the receptor-binding motif (RBM) of Middle East 
respiratory syndrome coronavirus (MERS-CoV) by phage-
display conformer libraries and selected two reconstituted 
RBM conformers that cross-reacted with a panel of 7 
neutralizing monoclonal antibodies. Combined with phage 
display selection, phage display antigen libraries can also 

be used to predict RBD constructs that have a higher affinity 
for ACE2.

To isolate biomolecules with high affinity, the dual plasmid 
helper phage display system has been used for phage display 
selection (Kumar et al., 2022); compared with this, the polyvalent 
display system can reduce nonspecific binding and has more 
advantages in diagnostic assays. In this research, our system 
could identify antibodies that target more than three antigens in 
the same multiplex real-time fluorescent quantitative 
PCR. Several studies have shown that serological assays based on 
multiple antigens can indeed increase the specificity of testing 
and provide a more comprehensive picture of the humoral 
immune response (Gillot et al., 2020). For example, the research 
of Grossberg et  al. (Grossberg et  al., 2021) showed that the 
antibody levels of S1-RBD IgA, NP IgG, and S2 IgA can be used 
to identify severe, mild, and asymptomatic groups of COVID-19 
patients. Considering increasing vaccination rates, combined 
detection of anti-NP and anti-Spike antibodies can also be used 
to differentiate the immune response from viral infection and 

A B

C

FIGURE 4

Pi-mqPCR was used to identify the binding specificity of recombinant phage. (A) Schematic drawing of the Pi-mqPCR. (B,C) Distribution 
of the phage chromosome that displayed antigens from different viruses (B) and different regions of SARS-CoV-2 (C) following 
immunoprecipitation with the respective labeled antibodies. The values shown are the average of three independent experiments and 
their standard errors.
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accurately assess immunity (Brochot et al., 2022). Compared 
with flow cytometry, the assay based on Pi-mqPCR can 
be combined with nucleic acid amplification tests and is more 
suitable for clinical serological diagnosis.

Since 2020, many studies have shown that mutations in the 
RBD region of SARS-CoV-2 can reduce the binding efficiency of 
monoclonal antibodies and convalescent plasma. However, 
limited to the linear epitope, there are very few phage-displayed 
antigen libraries available for differentiating the immune response 
to SARS-CoV-2 variants (Krishnamurthy et  al., 2020; Liu, 
VanBlargan et al., 2021). In this research, we observed that the 
RBD region of SARS-CoV-2 displayed on M13 bacteriophage can 
be  identified by antibodies and that mutations in the RBD 

decrease the binding efficiency. In line with a previous study, the 
Omicron RBD was mostly unable to bind all the types of 
monoclonal antibodies and nanobodies, while the RBD constructs 
from the Delta variant and those with the N501Y and E484K 
point mutations could still bind with specific antibodies. Based 
on this result, our system can evaluate the humoral response to 
different SARS-CoV-2 variants at least to a certain extent. Due to 
anti-infection measures, the convalescent plasma of COVID-19 
patients is unavailable for our research. However, based on the 
results of this research, short DNA sequences, such as probes used 
in Pi-mqPCR or synthetic barcodes, can be  inserted into the 
genome of M13 bacteriophage and used to measure the phage 
quantity. For high-throughput assay, the phage which has special 
barcodes can be used for immunoprecipitation with sera of the 
people before and after vaccination. After this, high-throughput 
DNA sequencing can analyze the enrichment of phage DNA to 
measure the humoral immune response from individual people 
samples. So combined with high-throughput DNA sequencing 
technology, this phage display system can be further applied in 
monitoring humoral immune response in a large population 
before and after vaccination. Compared with that of antigen 
expressed in eukaryotic systems, the dramatically lower 
manufacturing costs will also expand the application ranges of 
phage-based immunoassays.

Overall, these data show that this Pi-mqPCR assay is a 
valuable tool to evaluate the humoral response to the same 
antigen of different SARS-CoV-2 variants or antigens of 
different pathogens.

A B

C D

FIGURE 5

Pi-mqPCR assay to explore the enrichment of the recombinant phage-displayed RBD constructs from wild-type SARS-CoV-2 and different 
variants by a polyclonal antibody (A) and three monoclonal antibodies (B–D). The values shown are the average of three independent experiments 
and their standard errors.

FIGURE 6

Pi-mqPCR assay to explore the enrichment of the recombinant 
phage-displayed RBD constructs from wild-type SARS-CoV-2 
and different variants by six anti-SARS-CoV-2 RBD nanobodies. 
The values shown are the average of three independent 
experiments and their standard errors.
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