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The biofloc technology (BFT) system has been widely applied in the 

shrimp and fish culture industry for its advantages in water-saving, growth 

improvement, and water quality purification. However, The BFT system usually 

takes a long time to establish, and the extra carbon source input increases the 

maintenance cost of the system. In this study, we aimed to develop a low-cost 

and high-efficient BFT system for Litopenaeus vannamei by applying bacteria 

that could promote the formation of BFT and utilize cheap carbon sources. 

Three bioflocculant-producing bacteria strains (M13, M15, and M17) have 

been screened from a cellulolytic strain collection. All three strains have been 

identified as Bacillus spp. and can use sugarcane bagasse (SB) as a carbon 

source, which is a cheap byproduct of the sucrose industry in the tropic area 

of China. Compared to sucrose, the addition of SB and the three strains could 

improve the biofloc formation rate, biofloc size distribution, ammonia removal 

rate, and the growth performance of the shrimps. These results suggest that 

the bioflocculant and cellulase-producing bacteria strains could promote the 

biofloc formation and the growth of shrimps by using SB as an economic 

substitute carbon source in the BFT shrimp culture system. 
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Introduction

In China and many other areas with a large populations, aquaculture developed rapidly 
to provide a cheap source of protein (Boyd et  al., 2022). The pacific white shrimp 
(Litopenaeus vannamei) has been widely comsume as an excellent resource for its high-
protein and cholesterol meat (Pan et al., 2019). With the development of the aquaculture 
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industry, a large amount of water is required to eliminate the waste 
produced by the farmed animals, which consumed clean water 
resources and polluted the environment (Lebel et  al., 2019; 
Jayanthi et al., 2020). In aquaculture or other eutrophic water 
systems, microorganisms such as bacteria, algae, and protozoans 
can combine with organic debris to form particles which are 
termed biofloc (Jamal et al., 2020). By converting the nitrogenous 
wastes into microbial biomass, biofloc technology (BFT) was 
applied in the aquaculture system to keep the water quality 
without a large-scale water change and the biofloc particles could 
also be taken by shrimps or fish as additional nutrition (Santhana 
Kumar et al., 2018; Putra et al., 2020; Van Doan et al., 2021). In 
shrimp culture system, studies suggested that biofloc can enhance 
the growth and the immune response of shrimps by altering the 
bacterial communities and reusing the waste in the water (Jamal 
et al., 2020; Addo et al., 2021; Panigrahi et al., 2021; Xu et al., 2022).

Bioflocculants are composed of biodegradable polymers, such 
as glycoprotein, polysaccharide, protein, lipids, and nucleic acid 
that are produced by growing microorganisms (Lian et al., 2008; 
Liu et al., 2014). Bioflocculants were widely used in wastewater 
treatment through their ability to aggregate suspended solids 
together and adsorb heavy metals without causing secondary 
pollution for the environment (Liu et al., 2020; Vimala et al., 2020; 
Tsilo et  al., 2022). Certain bioflocculant-producing bacteria 
possessed the antagonistic ability to pathogenic Vibrio species, 
which could be  used to control Vibrio infection and apply as 
inoculum for bioflocculation simultaneously (Tuan et al., 2021). 
Also, adding bioflocculant-producing bacteria into the 
aquaculture system could promote the formation of biofloc (Luo 
et al., 2016; Kasan et al., 2017; Jiang et al., 2019).

Another key element of the biofloc system’s successful 
formation is the carbon/nitrogen ratio (C/N). In regular aquaculture 
systems, inorganic nitrogen concentration accumulates rapidly due 
to high protein feeds input and the C/N ratio is too low to support 
heterotrophic bacteria and the formation of biofloc (Avnimelech, 
1999). Therefore, an extra carbon source must be added to the water 
system to reach an optimal C/N ratio for the biofloc to remove 
residual nitrogen and recycle nutrients (Tayyab et  al., 2021). 
However, an extra carbon source also means a rise in the cost, which 
is not acceptable since the limited profit of common farmed fish and 
shrimps. A low-cost carbon source suitable for the biofloc system is 
urgently needed in this case. Sugarcane bagasse (SB) is the major 
waste product of the sugar industry, especially in tropic areas where 
sugarcane is the main source of sucrose (Dong et  al., 2017). 
Composed mainly of cellulose (35%–50%), hemicellulose (20%–
35%), and lignin (10%–25%), which are difficult to degrade, SB does 
not have large-scale applications in industry and has a low market 
price (Mahmud and Anannya, 2021; Shabbirahmed et al., 2022). 
There have been several applications of SB in wastewater treatment, 
which mainly used SB as a biosorbent to remove dyes, Pb2+, and 
ammonia from water (Krishnani et al., 2006; Aruna et al., 2021; 
Hoang et al., 2021).

