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Introduction: Use of antimicrobial drugs (AMDs) in food producing animals 

has received increasing scrutiny because of concerns about antimicrobial 

resistance (AMR) that might affect consumers. Previously, investigations 

regarding AMR have focused largely on phenotypes of selected pathogens and 

indicator bacteria, such as Salmonella enterica or Escherichia coli. However, 

genes conferring AMR are known to be  distributed and shared throughout 

microbial communities. The objectives of this study were to employ target-

enriched metagenomic sequencing and 16S rRNA gene amplicon sequencing 

to investigate the effects of AMD use, in the context of other management 

and environmental factors, on the resistome and microbiome in beef feedlot 

cattle.

Methods: This study leveraged samples collected during a previous longitudinal 

study of cattle at beef feedlots in Canada. This included fecal samples 

collected from randomly selected individual cattle, as well as composite-fecal 

samples from randomly selected pens of cattle. All AMD use was recorded and 

characterized across different drug classes using animal defined daily dose 

(ADD) metrics.

Results: Overall, fecal resistome composition was dominated by genes 

conferring resistance to tetracycline and macrolide-lincosamide-

streptogramin (MLS) drug classes. The diversity of bacterial phyla was greater 

early in the feeding period and decreased over time in the feedlot. This decrease 

in diversity occurred concurrently as the microbiome represented in different 

individuals and different pens shifted toward a similar composition dominated 

by Proteobacteria and Firmicutes. Some antimicrobial drug exposures 

in individuals and groups were associated with explaining a statistically 
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significant proportion of the variance in the resistome, but the amount of 

variance explained by these important factors was very small (<0.6% variance 

each), and smaller than associations with other factors measured in this study 

such as time and feedlot ID. Time in the feedlot was associated with greater 

changes in the resistome for both individual animals and composite pen-floor 

samples, although the proportion of the variance associated with this factor 

was small (2.4% and 1.2%, respectively).

Discussion: Results of this study are consistent with other investigations showing 

that, compared to other factors, AMD exposures did not have strong effects on 

antimicrobial resistance or the fecal microbial ecology of beef cattle.

KEYWORDS

resistome, microbiome, microbial ecology, antimicrobial drug exposure, 
antimicrobial resistance, cattle, beef feedlot

Introduction

Antimicrobial resistance (AMR) is one of the most critical global 
public health issues (World Health Organization (WHO), 2015, 
2017, 2019; Centers for Disease Control and Prevention (CDC), 
2019, 2020). Misuse and overuse of antimicrobial drugs (AMDs) are 
commonly attributed as the principal drivers of this problem, and 
many believe that these practices are accelerating the development 
and spread of AMR (World Health Organization (WHO), 2015, 
2019; Centers for Disease Control and Prevention (CDC), 2019). The 
use of AMDs in food-producing animals has received increasing 
criticism and scrutiny regarding this critical issue. Some propose that 
the use of AMDs within agriculture poses an unacceptable risk to 
public health because of the potential promotion of AMR, and the 
potential distribution of resistant bacteria either directly via food 
products, or indirectly through contamination of soil, water, and air 
(World Health Organization (WHO), 2015, 2019; Centers for 
Disease Control and Prevention (CDC), 2019).

Traditionally, research and surveillance for AMR have relied 
on aerobic culture to isolate bacterial isolates which then undergo 
in vitro phenotypic assessments of resistance to various drugs (i.e., 
using broth microdilution and disk diffusion). While informative, 
results from these types of studies only provide information about 
AMR patterns for the very limited number of culturable 
microorganisms, and for a few AMDs. Culture-based approaches 
have a limited ability to provide a holistic perspective on resistance 
in entire microbial communities (microbiomes). Evaluating AMR 
within an ecological, community-based context is critical, as 

resistance genes are not limited to a single species or strain but are 
found within many microbial taxa in the microbiome (e.g., 
Brinkac et al., 2017; Ghosh et al., 2013). Further, resistance genes 
can be rapidly transferred between microorganisms via horizontal 
gene transfer or mobile genetic elements (von Wintersdorff et al., 
2016). Thus, the entire reservoir of resistance genes (the resistome) 
can be  considered to have a related but potentially separate 
ecology from the microbiome and should be investigated within 
the context of whole microbial communities.

The composition of the microbiome and resistome can 
be  investigated in a comprehensive manner without the need to 
culture specific bacteria through next-generation sequencing (NGS). 
Previous studies have contributed to characterizing the composition 
of the resistome and microbiome in beef feedlot environments, 
however, limited information is available on the influence of 
commercially-relevant AMD use on the resistome (e.g., Ghosh and 
LaPara, 2007; Chen et al., 2008; Platt et al., 2008; Kyselková et al., 2015; 
Noyes et al., 2016b, 2017; Doster et al., 2018; Rovira et al., 2019). The 
primary goal of this study was to characterize the impact of AMD 
exposures, in the context of other management and environmental 
factors, on the fecal microbiome and resistome of beef feedlot cattle. 
This study used AMR target-enriched metagenomic sequencing and 
16S rRNA gene sequencing to investigate the effects of AMD use on 
the fecal resistome and microbiome of cattle at four Canadian feedlots 
with detailed AMD use records (Benedict et  al., 2013; Noyes 
et al., 2016a).

Materials and methods

Study design and sample collection

Fecal samples were collected during a 3-year longitudinal study 
of 60,169 cattle housed in 305 randomly selected pens located in 
Canadian beef feedlot operations, and results regarding in vitro 
susceptibility of fecal Escherichia coli and respiratory Mannheimia 

Abbreviations: ADD, Animal defined daily dose; AMD, Antimicrobial drug; 

AMR, Antimicrobial resistance; ASV, Amplicon sequence variants; CDC, Centers 

for Disease Control; CSS, Cumulative sum scaling; DOF, Days on feed; MDR, 

Multi-drug resistance; MFS, Major facilitator superfamily; MLS, Macrolide-

lincosamide-streptogramin; NGS, Next-generation sequencing; RDA, 

Redundancy analysis; WHO, World Health Organization.
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haemolytica isolates have been previously described (Benedict et al., 
2015; Noyes et al., 2015, 2016a). Briefly, cattle were enrolled from 
September 2007 to January 2010 using two-stage random sampling. 
As cattle arrived at the feedlots, 30% of all newly formed pens were 
randomly selected for inclusion, and approximately 10% of all cattle 
housed in selected pens were randomly enrolled. Fecal samples were 
collected per rectum from individual selected cattle to investigate 
factors affecting antimicrobial resistance in individuals. Fecal samples 
also were collected from the floor of pens and used to create 
composite samples for investigation of (pen) group-level factors that 
might affect resistance in these group-based samples. Additionally, 
the ability to use composite samples as an alternative to individually 
sample cattle was explored.

Individual cattle were sampled twice over the course of the study: 
during initial processing, which occurred shortly after arrival to the 
feedlot (first sample), and later in the feeding period (second sample) 
when cattle were rehandled for various standard management 
protocols (e.g., for replacement of growth-promoting implants). The 
timing for obtaining the second samples from cattle varied from 33 
to 202  days-on-feed (DOF) with an average of 95.5 DOF 
(median = 80.0 DOF). Composite fecal samples were collected from 
floors of pens soon after occupancy (first sample), near the dates 
when individual animal samples were collected from animals 
assigned to that pen (second sample time point), and a subset of 
enrolled were also sampled just prior to slaughter (third sample time 
point). As previously described (Noyes et al., 2016a), approximately 
14 g samples were collected from each of 20 freshly voided fecal pats 
using a standardized spatial pattern in pens (i.e., walking a Z-shaped 
pattern from the front corner of the pen to the opposite back corner). 
These were placed together in a sterile bag and then mixed by hand 
massage of the bag. After thorough mixing, approximately 10–15 g 
aliquots were removed, placed in Cary-Blair media and refrigerated 
for transport to the laboratory (Benedict et al., 2013; Noyes et al., 
2016a), placed on ice and then transported to the laboratory for 
further processing. The intention was that each of the large, 10 g 
composite samples would represent the larger pen groups. After 
collection, at the laboratory, fecal samples were processed for aerobic 
culture and in vitro susceptibility testing as previously described, and 
then archived at −80°C. These samples were archived as described for 
approximately 10 years prior to being processed for this study. All 
exposures of the study population to antimicrobial drugs, including 
parenteral treatments and in-feed exposures, were recorded and 
standardized across different drug classes using animal defined daily 
dose estimates (ADD) (Benedict et al., 2015; Noyes et al., 2015, 2016a).

Sample selection for metagenomic 
sequencing

For this investigation of the fecal microbiome and resistome, a 
subset of all individual animal and composited pen-floor fecal 
samples collected for the previous study were randomly selected for 
use in this metagenomic sequencing study. The inclusion of both 
individual animal and composite pen-floor samples allowed for the 

evaluation of AMR trends both, within individual animals which 
receive varying amounts of parenteral AMD treatments, and at the 
pen-level which can be influenced by AMD exposures in >100 cattle 
housed in each pen. Compositing of pen-floor samples is also much 
easier to conduct, and it is relevant to understand whether analysis 
of the resistome in samples obtained from individuals yields similar 
information to analysis of group-level samples. This provides a 
comprehensive approach for evaluating the effects of AMD use on 
the resistome and microbiome in beef feedlot systems. Samples were 
randomly selected for analysis after stratifying individual cattle based 
upon cumulative AMD exposures prior to sampling, and stratifying 
pen-floor samples on the cumulative AMD exposures prior to 
sampling and also on the timing of collection at the second time 
point (Supplementary Figure 1). Samples from both the first and 
second sampling time points had to be  available for testing for 
individual cattle to be eligible for inclusion. Twenty eligible cattle 
were selected from each of 3 parenteral ADD exposure categories: 
cattle with no AMD exposure prior to the second time point, those 
exposed parenterally to 1–4 ADDs prior to the second time point, 
and those exposed to >4 ADDs parenterally. Thus, the total subset 
included 60 samples collected from individual cattle sampled at both 
of the first and second time points. However, of the 120 individual-
animal fecal samples selected, only 94 could be included because 
DNA extraction yield from these archived samples using the large 
volume extraction protocol (Qiagen PowerMax Soil Kit; Qiagen 
Laboratories) did not meet the relatively large amounts of DNA 
required for both target-enriched shotgun sequencing and 16S 
rRNA amplicon sequencing (target of 9 μg DNA per sample to 
ensure sufficient quantities were available for multiple attempts at 
preparation of target enriched shotgun sequencing libraries if 
needed; the manufacturer’s high input protocol required 3 μg of 
purified DNA per attempt, Noyes et al., 2017; Agilent, 2021). The 
need to exclude some samples because of insufficient purified DNA 
was not associated with important study factors, such as prior 
antimicrobial exposures, timing of sampling, etc.

For pens to be  eligible for inclusion and analysis, archived 
composite samples had to be available from both the first and second 
time points. Because the total ADDs of AMD exposures were 
relatively low among eligible pens, the 6 pens that had the highest 
total accumulated ADDs were purposively selected for inclusion. 
The remaining eligible pens were stratified on whether the second 
sample was collected before or after 100 DOF, and 19 pens were 
randomly selected from each of these strata for inclusion. As 
previously described (Noyes et al., 2016a), a limited number of pens 
were sampled at the third time point, and 10 of these samples were 
randomly selected for inclusion. Thus, the total subset included 44 
samples collected at each of the first and second time points, and 10 
samples collected at the third time point (n = 98).

DNA extraction

Genomic DNA was isolated from 5 g of feces using the Qiagen 
PowerMax Soil Kit (Qiagen Laboratories) according to 
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manufacturer’s instructions, with two exceptions to increase yield. 
A large sample mass (i.e., 2 × 5 g) was used for DNA extraction 
with the intent of better potential representation of the resistome 
and microbiome communities in the fecal samples. First, samples 
were centrifuged for 5 min in the PowerMax bead tubes, as 
opposed to the recommended 3 min. Second, samples were eluted 
using 3 ml as opposed to the recommended 5 ml and were passed 
through the silica DNA filter twice. To increase DNA 
concentration, isolated DNA was precipitated with ethanol and 
0.3 M sodium acetate, washed with 70% ethanol, and resuspended 
in 150 μl of PowerMax elution buffer. DNA was then quantified in 
duplicate using the Qubit 2.0 Fluorometer and dsDNA High 
Sensitivity Buffer and Reagent kit (Thermo Fischer Scientific) and 
a final concentration was calculated by averaging the two 
measurements. DNA was also assayed for quality (A260/A280 and 
A260/A230) using a NanoDrop 1000 Spectrophotometer (Thermo 
Fischer Scientific). If a sample failed to reach a target yield of 9 μg 
purified DNA per sample, it was extracted a second time and 
combined with the first. This large target for extracted DNA was 
necessary to allow multiple attempts for target-enriched library 
preparation using the manufacturer’s large input protocol (3 μg 
per attempt; Agilent, 2021). If there was not 5 g of sample 
remaining for the second extraction, sterile PBS was used to 
recover remaining feces off the transport tubes that samples were 
stored in. The volume of PBS used was dependent upon the weight 
of the remaining sample; more PBS was used for samples with less 
weight, in order to reach a total of 5 g (w/v) extraction volume.