In this study, our purpose is to screen bioflocculant-producing 
bacteria strains with the ability to use sugarcane bagasse as the 

main carbon source in shrimp culture factories. The bioflocculant 
produced by these strains will facilitate the biofloc formation and 
the ability to use with a low-cost carbon source could lower the 
maintenance cost of the biofloc shrimp culture system.

Materials and methods

Shrimps

Pacific White Shrimp, Litopenaeus vannamei, were provided 
by Hainan Zhongzheng Aquatic Science and Technology Co., 
LTD. Before the experiments, shrimps were domesticated for 
1 month with continuous water exchange and constant aeration to 
adapt to the environment and feed. The shrimps were fed with 
commercial feed (Guangdong Evergreen Conglomerate Co., LTD., 
Guangdong, China) with a crude protein level of 42%. The feeding 
levels accounted for 3% of the shrimp’s body weight every day. The 
feces and feed residues at the bottom were removed and 30% of 
the rearing water in each tank was replaced daily.

Strains

Strains with potential cellulolytic activity were selected as 
experimental candidates from the Microorganisms Collection of 
South China Sea, MCSCS, constructed in the previous work of our 
laboratory (Ren et al., 2021).

Analysis of flocculating efficiency

The flocculating efficiency of the bioflocculant produced by 
the bacterial culture was measured using kaolin clay suspension 
(Luo et al., 2016). In general, 2 ml of the culture broth, 2 ml of 
CaCl2 (10 g/L), and 46 ml of kaolin clay suspension were mixed 
in a 100-ml beaker. The mixture was stirred at 250 r/min for 
1 min and 60 r/min for 3 min with a vortex mixer and then kept 
still at room temperature for 5 min. The supernatant was 
sampled 2 cm below the surface and measured via 
spectrophotometry at 550 nm. The control was similar to the 
above steps except that the fermentation broth was replaced 
with an uninoculated culture medium. All assays were 
conducted in three duplicates.

The flocculating activity was calculated as follows:

 
Flocculating activity A B A% /( ) = −( ) ×100

where A and B represent the OD of the control and real 
samples, respectively.

To verify the stability of the flocculant-producing ability of 
each strain, the top 10 strains of high flocculating activity were 
continuously cultured and tested for 3 generations.
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16S rDNA analysis

The selected 3 flocculant-producing bacteria isolates were 
identified by molecular genetic analysis. The strains were cultured 
in broth for 16 h, then the cells were harvested and subjected to 
genome DNA extraction by a DNA extraction kit (Tiangen 
Biotech (Beijing) Co., LTD., Beijing, China). The universal primers 
of 27F (5′-GAGTTTGATCATGGCTCAG-3′) and 1492R 
(5′-CGGTTACCTTGTTACGACTT-3′) were utilized to amplify 
the 16S rRNA gene fragments. Polymerase chain reaction (PCR) 
was performed in a 50 μl reaction system containing 22.5 μl Green 
Taq Mix, 22.5 μl double-distilled water, 2 μl upstream primer, 2 μl 
downstream primer, and 1 μl DNA template. The PCR 
amplification was performed as follows: initial denaturation at 
95°C for 5 min; 30 cycles of 94°C for 1 min, 50°C for 20 s, and 72°C 
for 2 min; and final extension at 72°C for 10 min. Bacterial 
sequences were compared with 16S rDNA reference gene 
sequences by BLAST.