Library preparation and sequencing

The SureSelectXT Reagent Kit for Illumina Paired-End 
Multiplexed Sequencing Library (Agilent Technologies) was used 
to prepare samples for target-enriched resistome sequencing 
(Agilent, 2021). The large input protocol (3ug purified DNA per 
library; Agilent, 2021) was used with the intent of reducing inter-
sample variability that might be  associated with very small 
aliquots, and increasing the likelihood that each library was more 
representative of the true, average resistome community structure. 
A custom bait design targeting AMR genes, “MEGaRICH” (Noyes 
et al., 2017) was used to enrich sequencing libraries for AMR gene 
sequences. Compared to standard metagenomic sequencing, this 
bait-capture and enrichment system significantly increases 
on-target sequencing of previously described AMR genes, as they 
can often make up <1% of all sequenced DNA in a sample (Noyes 
et al., 2017). Resulting libraries were pooled in equal proportions 
based on their molecular weight and DNA concentrations. The 
pooled library was sequenced at the Denver Genomics and 
Microarray Core Facility (Denver, CO) on an Illumina 
NovaSeq  6,000 instrument using paired-end chemistry (2 × 
150 bp) and a targeted read depth of 15 million reads per sample.

Extracted DNA (200–500 ng) from each sample (n = 218) was 
sent to the Novogene Corporation for 16S rRNA gene 
amplification, library preparation, and sequencing. The V4 region 

of the 16S rRNA gene was amplified using the 515F/806R primer 
pair [5′-GTGCCAGCMGCCGCGGTAA-3′]/[5′-GGACTACH 
VGGGTWTCTAAT-3′]. Amplicon sequencing was performed 
on an Illumina HiSeq  2,500 instrument using paired-end 
chemistry (2 × 250 bp) and a targeted read depth of 100,000 reads 
per sample.

Resistome and microbiome 
characterization

Target-enriched AMR metagenomic sequencing reads were 
processed using the AMR++ v2 bioinformatic pipeline and the 
MEGARes v2 resistance database (Lakin et al., 2017; Doster et al., 
2020). A detailed description of MEGARes and the AMR++ 
pipeline can be  found at http://meglab.org. Briefly, reads were 
trimmed and filtered for quality using trimmomatic (Bolger et al., 
2014), and bovine host DNA was identified by aligning trimmed 
reads to the Bos Taurus genome with BWA (Li and Durbin, 2009) 
and removing those aligned reads. Using BWA, reads were aligned 
to the MEGARes database and with samtools, alignments were 
then de-duplicated to remove reads with 100% similarity. For each 
sample, only genes which had reads aligning to >80% of the 
reference nucleotide sequence were considered for further 
analysis. However, reads aligning to genes that require the 
presence of specific single nucleotide polymorphisms to confer 
resistance were identified, removed from the downstream 
statistical analysis, and described separately. Additionally, a list of 
important AMR gene determinants in human-associated 
pathogens were identified a priori and searched for in all samples. 
These included genetic determinants classified as Class A 
carbepenemases [bla(IMI), bla(SME), bla(GES), bla(KPC)], Class 
B carbapenemases [bla(NDM), bla(IMP), bla(cph)], Class D 
carbapenemases [bla(OXA)], extended spectrum betalactamase 
[bla(TEM), bla(SHV), bla(CTX-M), bla(CMY)], streptogramin 
resistance [vga/vgb/vat], colistin resistance [mcr], and multidrug 
resistance to phenicols, lincosamides, oxazolidinones, 
pleuromutilins, and streptogramin A antibiotics (PhLOPSA) [cfr].

16S rRNA amplicon sequence reads were analyzed using 
QIIME2 v2021.2 (Bolyen et  al., 2019). Briefly, all reads were 
processed for sequence quality and denoised using DADA2 
(Callahan et  al., 2016), and the resulting amplicon sequence 
variants (ASVs) were classified using a Bayesian classifier trained 
on the SILVA v138 database which is implemented in QIIME2 
(Quast et al., 2013; Kaehler et al., 2019). Reads that mapped to 
chloroplast and mitochondrial DNA were then removed from the 
ASV count table.

Processing of count matrices

Following read processing with AMR++ or QIIME2, 
classification count matrices for AMR gene accessions and ASVs, 
respectively, were imported into R v3.6.1 (R Core Team, 2018). 
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Cumulative sum scaling (CSS; Paulson et al., 2013) was used to 
normalize feature counts and account for differences in sequencing 
depth using the R package “metagenomeSeq” (Paulson et  al., 
2013). Sparsely represented features that were identified in fewer 
than 5% of samples were removed from further analysis based on 
published recommendations (Paulson et al., 2013). Resistance data 
was then summarized to the class and mechanisms level to avoid 
bias at the “gene” level associated with irregular naming criteria 
for resistance genes (Hall and Schwarz, 2016). Resistance 
determinants that affect multiple drug/compound classes (e.g., 
multi-compound resistance mechanisms such as multidrug efflux 
pumps) were categorized and analyzed as a separate resistance 
“class” (multidrug resistance – MDR). Because there is not an 
efficient method using high-throughput computational processing 
to confirm the presence of SNPs that are critical for conferring 
resistance in some specific genes, reads aligning to gene accessions 
that require SNP confirmation were excluded from statistical 
analysis. For microbial community analyses, taxonomy was 
assigned at the level of phylum, class, order, family, genus, and 
species. In these data, only 54% of ASVs were classified down to 
the genus level; as such, classification at lower levels are not 
reported as results at lower taxonomic levels are not considered 
highly reliable (Peabody et al., 2015), results are only presented at 
the phylum and order levels. Richness and Shannon’s diversity 
indices were calculated for all samples at each taxonomic level 
(e.g., gene, mechanism, phylum, class, etc) using the “vegan” 
package. Raw classified counts for the microbiome and resistome 
were analyzed with the “rarecurve” function from the “vegan” 
package. The resulting rarefaction plots were visually inspected to 
assess sequencing depth for the microbiome and resistome.