Biolog GEN III MicroStation system assay

The Biolog MicroStation System and GEN III microplate 
(Biolog Inc., Hayward, CA, United  States) is an automated 
microbial identification system based on aerobic metabolic 
activities. The GEN III plate contains 95 different carbon 
substrates based on interpreting patterns of sole carbon substrate 
utilization indicated by color development in a 96-well microtiter 
plate. By analyzing the similarity of the metabolic fingerprints 
between test strains and standard strains in the kinetic database 
by Biolog software, the strains are identified. In this study, the 
strains M13, M15, and M17 were first cultured on BUG agar 
(provided by Biolog) and inoculated into a GEN III plate. After 
being cultured at 30°C for 24 h, the plate was read by a Biolog 
MicroStation reader to generate strain identification (Wozniak 
et al., 2019).

Cellulolytic activity assay

Confirming of the cellulolytic bacteria was conducted by 
carboxymethylcellulose (CMC) agar plate (0.2% NaCl, 0.5% CMC 
sodium salt, 0.67% Na2HPO4, 0.13% (NH4)2SO4, 0.05% 
MgSO4·7H2O, and 1.7% agar) and Congo red staining method 
(Ma et  al., 2020). The hydrolysis capacity (HC) value, which 
determined the enzymatic activity, was calculated from the ratio 
of clear zone diameter over the colony zone diameter.

Endoglucanase (CMCase) and filter paper activity (FPase) 
were used to estimate the cellulolytic activity, which was measured 
by the dinitrosalicylic acid (DNS) method using glucose as the 
standard (Azkawi et al., 2018).

The endoglucanase activity was determined by measuring the 
released reducing sugar. The seed bacteria were inoculated at a 
ratio of 1% (v/v) into CMC broth (0.2% NaCl, 0.5% CMC sodium 

salt, 0.5% tryptone, and 0.1% yeast extract) at 30°Cfor 24 h under 
180 rpm. The cell-free supernatant was obtained by centrifugation 
(5,000 rpm, 4°C, and 15 min) to examine the activities of crude 
cellulase. Briefly, 1.5 ml CMC-Na solution and 0.5 ml enzyme 
solution were added to a 25 ml test tube at 50°C for 30 min. The 
enzyme reaction was terminated by adding 1.5 ml of DNS reagent 
and then boiled for 5 min. The optical density of the reaction 
mixture was measured at 540 nm.

The FPase activity was tested by incubating 0.5 ml of the 
supernatant diluted in 1 ml buffer solution of sodium citrate 
(100 mM, pH 4.8) with a filter paper strip of 1.0 × 6.0 cm (≈50 mg) for 
1 h at 50°C. The color development process and determination were 
consistent with the CMC enzyme activity determination method.

In this experiment, the gravimetric method was used to 
determine the decomposition rate of Sugarcane bagasse (SB). 
Firstly, 1.25 ml of the fresh cultured bacterial solution was 
transferred to conical bottles containing 25 ml medium with 0.1 g 
bagasse. While the medium without bacteria was used as blank 
control, and all groups were cultured at 30°C and 180 r/min for 
3 days. On the third day, a 7 ml neutral washing solution was 
added to the samples and then sterilized. After cooling to room 
temperature, the samples were poured into the crucible of the core 
which was dried in advance, and the water was filtered by the 
filtration pump. Then, 10 ml of absolute ethanol and 95% ethanol 
were added in sequence. Finally, the crucible with the sample was 
dried to constant weight and weighed.

The decomposition rate of SB of 3 strains was calculated 
according to the following formula:

 
Decomposition rate %

(
%

)( ) = − −
×

X W W
X
2 1

100

where X is the weight of the original SB; W1 is the constant 
weight of the sand core crucible; W2 is the constant weight of sand 
core crucibles with remained SB.

Biofloc culture system

The shrimp biofloc culture system was carried out using 200 L 
circular tanks. Each tank was filled with 100 L seawater and reared 
with L. vannamei. The shrimp’s initial body weight and body 
length were 0.81 ± 0.08 g and 4.33 ± 0.45 cm, respectively.