Statistical analysis

In alignment with the primary study goals, the exposures of 
interest for statistical analyses that were identified a priori were the 
total ADD exposures for AMDs, and the time that animals were 
in the feedlot prior to sampling (e.g., arrival vs. second- or third-
sampling timepoints). Because the second and third sampling 
timepoint occurred at a range of DOF timepoints, a separate 
variable categorizing the DOF at the time of sample collection was 
also classified into 5 categorical ranges (arrival to 3 DOF, 4–70 
DOF, 71–120 DOF, 121–180 DOF, and >180 DOF). The total 
ADDs of AMD exposures for each animal and pen sample were 
calculated as the sum of ADDs from all sources prior to sample 
collection. However, the data regarding exposures to enrolled 
individuals versus entire pen groups were categorized separately. 
Total AMD exposures prior to sampling for individual animals 
were categorized into 3 ordinal levels based on ADDs: low 
exposure (<10), medium exposure (10–19), and high exposure 
(>19). Total AMD exposures for pen groups were also categorized 
into 3 ordinal levels; low exposure (<400), medium exposure 
(400–1,100), and high exposure (>1,100). Further, separate 
metadata variables were created to assess the relationship between 

high parenteral exposure to the two most common drug classes, 
Tetracycline and macrolides, and significant shifts in the resistome 
at the second sampling time point. Following the distribution of 
parenteral tetracycline exposure in individual animal samples, 
animals were categorized into groups; no exposure (ADD = 0, 
n = 29), and any exposure (ADD >0, n = 31). At the pen level, the 
following ranges were used; no exposure (ADD = 0, n = 15), and 
any exposure to parenteral tetracycline drugs (ADD > 0, n = 30). 
Exposure levels for parenteral macrolide drugs were categorized 
into just 2 ordinal levels for individual animals: no exposure 
(ADD = 0, n = 29) and any exposure (ADD > 0, n = 31). Similarly, 
pen level exposures could be categorized into samples with no 
exposure to parenteral macrolide drugs (ADD = 0, n = 29), and any 
parenteral exposure (ADD > 0, n = 16). A summary of all 
categorical metadata calculated from continuous variables and 
their associated ranges are available in Supplementary material S1.

Diversity indices were statistically compared using the 
Wilcoxon signed-rank test (“wilcox.test” function in R) for 
samples from the same animal and “glm” to test differences 
between sample groups. CSS-normalized counts were Hellinger-
transformed (Legendre and Gallagher, 2001) for ordination 
using the “metaMDS” function from vegan, which employs 
non-metric multidimensional scaling on Euclidian distances. 
Analysis of similarities (ANOSIM) (Clarke, 1993) was used to 
test differences in the composition of microbial communities 
and resistomes between categorical metadata sample groups 
(e.g., sample type, total ADD exposure category, parenteral 
tetracycline exposure category, parenteral macrolide exposure 
category, arrival vs. second- or third-sampling, and DOF 
sampling category). For differential abundance testing, 
metagenomeSeq’s “fitZig” function was used to fit a zero-inflated 
Gaussian model and compare log2-fold differences (Paulson 
et  al., 2013) in microbiome and resistome features between 
sampling time, parenteral tetracycline exposure categories, and 
parenteral macrolide exposure categories. Limma’s 
“makeContrast” function (Ritchie et al., 2015) were then used 
for pairwise comparisons. p-values were adjusted for multiple 
tests using the Benjamini-Hochberg procedure (Benjamini and 
Hochberg, 1995), and alpha = 0.05 was selected as the statistical 
significance cut-off value. To account for spurious statistically 
significant differences in low abundance features, only features 
with an average expression >1% were considered.

To evaluate the correlation between the composition  
of microbiome and resistome community features, Procrustes 
analysis was performed using the “protest” function from the 
vegan package. Microbiome features were analyzed at the level of 
the ASV, and resistome features were analyzed at the level of ARG 
Group. Individual and Pen composite samples were analyzed 
separately, stratifying on sample timing (First, and Second), and 
AMD exposure category (Low ADDs, Medium ADDs, High 
ADDs). Distances were calculated as described above and 
Procrustes analyses was performed NMDS distances to calculate 
the correlation between the microbiome and resistome in each 
sample group, with permutational tests for statistical significance.
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To further investigate associations between resistome 
composition and AMD exposures, raw counts were Hellinger-
transformed (Legendre and Gallagher, 2001) and redundancy 
analysis (RDA) was performed on microbial community and 
resistome composition to further evaluate the potential 
significance of different AMD use practices using the “rda” 
function in R. Significance of the correlation between 
independent variables and the variance in the microbiome and 
resistome composition were then tested using the “anova” 
function in R. To characterize the effect of ADD exposure and 
DOF on the microbiome and resistome, samples were grouped 
into 17 metadata categories for analysis. Values for ADD 
exposures were aggregated by route of administration (in-feed 
vs. parenteral) and by drug class including macrolides-
lincosamides-streptogramin (MLS), tetracyclines, phenicol, 
betalactam, and sulfamethoxazole-trimethoprim combination. 
Samples were summarized into metadata variables that reflect 
the amount and type of antimicrobial drug exposure as well as 
time in the feedlot and days since the most recent parenteral 
treatment (Supplementary material S2, S3). Variables regarding 
individual or pen status at the time of sampling included: 
feedlot ID (1–4), sampling time (first, second, third), DOF at 
the time of sampling, number of parenteral treatments with 
AMDs, total ADDs for exposures to all AMDs, ADDs for all 
parenteral treatments, ADDs for all in-feed exposures, total 
ADDs for exposures to tetracycline class drugs, total ADDs for 
tetracycline drugs administered in feed, ADDs for tetracycline 
drugs administered parenterally, total ADDs for exposures to 
MLS class drugs, ADDs for MLS drugs administered in feed, 
ADDs for MLS drugs administered parenterally, ADDs for 
parenteral exposure to betalactam class drugs, ADDs for 
parenteral exposures to phenicol class drugs, ADDs for 
parenteral exposures to sulfonamide class drugs. All variables 
were included in the starting model for step-wise backward 
variable selection and ANOVA testing was used to identify a 
best fitting model.

Results

Individual animal sample sequencing 
metrics

Across the 94 samples, AMR target-enriched metagenomic 
sequencing yielded an average of 15,926,612 paired-end reads 
(clusters) per sample (range 3.1–25.2 M per sample, 
Supplementary material S2). Filtering to improve overall read 
quality and to exclude bovine host DNA removed an average 
of 22.9% of reads per sample (range: 3.0%–38.5%). Sequencing 
of the 16S rRNA gene amplicons across 120 samples resulted 
in an average of 147,046 reads per sample (range 101,543–
208,020 per sample, Supplementary material S3). Following 
quality filtering, identification of amplicon sequence variants 
(ASVs) with DADA2, and removal of chloroplast and chimeric 

sequences, samples averaged 121,970 counts of ASVs (range 
83,191–186,619 per sample, Supplementary material S3). 
Sequencing depth was assessed by plotting rarefaction curves 
for each individual animal sample and results were indicative 
of adequate sequencing depth of the resistome (Supplementary  
Figure 2) and microbiome (Supplementary Figure 3).

Composite pen-floor sample sequencing 
metrics

Across the 98 pen-floor composite samples, target-enriched 
AMR metagenomic sequencing resulted in an average of 16,470,078 
paired-end reads (clusters) per sample (range 6.2 M–25.5 M reads 
per sample, Supplementary material S2). Filtering to improve overall 
read quality and to exclude bovine host DNA removed an average of 
18.7% of reads per sample (range: 3.3–48.0%, Supplementary  
material S2). 16S rRNA gene sequencing resulted in an average of 
197,889 paired-end reads (range 94,433–219,918 per sample, 
Supplementary material S3). After quality filtering, identification of 
ASVs with DADA2, samples averaged 153,854 counts of ASVs 
(range 77,136–181,603 ASVs per sample). Rarefaction plots created 
from raw count data for the resistome and microbiome of composite 
pen-floor samples were suggestive of adequate sequencing depth 
(Supplementary Figures 4, 5).

Resistome composition

Across the 94 fecal samples collected from individual cattle, an 
average of 421,355 de-duplicated reads per sample were classified 
as genetic determinants of AMR (Supplementary material S4). The 
classifications represented 1,152 different published gene sequences 
that confer resistance to 18 different drug classes through  
60 distinct resistance mechanisms. Across all sampling time  
points, the 9 most abundant drug classes (or multi-compound 
mechanisms) were tetracyclines (60.8%), drug and biocide 
resistance (8.2%), aminoglycosides (7.2%), macrolide-lincosamide-
streptrogramin (MLS—5.6%), betalactams (5.5%), sulfonamides 
(4.2%), phenicols (3.5%), drug and biocide and metal resistance 
(2.6%), and biocide and metal resistance (1.1%). The remaining 
nine classes each comprised less than 1% of all normalized counts. 
Genes conferring resistance to rifampin were identified in 13/94 
samples and resistance to fluoroquinolones was identified in only 
1/94 fecal samples. Of the genes that confer tetracycline resistance, 
89.1% represented tetracycline resistance ribosomal protection 
proteins, 8.4% were major facilitator superfamily (MFS) efflux 
pumps, and 2.5% were tetracycline inactivation enzymes. In the 
second most abundant group of resistance determinants, multi-
compound drug and biocide resistance, 39% of alignments drug 
and biocide MFS efflux pumps and 30.8% represented drug and 
biocide RND efflux pumps. Across all samples from individual 
cattle, an average of 50,365 de-duplicated reads per sample were 
aligned to gene accessions requiring specific SNPs to confer AMR 
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(Supplementary material S5). These counts were excluded from all 
downstream analyses.

In the 98 composite fecal samples collected from pen-floors 
(first, second, and 10 samples with a third sampling point), an 
average of 559,961 de-duplicated reads per sample were classified 
as genetic determinants of AMR (Supplementary material S4), 
representing 1,361 genes that confer resistance to 20 different 
drug classes through 69 distinct resistance mechanisms. Across 
all sampling time points, the 8 most abundant drug classes or 
MDR mechanisms were represented by tetracyclines (69.4%), 
MLS (8.2%), aminoglycosides (6.2%), betalactams (4.6%), multi-
compound drug and biocide resistance (4%), sulfonamides 
(2.8%), phenicol (2.2%), and drug and biocide and metal 
resistance mechanisms (1.1%). The remaining 12 classes each 
consisted of <1% of normalized counts (Figure  1). Gene 
conferring resistance to rifampin were identified in 15/98 
samples, resistance to cationic antimicrobial peptides was 
identified in 5/98 samples, and fosfomycin, mupirocin, and 
fluoroquinolone resistance were only identified in a single 
sample each. Of the genes conferring tetracycline resistance, 89% 
encoded tetracycline resistance ribosomal protection proteins 
and 8.7% encoded for MFS efflux pumps with the remaining 
2.4% associated with tetracycline inactivation enzymes. In the 
second most abundant resistance class, MLS, the two most 
abundant resistance mechanisms were 23S rRNA 
methyltransferases (49.7%) and MLS resistance MFS efflux 
pumps (24.3%). In composite fecal samples, an average of 52,585 
de-duplicated reads per sample were aligned to gene accessions 
requiring specific SNPs to confer AMR and were excluded from 
further analyses (Supplementary material S5).

Changes in resistome composition over 
time

At the first sampling time point, ANOSIM testing revealed a 
significant difference between the resistome composition of 
individual animals compared to pen floor composite samples 
(class level: ANOSIM R = 0.14, p = 0.001; mechanism level: 
ANOSIM R = 0.16, p = 0.001). While a difference in resistome 
composition between sample types was still significant at the 
second sampling time point, the dissimilarity indices were lower 
(class level: ANOSIM R = 0.13, p = 0.001; mechanism level: 
ANOSIM R = 0.12, p = 0.001). Due to significant differences in 
sample type, results are reported separately for individual and pen 
floor samples.

There were significant shifts in richness and Shannon’s 
diversity indices between sampling time points. At the class 
level, richness significantly decreased over time in individual 
animal samples (W = 1507.5, p = 0.002) and in pen-floor 
composite samples (W = 1412.5, p < 0.001). Shannon’s diversity 
was also significantly reduced between sampling points in the 
individual animal samples (W = 1,654, p < 0.001) and in pen 
floor composite samples at the class level (W = 1,637, 
p < 0.001). Likewise, there were statistically significant shifts 
in resistome composition over time for fecal samples collected 
from both individual animals and pen-floor composite 
samples. These temporal shifts in resistome composition were 
greater among samples collected from individual animals 
(class level: ANOSIM R = 0.33, p = 0.001; mechanism level: 
ANOSIM R = 0.34, p = 0.001; Figure 2A) than for pen-floor 
composite samples (class level: ANOSIM R = 0.18, p = 0.001; 

FIGURE 1

Resistome composition at the drug class level for all samples by sampling time point.
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mechanism level: ANOSIM R = 0.18, p = 0.001; Figure  2B). 
Temporally associated differences in the relative abundance of 
drug classes were more prominent among individual animal 
samples than pen-floor composites, particularly due to 
decreases in the second most abundant resistance class, multi-
compound drug and biocide antimicrobial resistance genes 
(ARGs). The pen-level resistome was dominated by 
tetracycline, and MLS resistance at the first sampling time 
point, and by the second sampling time point tetracycline 
resistance made up a greater proportion of the resistome in 
both sample types and significant shifts were limited to the 
drug classes in lower abundance (Figure  1). Of the 8 drug 
classes comprising greater than 1% of the resistome, 8 were 
differentially abundant in individual animal samples while 
only 2 were differentially abundant in pen-floor composite 
samples (Supplementary material S6). Interestingly, shifts in 
the composition of individual animal resistomes were 
primarily the result of significant increases in the relative 
abundance of the three most prevalent drug classes 
(tetracyclines, MLS, and sulfonamides). In contrast, the 
relative abundance of these three drug classes did not change 
over time in pen-floor composite samples (Supplementary  
material S7). Instead, the 2 drug classes with significant 
changes in pen-floor composite samples were all associated 
with less prevalent drug classes that decreased in relative 
abundance. Notably classes consisting of multi-drug 
resistance, drug and biocide resistance, and drug and biocide 
and metal resistance mechanisms all decreased significantly 

over time in both individual animal samples and pen-floor 
composite samples.