The biofloc protocols were adopted BFT shrimp culture 
studies with some modifications (Santhana Kumar et al., 2018; 
Panigrahi et al., 2020; Magana-Gallegos et al., 2021). A total of six 
treatment groups were set up in the experiment, as shown in 
Table 1. The shrimp feeds containing ~40% protein was added into 
each tank daily with the amount of 3% shrimp body weight. The 
amount of sucrose and sugar bagasse added with feed was 190% 
and 196% of the feed additive, respectively, which were calculated 
by the formula of Avnimelech (1999) to reach a C/N ratio of 15. 
Each strain was added to the water body to a final concentration 
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of 106 CFU/ml at the beginning of the experiments. All 
experiments were carried out with zero water changes, and 
freshwater was added as needed to compensate for evaporation 
and sampling losses. All the culture trials were repeated in a 
subsequent replication.

The biofloc parameters

The biofloc volume (BFV) was monitored every 3 days by 
using 1 l Imhoff cones after a settlement period of 30 min. The 
settled volume of biofloc was then noted down from the Imhoff 
cones reading (Avnimelech, 2007; Avnimelech et al., 2009). At the 
end of the experiment, samples of water were harvested for 
detecting the particle distribution using a Bettersize BT-93OOH 
laser particle size distribution analyzer (Bettersize Instruments 
Ltd., Liaoning, China; Gao et al., 2018).

The shrimp growth parameters

After the experiment, vernier calipers and electronic balances 
were used to measure the biological body length and body weight 
of the shrimps, while the number of the shrimp was recorded, and 
assessed for the growth parameters including weight gain (WG), 
feed conversion ratio (FCR), feed efficiency ratio (FER), and 
specific growth rate (SGR) as follows.

 

WG W W W FCR

Feed given W body weight gain W

f i i

d w

% / ,

/

( ) = −( )× =

( )
100

(( )

= ( ) = ( ) −
( )









 ×

,

/ , %
ln

ln /
.FER FCR SGR

W

W N

f

i
1 100

Where Wf = final weight, Wi = initial weight, Wd = dry weight, 
Ww = wet weight, ln = natural log and N = number of culture days 
(Irshad et al., 2016).

Determination of water quality 
parameters

Water samples were collected every 3 days from each tank and 
filtered through 0.45 μm G F/C filter paper under vacuum pressure. 
Half of the water samples were analyzed spectrophotometrically for 
ammonium-nitrogen (NH4-N) and nitrite nitrogen (NO2

−–N) 

using a CleverChem automatic discontinuous chemical analyzer 
(DeChem-Tech.GmbH).

Data analysis

SPSS Statistics software (SPSS Inc. version 26.0) was used to 
conduct the statistical analysis. One-way ANOVA and Duncan’s 
multiple comparisons of the means were used to determine the 
differences among the treatment groups. All graphics were 
generated using the GraphPad Prism 6.01 software, and the 
findings were expressed as mean ± standard error (SD) and the 
differences were considered significant at the p < 0.05.

Results

Screening of bioflocculant-producing 
bacteria

Eighty-six cellulolytic bacteria strains that were isolated from 
the marine environment in the previous study were selected for 
flocculating activity assay (Ren et al., 2021). Thirty strains were 
determined to have flocculating activity over 30% (Table 2). The 
10 strains with flocculating activity exceeding 80% were 
continuously tested for three generations to verify the genetic 
stability of bioflocculant-producing. Finally, three bacteria strains 
(M15, M13, and M17) were selected for further study for their 
stable bioflocculant-producing ability (Table 3).

Identification and characterization of 
bioflocculant-producing bacteria

Molecular analysis of the 16S rDNA sequences results showed 
that the strains M15, M13, and M17 were Bacillus altitudinis, Bacillus 
pumilus, and Bacillus cereus, respectively (Table 4). The nucleotide 
sequence of the 16S rDNA sequences had been submitted to 
GenBank and assigned accession number ON870799(M13), 
ON870800(M15), and ON870801(M17). The Biolog GEN III assay 
results also confirmed that all three strains belonged to the Bacillus 
sp. The strains M13 and M17 had identical results compared to 16S 
rDNA analysis. The M15 strain which was identified as B. altitudinis 
was recognized as B. pumlius/safensis because there is no 
B. altitudinis information in the Biolog database and the system gives 
the closest strain instead (Table 5). The details of Biolog GEN III 

TABLE 1 Experimental group setup.

Group M13 + S M13 + B M15 + S M15 + B M17 + S M17 + B

Sucrose + − + − + −

Sugar bagasse − + − + − +

Strains M13 M13 M15 M15 M17 M17
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plate data are presented in the Supplementary material 
(Supplementary Figure S1; Supplementary Table S1).

Cellulolytic activity and ability of 
sugarcane bagasse utilization

All three strains showed clear zones around the bacterial 
colonies after being stained with Congo red on CMC agar plates 
(Figure 1). Strain M17 had the largest hydrolysis capacity (HC) 
value at 2.55 ± 0.06, and HC values of M13 and M17 were 
2.21 ± 0.03 and 2.08 ± 0.1, respectively (Figure 2A). Also, strain 
M17 showed the highest CMCase activity (2.101 ± 0.08) in the 
culture supernatant, and the CMCase activity of M13 was 
significantly lower (Figure 2B). All the strains possessed FPase 
activity with no significant difference (Figure 2C).

The sugarcane bagasse decomposition experiment results 
showed that strains M13 and M15 could decompose 24% and 22% 

SB in 3 days, respectively, while strain M17 had the lowest 
decomposition rate which is 7% in 3 days (Figure 3).

The biofloc parameters

After the M13, M15, and M17 strains were added to shrimp 
culture tanks with different carbon sources (Table 1), the biofloc 
system was monitored for 27 days. As shown in Figure 4, all the 
groups with the sugarcane bagasse have formed biofloc quicker 
and higher than the sucrose groups. The biofloc volume in the 
system contained SB and strain M13 raised on day 6 and reached 
a high level on day 9, while the BFV in sucrose groups started to 
rise on day 9 and maintained at a low level until the end of the 
experiment (Figure 4A). In the strain M15 and M17 groups, SB 
promoted BFV 3 days after the experiment started, while in 
sucrose groups, biofloc started to accumulate after 9 days, and only 
strain M17 could promote BFV with sucrose close to SB group 
after 21 days (Table 6; Figures 4B,C).

TABLE 2 The flocculation activity of 30 strains of marine bacteria.

Strain ID Flocculation 
rate (%)

Number of 
strains

Flocculation 
rate (%)

M15 93.46 ± 2.87 C51 72.37 ± 2.39

C50 86.30 ± 2.44 C64 71.98 ± 7.25

M13 85.40 ± 4.63 M20 69.91 ± 3.98

C5 84.55 ± 3.04 C88 69.76 ± 5.44

C70 82.47 ± 4.42 C67 65.91 ± 9.90

M17 82.44 ± 10.58 C26 65.37 ± 4.82

C40 82.36 ± 0.70 Z1 62.53 ± 8.72

C34 82.13 ± 5.33 C21 59.85 ± 4.34

C28 81.37 ± 1.25 C61 59.16 ± 2.72

C29 80.18 ± 1.40 C18 56.06 ± 4.54

M5 79.44 ± 8.34 C78 52.23 ± 0.46

C49 79.42 ± 2.91 C62 49.62 ± 14.34

C8 77.87 ± 2.65 Z2 43.81 ± 5.49

C66 77.23 ± 1.28 Z4 36.61 ± 9.83

C6 77.23 ± 1.28 M4 30.71 ± 9.78

Each value represents a mean ± SD (n = 3).

TABLE 3 Genetic stability of 10 flocculant-producing marine bacteria.

Number of 
strains

Generation 1 Generation 2 Generation 3

M15 95.16 ± 1.88 92.63 ± 2.86 93.46 ± 2.87

M13 89.17 ± 4.63 85.40 ± 2.63 86.40 ± 4.33

M17 92.44 ± 2.58 82.14 ± 3.58 84.44 ± 1.58

C5 84.55 ± 3.04 78.51 ± 2.02 _

C28 81.37 ± 1.25 76.10 ± 1.25 –

C29 80.18 ± 1.40 – –

C34 82.13 ± 5.33 78.13 ± 3.33 –

C40 82.36 ± 0.70 64.73 ± 0.70 49.50 ± 0.90

C50 86.30 ± 2.44 69.84 ± 2.34 66.84 ± 2.34

C70 86.73 ± 4.42 82.47 ± 4.22 56.30 ± 3.42

Each value represents a mean ± SD (n = 3) and –: No flocculation activity.