AMD exposures in the study population

AMD exposures for the entire study population have 
previously been described for the entire study population 
(Benedict et al., 2015; Noyes et al., 2015). For the subset of 
individuals and pens that were included in this study, average 
AMD exposures at the second timepoint in individual cattle 
selected for this study was 12.7 total ADDs (range 5.9–24.6 
ADD), which included an average parenteral exposure of 3.1 
ADDs (range 0–7 ADD—Table 1). Parenteral exposures were 
also dominated by tetracycline (1.6 ADD) and macrolide drugs 
(1.2 ADD), followed by phenicol (0.2 ADD), and sulfonamide 
drugs (0.1 ADD) on average. The majority of in-feed AMD 
exposures were to tetracyclines (average 9.6 ADDs per animal), 
with much lower exposures to MLS compounds (0.02 ADDs). 
Correspondingly, groups of cattle housed in enrolled pens were 
exposed to on average of 2,113.8 ADDs per pen (range 
9.9–10,113.3) at the second sampling time, consisting mostly 
of in-feed AMD exposures. In contrast, pens of cattle were 
exposed to average of 368.3 ADD by parenteral exposures 
(range 0–1,367 ADD; Table  1). At the pen level, parenteral 
exposure to tetracycline drugs was most common, with an 
average of 140.9 ADD per pen (range 0–902). At one of the 
participating feedlots, parenteral exposure to fluoroquinolone 

A B

FIGURE 2

Ordination comparing resistome composition at the AMR drug class and resistance mechanism, using non-metric multidimensional scaling 
(NMDS), for the two study groups at arrival and re-handling samples. (A) Separation of resistomes in individual animals between sampling time was 
statistically significant at the class (ANOSIM R = 0.33, p = 0.001) and mechanism levels (ANOSIM R = 0.34, p = 0.001). (B) Separation of resistomes in 
pen-floor samples between the first and second sampling times was statistically significant at the class (ANOSIM R = 0.18, p = 0.001) and mechanism 
levels (ANOSIM R = 0.18, p = 0.001).
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TABLE 1 Summary statistics for ADD exposure variables, by sample type.

Sample type Variable Mean Median Min Max SD

Individual—1st time point Total_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point Total_feed_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point Total_parenteral_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point total_tetracycline_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point total_MLS_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point feed_MLS_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point feed_tetracycline_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point parenteral_tetracycline_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point parenteral_MLS_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point parenteral_phenicol_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point parenteral_sulfonamide_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point parenteral_betalactams_ADD 0.0 0.0 0.0 0.0 0.0

Individual—1st time point parenteral_fluoroquinolones_ADD 0.0 0.0 0.0 0.0 0.0

Individual—2nd time point Total_ADD 12.7 10.5 5.9 24.6 5.6

Individual—2nd time point Total_feed_ADD 9.6 7.0 3.9 18.7 5.4

Individual—2nd time point Total_parenteral_ADD 3.1 3.0 0.0 7.0 1.4

Individual—2nd time point total_tetracycline_ADD 11.2 9.9 5.9 18.7 4.3

Individual—2nd time point total_MLS_ADD 1.2 0.1 0.0 3.1 1.5

Individual—2nd time point feed_MLS_ADD 0.0 0.0 0.0 0.1 0.0

Individual—2nd time point feed_tetracycline_ADD 9.6 6.9 3.9 18.7 5.4

Individual—2nd time point parenteral_tetracycline_ADD 1.6 2.0 0.0 4.0 1.4

Individual—2nd time point parenteral_MLS_ADD 1.2 0.0 0.0 3.0 1.5

Individual—2nd time point parenteral_phenicol_ADD 0.2 0.0 0.0 3.0 0.7

Individual—2nd time point parenteral_sulfonamide_ADD 0.1 0.0 0.0 3.0 0.4

Individual—2nd time point parenteral_betalactams_ADD 0.0 0.0 0.0 0.0 0.0

Individual—2nd time point parenteral_fluoroquinolones_ADD 0.0 0.0 0.0 0.0 0.0

Pen—1st time point Total_ADD 903.6 118.2 0.0 9469.5 2030.6

Pen—1st time point Total_feed_ADD 591.2 38.1 0.0 8212.5 1710.9

Pen—1st time point Total_parenteral_ADD 312.4 21.0 0.0 1326.0 419.9

Pen—1st time point total_tetracycline_ADD 702.1 64.9 0.0 8230.5 1700.4

Pen—1st time point total_MLS_ADD 1.2 0.0 0.0 18.0 3.7

Pen—1st time point feed_MLS_ADD 0.7 0.0 0.0 12.0 2.4

Pen—1st time point feed_tetracycline_ADD 590.5 38.1 0.0 8212.5 1711.1

Pen—1st time point parenteral_tetracycline_ADD 111.7 0.0 0.0 1048.0 231.0

Pen—1st time point parenteral_MLS_ADD 0.5 0.0 0.0 12.0 2.1

Pen—1st time point parenteral_phenicol_ADD 0.4 0.0 0.0 16.0 2.5

Pen—1st time point parenteral_sulfonamide_ADD 1.4 0.0 0.0 27.0 5.5

Pen—1st time point parenteral_betalactams_ADD 0.9 0.0 0.0 24.0 4.3

Pen—1st time point parenteral_fluoroquinolones_ADD 197.5 0.0 0.0 1218.0 396.5

Pen—2nd time point Total_ADD 2113.8 1054.6 9.9 10113.3 2959.3

Pen—2nd time point Total_feed_ADD 1745.5 763.3 9.9 8822.3 2560.5

Pen—2nd time point Total_parenteral_ADD 368.3 143.0 0.0 1367.0 451.7

Pen—2nd time point total_tetracycline_ADD 1880.6 1012.5 9.9 8858.3 2546.9

Pen—2nd time point total_MLS_ADD 8.4 6.3 0.0 33.8 8.8

Pen—2nd time point feed_MLS_ADD 5.7 0.0 0.0 33.4 7.6

Pen—2nd time point feed_tetracycline_ADD 1739.8 751.9 9.9 8822.3 2562.5

Pen—2nd time point parenteral_tetracycline_ADD 140.9 18.0 0.0 902.0 231.4

Pen—2nd time point parenteral_MLS_ADD 2.7 0.0 0.0 12.0 4.1

Pen—2nd time point parenteral_phenicol_ADD 2.8 0.0 0.0 27.0 6.4

Pen—2nd time point parenteral_sulfonamide_ADD 5.0 3.0 0.0 30.0 7.6

(Continued)
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drugs was more common in the enrolled pens (n = 6), 
accumulating an average of 1219.5 ADDs at the second time 
point. This is in comparison to an average of 57.8 
fluoroquinolone ADDs in the other 49 pens. Without the 
influence of these six pens, tetracyclines made up the largest 
percentage of parenteral AMD exposures (65%), followed by 
fluoroquinolone drugs (30%), and betalactam drugs (2%) with 
MLS, phenicol, and sulfonamide drugs each making up less 
than 1% of drug exposures.