TABLE 4 The results of 16S rDNA identification.

Number of strains Identification result Similarity

M13 Bacillus altitudinis 100%

M15 Bacillus pumilus 99.87%

M17 Bacillus cereus 99.93%

TABLE 5 The identification results of 3 strains by Biolog system.

Number of 
strains

Standard strain PROB DIST SIM

M13 Bacillus pumilus/safensis 0.953 6.568 0.555

M15 Bacillus pumilus/safensis 0.956 4.006 0.687

M17 Bacillus cereus/thuringiensis 0.861 5.329 0.631

FIGURE 1

Cellulase hydrolysis circle of the three strains. The surrounding 
clear zone of the colonies indicated the ability of the bacteria to 
consume CMC on the plates.
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A

B

C

FIGURE 2

Comparison of the cellulolytic activity of the three strains. 
(A) H/C ratio, (B) CMCase, and (C) FPAse.

FIGURE 3

The decomposition rate of SB by the three strains. **p < 0.01.

A

B

C

FIGURE 4

Effects of different carbon sources on BFV with each strain. 
(A) Strain M13, (B) Strain M15, and (C) Strain M17.
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The particle size distribution of the biofloc was influenced by 
both the strain and the carbon sources input into the system. The 
largest proportion of the particles consisted of medium-sized 
particles (10–100 μm). In the M13 and M15 groups, the percentage 
of medium-sized particles was around 85% with no significant 
between the two carbon sources (Figures  5A,B). In the M17 
groups, 91.45% of particles were medium-sized when SB was 
added into the system and the same size percentage was 80.85% 
when sucrose was used (Figure 5C). The sucrose had promoted 
the small-sized particles (3–10  μm) formation while the SB 
addition had stimulated the development of large-sized particles 
(>100 μm) in all the strain groups (Figure 5).

The shrimp growth parameters

The growth performance of shrimp in different treatments is 
shown in Figure  6. In the M13 strain group, the SB addition, 

compared to sucrose addition, significantly increased the WG, 
FCR, and SGR of the shrimps by 66.2%, 0.99%, and 1.63%, 
respectively, and reduced the FER by 0.19% (Figure  6A). The 
results of M15 and M17 strains also showed that SB had a positive 
effect on shrimp growth (Figures 6B,C).

Water quality parameters

During the 27 days culture period, the concentration of 
ammonium-nitrogen (NH4-N) increased gradually and peaked on 
the 12th day. With the addition of SB, all the three strains could 
decrease NH4-N more quickly than sucrose addition and 
maintained at a relatively low level (Figure 7). The concentration 
of nitrite nitrogen (NO2-N) raised over time and stayed at a high 
level after 12 days when using SB as a carbon source. However, 
NO2-N of each sucrose group increased slowly and reached the 
highest level after 21 or 24 days (Figure 7).

TABLE 6 The BFV data of 3 strains.

Time/day M13 M15 M17

Sucrose Sugar bagasse Sucrose Sugar bagasse Sucrose Sugar bagasse

0 0 0 0 0 0 0

3 0.01 + 0.02 0.11 + 0.02 0.05 + 0.01 1.33 + 0.12 0.11 + 0.02 1.40 + 0.15

6 0.11 + 0.20 0.91 + 0.19 0.15 + 0.01 6.65 + 1.19 0.21 + 0.02 1.28 + 0.13

9 0.80 + 1.67 7.75 + 1.65 2.95 + 0.62 7.25 + 1.28 0.75 + 0.06 6.25 + 1.04

12 1.25 + 1.11 6.50 + 1.10 5.25 + 1.16 7.10 + 0.95 1.55 + 0.23 8.35 + 1.26

15 1.30 + 1.11 7.00 + 1.10 0.90 + 0.05 10.80 + 1.64 3.15 + 0.57 7.50 + 0.86

18 2.85 + 0.68 8.25 + 0.67 0.50 + 0.07 11.60 + 1.81 2.00 + 0.24 5.35 + 0.28

21 1.56 + 1.36 8.50 + 1.35 0.55 + 0.09 11.50 + 1.84 5.10 + 0.95 7.00 + 0.73

24 2.15 + 2.04 11.75 + 2.02 1.15 + 0.23 10.10 + 1.44 3.25 + 0.31 4.00 + 0.00

27 2.45 + 1.30 9.75 + 1.28 3.15 + 0.57 9.60 + 1.32 4.00 + 0.12 5.75 + 0.18

A B C

FIGURE 5

Effects of different carbon sources on the particle size distribution of bio floc. (A) Strain M13, (B) Strain M15, and (C) Strain M17.
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Discussion

Because of their biodegradability, innocuity, safety to 
humans, and environmental friendliness, biofloculants have 

attracted more attention in aquaculture and wastewater 
treatment systems than chemical flocculants (Okaiyeto et al., 
2020). Microorganisms that can produce different kinds of 
bioflocculant distribute widely in both soil and water 
environments. Many efforts have been made to isolate 
bioflocculant-producing bacteria which were identified in 
different species, such as B. subtilis (Jiang et  al., 2019), 
B. megaterium (Luo et al., 2016), B. licheniformis (Chen et al., 
2017b), Klebsiella sp. (Ma et al., 2019), Pseudomonas sp. (Qi 
et  al., 2019), Alteromonas sp. (Chen et  al., 2017a), and 
Halobacillus sp. (Cosa et  al., 2013). Bacillus has been used 
extensively as a probiotic in aquaculture to improve feed 
utilization, stress response, immune response, and disease 
resistance of aquatic animals (Kuebutornye et al., 2019). The 
sporulation capacity and non-pathogenic character make 
Bacillus sp. bioflocculant-producing excellent candidates to 
apply in the biofloc aquaculture system. In this work, three 
bacteria strains with high flocculating activity determined by 
kaolin clay suspension assay were isolated from previously 
constructed Microorganisms Collection of South China Sea, 
MCSCS (Ren et al., 2021). The flocculating efficiency activity of 
strain M15 was the highest and stablest (92.63%–95.16%) 
according to the experiment results (Table 3), which is similar 
to the high bioflocculating strains from previous studies, e.g., 
Klebsiella sp. OS-1(95%) and Pseudomonas sp. HP2 (92.5%; Ma 
et al., 2019; Qi et al., 2019). The strain M13 and strain M17 
exhibited lower flocculating efficiency but they were still over 
80% (82.14%–92.44%). All the three strains could maintain the 
high ability to aggregate kaolin clay suspension after continuous 
cultured for generations compared to other strains, which made 
them suitable for long-term biofloc culture system.

The 16S rDNA sequence alignment analysis and Biolog GEN 
III Microplate assay results all suggested they belong to the Bacillus 
sp. (Tables 4, 5). There have been several studies on B. cereus as 
bioflocculant-producing strains in water treatment and microalgae 
harvesting (Sarang and Nerurkar, 2020; Zhang S. et  al., 2021; 
Zhang Y. et al., 2021). In this work, strain M17 was also found 
closely related to B. cereus, which might have the same potential 
applications as previous reports. The carbon source metabolic 
characteristics of B. altitudinis does not exist in the Biolog 
database, so the GEN III Microplate assay identified strain M13 as 
B. pumilus/safensis, the same as strain M15 but they still differed 
in carbon source metabolic abilities (Supplementary Figure S1; 
Supplementary Table S1). The B. altitudinis and B. pumilus strains 
were found useful in antimicrobial activity, stress tolerance, and 
plant growth-promoting (Li et al., 2020; Shah et al., 2021), but 
there were few reports on their bioflocculant-producing ability 
and application in wastewater treatment.

The cellulolytic activity assay also confirmed all three strains 
could digest carboxymethylcellulose (CMC) and filter paper 
(cellulose; Figures 1, 2) since they were identified as cellulolytic 
bacteria in the previous study (Ren et al., 2021). However, the 
sugarcane bagasse decomposition results showed that strain M13, 
which exhibited the lowest CMCase activity of the three strains, 

A

B

C

FIGURE 6

Growth performance of shrimps with different strains. (A) M13, 
(B) M15, and (C) M17.
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had the highest SB decomposition rate and strain M17 had the 
opposite results (Figure 3). These results might due to the complex 
composition of SB which could not be hydrolyzed thoroughly only 
by cellulase (Alokika et al., 2021). Our study also suggests that 
strain M13 has more enzymes to utilize different kinds of carbon 
sources, especially with complex compositions.