Potential associations between resistome 
composition and AMD exposures

Redundancy analysis included investigation of an explanatory 
variables regarding feedlot identification, 2 variables regarding 
timing of sampling, and 14 variables characterizing various types 
of AMD exposures prior to sampling. When including data from 
all time points for individual animal samples in one model, 
sampling time point was the only significant variable (p < 0.05), 
but it was only associated with explaining 2.4% of the constrained 
variance. For the model investigating data from all time points for 
pen-floor composite samples, sampling time along with three 
variables describing parenteral exposure to phenicols, macrolides, 
and sulfonamides were included in the model resulting from step-
wise model selection. In all, the sampling time, ADDs for 
tetracycline exposure, and total ADD exposure were included in 
the model and were statistically significant (p < 0.05), but only 
accounted for 0.6%, 0.2%, and 0.1% of the constrained variance, 
respectively. In both of these models, however, unconstrained 
variance estimates were much greater than constrained variance 
estimates, suggesting that these results should be interpreted with 
caution as only a small amount of the variation in the response 
(resistome) matrix was represented in the model (Legendre and 
Gallagher, 2001).

Because of the significant shift observed in resistome composition 
over time, samples collected at the second time point were analyzed 
separately with RDA. For samples collected from individual animals, 
the variable representing the days-on-feed (DOF) at the time of 
sampling was the only statistically significant (p < 0.05) variable 
included in the final model, describing 0.2% of the constrained 
variance. For pen-floor composite samples, the final RDA model 
included only two statistically significant variables, parenteral MLS 
ADD and feedlot ID, explaining only 0.4% and 0.2% of the 
constrained variance, respectively. Again, the unconstrained variance 
for this model was much greater than the constrained variance.

The effect of parenteral exposures to either tetracycline or 
macrolide drugs on the resistome was assessed by comparing 
samples at the second time point with no parenteral drug exposure 
to those that were exposed. In samples from individual animals, 
there was no significant differences in resistome composition 
between those with or without exposure to parenteral tetracycline 
drugs. In pen-floor composite samples, however, there was a 
significant difference between samples based on exposure to 
parenteral tetracycline (class level: ANOSIM R = 0.13, p = 0.03; 
mechanism level: ANOSIM R = 0.11, p = 0.04). To evaluate if these 
differences in resistome composition were associated with changes 
in particular features, a ZIG model was created to include the 
metadata variables; parenteral macrolide exposure and feedlot 
ID. Results did not reveal significant differential abundances at 
either the class or mechanism levels. Alternatively, exposure to 
parenteral macrolide drugs was not associated with significant 
differences in resistome composition either in individual samples 
or pen-floor samples.

Highly important AMR genes

Of the 17 genes identified a priori as being important to 
medicine when expressed in human pathogens, 11 were identified 

TABLE 1 (Continued)

Sample type Variable Mean Median Min Max SD

Pen—2nd time point parenteral_betalactams_ADD 7.3 3.0 0.0 46.0 10.3

Pen—2nd time point parenteral_fluoroquinolones_ADD 209.6 9.0 0.0 1251.0 418.5

Pen—3rd time point Total_ADD 1340.0 1349.6 349.5 2520.4 741.7

Pen—3rd time point Total_feed_ADD 1053.0 945.1 349.5 1850.4 507.6

Pen—3rd time point Total_parenteral_ADD 287.0 380.8 0.0 670.0 260.0

Pen—3rd time point total_tetracycline_ADD 1228.9 1245.2 339.7 2348.5 631.5

Pen—3rd time point total_MLS_ADD 27.7 20.8 0.0 112.6 32.4

Pen—3rd time point feed_MLS_ADD 25.6 15.9 0.0 112.6 32.7

Pen—3rd time point feed_tetracycline_ADD 1027.5 935.1 339.7 1833.5 508.4

Pen—3rd time point parenteral_tetracycline_ADD 201.4 203.0 0.0 515.0 207.3

Pen—3rd time point parenteral_MLS_ADD 2.1 0.0 0.0 9.0 3.5

Pen—3rd time point parenteral_phenicol_ADD 2.1 0.0 0.0 18.0 5.7

Pen—3rd time point parenteral_sulfonamide_ADD 3.1 1.5 0.0 14.0 4.5

Pen—3rd time point parenteral_betalactams_ADD 6.5 4.0 0.0 28.0 8.7

Pen—3rd time point parenteral_fluoroquinolones_ADD 71.8 6.3 0.0 582.0 180.3
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in at least one sample (Supplementary Figure  6); bla(IMI), 
bla(KPC), bla(SHV), bla(CPH), bla(NDM), and mcr genes were 
not identified in any samples. Alignments to these medically 
important genes accounted for 0.4% (415 K / 93.7 M) of all 
determinants of AMR across all samples (Supplementary  
material S8). Determinants for betalactamases were the most 
abundant type of medically important AMR determinant, 
representing 47% (195 K/415 K) of alignments to these genes. 
Among these, bla(CTX), bla(OXA), and bla(TEM) were the most 
abundant, representing 30% (126 K/415 K), 9% (37 K/415 K), and 
7% (31 K/415 K) of alignments to medically important AMR 
determinants, respectively. The alignments to bla(CTX) and 
bla(OXA) genes were fairly evenly distributed across most pen 
floor composite samples (98/98 and 78/98, respectively), but were 
more clustered in individual animal samples. This clustering of 
alignments was even stronger for bla(TEM) among a smaller 
number samples (7/94 and 13/98 for individual and pen-floor 
samples, respectively). Interestingly, 90% of bla(OXA) alignments 
(33 K/37 K) were to OXA-347 (MEGARes gene accession 
MEG_4750).1 There was also an interesting general trend wherein 
larger numbers of determinants for these 3 gene groups did not 
cluster in the same samples. That is, samples that had larger 
number of alignments for one these genes [bla(CTX), bla(OXA), 
or bla(TEM)] did not have larger numbers of alignments for the 
other two. Enzymes encoded by these gene determinants are 
important in members of the ESBL group. Bla(OXA) genes have 
become medically important because they encode for Class D 
betalactamase enzymes that are active against cephalosporins and 
carbapenems (Tooke et  al., 2019). While these have been 
commonly identified in Acinetobacter species, bla(OXA) genes 
can be  found in a variety of bacteria. All alignments to the 
bla(CTX) group were to one of three MEGAREs gene accessions 
(MEG_2378, MEG_2430, or MEG_2435), which are variants of 
the CTX-M-9 subgroup. These ESBL belong to Ambler class A 
beta-lactamases which have become a medical concern in 
Enterobacteriaceae isolates (Bonnet, 2004).