To maintain an appropriate C/N ratio for the biofloc to 
form and continue to work, many carbon sources have been 
applied to the aquaculture system. Small molecule compounds, 
e.g., glucose, acetate, and glycerol, could be used by bacteria 
quickly in the biofloc system (Crab et al., 2009), but their prices 
are too high to apply on large scale. Sucrose is also an effective 
carbon source for biofloc-based shrimp culture systems (Guo 
et  al., 2022). In this study, we  investigated the feasibility of 
applying sugarcane bagasse, the byproduct of the sucrose 
industry, as a substitute for sucrose in biofloc technology (BFT) 
systems. Polysaccharides, such as all kinds of the starch-rich 
compound and their enzyme-hydrolyzed products have already 
been studied in the BFT system to reduce the cost of extra 
addition other than feeds (Shang et al., 2018; Panigrahi et al., 
2019). Solid-phase biodegradable polymers (BDPs), such as 
Polyhydroxybutyrate (PHB) and polycaprolactone (PCL), could 
be used as carbon sources as well as biofilm carriers for bacteria 
to aggregate (Liu et  al., 2019). SB, a low-cost insoluble 
polysaccharide, is a promising alternative carbon source for 
BFT. To overcome the disadvantage of hard to degrade, we also 
screened SB degradable bioflocculant-producing bacteria to add 
to the system simultaneously. The results showed that, compared 
to sucrose, SB with the three selected strains could promote the 
biofloc and the growth of shrimp at the same time. The BFV of 
the groups supplied with SB started to raise after 3 or 6 days and 
maintained at a high level from the day 12 to the end of our 
experiment, whereas the BFV of sucrose groups kept at a low 
level with strains M13 and M15 and only strain M17 promoted 
BFV close to SB group at the end (Figure 4). Rich in protein, 
lipid, and other nutrition, the bioflocs can be  considered a 

complementary food source for cultured shrimps or fish, which 
could reduce the feed cost by lower the FER (Gallardo-Collí 
et  al., 2019). The large-size biofloc (>100 μm) contained the 
highest levels of protein and lipid (Ekasari et al., 2014). In our 
study, the SB addition increased the ratio of the large-size 
biofloc significantly (Figure 5), which lead to a high weight gain 
(WG) and specific growth rate (SGR) of the shrimp (Figure 6). 
One of the important functions of BFV is water quality 
purification. Since ammonia (NH3-N) and nitrite (NO2) are 
highly toxic for the animals in water (Putra et al., 2020), we paid 
special attention to these two nitrogenous wastes which are 
mainly derived from the high protein feed. as shown in Figure 7, 
the concentration of NH3-N of different groups all raised until 
day 12 and started to decline, but the high points of strain M13 
and M17 with SB were lower than the sucrose groups. All SB 
groups had better ammonia removal rates compared to sucrose 
groups. The nitrite accumulated in all tanks as the continuous 
feed input and no water exchange but slowly in the tanks 
containing sucrose. These results suggested that M13, M15, and 
M17 do not possess a strong denitrification ability and sucrose 
might facilitate other denitrifying bacteria growth in the water. 
To achieve a better result of nitrite nitrogen removal, other 
aerobic denitrification bacteria strains or microalgae could 
be added to the biofloc system for further study.

Conclusion

In conclusion, we screened three bioflocculant and cellulase-
producing Strains, M13(B. altitudinis), M15(B. pumilus), and 
M17(B. cereus), with the ability to promote biofloc formation by 
using sugarcane bagasse as a carbon source. When applied these 
strains into the BFT system with SB as a replacement carbon 
source of sucrose, the biofloc, and shrimp growth have been 
improved, and the NH4-N concentration has been controlled 
under zero water change. A low-cost and high-efficient BFT 

A B C

FIGURE 7

Changes in water quality parameters of BFT system with different strains. (A) M13, (B) M15, and (C) M17.
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system for L. vannamei has been preliminarily established in 
our study.
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