The vgbA (streptogramin B esterase), vat (streptogramin A 
O-acetyltransferase), and vga (multidrug ABC efflux pump) genes 
confer resistance to quinupristin-dalfopristin (Soltani et al., 2000; 
Jung et  al., 2010). This streptogramin class drug combination  
is especially important for treatment of infections with  
resistant Gram-positive bacteria, such as methicillin-resistant 
Staphylococcus aureus (MRSA) and vancomycin-resistant 
Enterococcus spp. (VRE). Alignments to this group of genes were 
the second most abundant among those identified among the set 
of medically important AMR genes investigated a priori. 
Collectively, they represented 37% (153 K/415 K) of alignments to 
the subset of medically important genes and were identified in 
82% (158/192) of all samples. Alignments to vgbA were the most 
common among the streptogramin class AMR genes, and the 
second most abundant among the subset of medically important 

1 https://megares.meglab.org

AMR genes (22% of medically important AMR genes, 92 K/415 K). 
The identification of vgbA, vat and vga were co-located in 24% 
(23/94) individual animal samples, and 59% (58/98) of pen-floor 
composite samples.

Other medically important genes were more sparsely identified 
in the sample set [cfr, bla(SME), bla(CMY), bla(IMP), and 
bla(GES)]. Reads aligning to cfr were distributed among the sample 
set, especially those for cfrA, whereas reads aligning to the other 
ESBL genes listed [bla(SME), bla(CMY), bla(IMP), and bla(GES)] 
were clustered within a few samples (Supplementary material S8).

Correlation between composition of the 
resistome and microbiome community 
features

Overall, results of Procrustes analyses showed only moderate 
correlation between the microbiome composition (ASV level) and 
resistome composition (ARG Group level). For individual animal 
samples, animals with Low and Medium AMD exposures had 
significant correlation between microbiome and resistome features 
(m2 = 0.73, p ≤ 0.01, and m2 = 0.70, p ≤ 0.005, respectively), whereas 
animals with high AMD exposures did not have significant 
correlation (m2 = 0.67, p ≤  0.36). In contrast, for pen-floor 
composite samples, groups with Low AMD exposures did not 
have significant correlation between microbiome and resistome 
communities (m2 = 0.50, p ≤  0.23), whereas correlations were 
significant for pen groups with Medium and High AMD exposures 
(m2 = 0.37, p ≤ 0.001, and m2 = 0.77, p ≤ 0.02, respectively).

Microbiome composition

Across samples from individual animals, taxa from 38 phyla, 
and 184 orders were represented (Supplementary material S9). 
Three phyla (Firmicutes, Proteobacteria, and Bacteroidota) 
accounted for over 96% of all normalized counts (49.9%, 36.3%, 
and 9.84%, respectively; Figure  3). At the level of order, 
Pseudomonadales (34.6%), Oscillospirales (15.6%), Lactobacillales 
(13.5%), Bacteroidales (7.33%), Peptostreptococcales-Tissierellales 
(5.04%), Lachnospirales (3.99%), Erysipelotrichales (2.51%), 
Flavobacteriales (2.33%), RF39 (2.11%), Christensenellales (1.7%), 
Clostridiales (1.59%), Enterobacterales (1.35%), Clostridia_
UCG-014 (1.24%), and Bacillales (1.01%) were the most abundant 
and combined to represent nearly 94% of the microbial 
community. The remaining 170 orders each made up less than 1% 
of the overall community.

In pen-floor composite samples, taxa from 37 phyla, and 179 
orders were represented. Like individual animal samples, 
Firmicutes (49.9%), Bacteroidota (18.21%), and Proteobacteria 
(15.7%) were the three most abundant phyla, albeit in a different 
order of relative abundance. Additionally, Actinobacteria and 
Euryachaeota were more abundant within pen-floor composite 
samples and accounted for 4.76 and 1.43% of the microbial 
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community, respectively (Figure  3). At the order level, 
Oscillospirales (20.9%), Bacteroidales (17.8%), Pseudomonadales 
(15.3%), Lactobacillales (13.6%), Lachnospirales(4.78%), 
Peptostreptococcales-Tissierellales (4.7%), Bifidobacteriales 
(3.78%), Erysipelotrichales (3.48%), and RF39 (3.35%), and 
Clostridiales (2.41%) were the most abundant and comprised over 
90% of the microbial community. The remaining 169 orders each 
represented less than 2% of the overall community.

Changes in microbiome composition 
over time

The microbial community structure of individual animal 
samples compared to pen composite samples was significantly 
different at the first sampling point (phylum level: ANOSIM 
R = 0.22, p = 0.001; order level: ANOSIM R = 0.32, p = 0.001). This 
difference in microbiome composition between sample types 
increased over time and was significantly different at the second 
sampling time with increased dissimilarity indices (phylum level: 
ANOSIM R = 0.29, p = 0.001; order level: ANOSIM R = 0.31, 
p = 0.001). Due to significant differences by sample type, 
microbiome results are reported separately for individual and pen 
floor samples.

The major shift in microbiome composition over time in the 
feedlot was also evident with richness decreasing between arrival 
and the second sampling time point for both individual animal 
and pen-floor samples (p < 0.05). Shannon’s diversity, however, 
only decreased significantly for individual animals at the order 
level (p < 0.05).As demonstrated in the resistome, ANOSIM 

confirmed that microbial community composition shifted 
significantly between the first and second time point. Likewise, 
individual animals had greater shifts in community composition 
(phylum: ANOSIM R = 0.19, p < 0.01; order: ANOSIM R = 0.22, 
p < 0.01) then pen level communities (phylum: ANOSIM 
R = 0.08, p = 0.01; p < 0.01; order: ANOSIM R = 0.14, p < 0.01; 
Figure 4).

Of the 4 phyla in individual animal samples with an average 
relative abundance over 1%, all had significant changes in their 
relative abundance between sampling time points (p-value < 0.05). 
Proteobacteria, Firmicutes, and Bacteroidota significantly increased 
in relative abundance between the first and second time point, while 
Actinobacteria decreased in relative abundance over time(p < 0.05) 
(Supplementary material S10). This pattern was similarly observed 
in pen-floor composite samples, although with only 2 of the 4  
phyla with an average relative abundance over 1%. The relative 
abundance of Bacteroidota significantly increased over time while 
Actinobacteriota decreased (Supplementary material S11).

Potential associations between 
microbiome composition and AMD 
exposures

Parallel to the RDA of variance of the resistome composition, 
RDA of the microbiome composition investigated the effects of 17 
explanatory variables, including 14 variables characterizing AMD 
exposures. Analysis of individual animal samples from both time 
points identified sampling time, feedlot ID, in-feed MLS ADD, 
and in-feed Tetracycline as statistically significant (p < 0.05). 

FIGURE 3

Microbiome composition at the phylum taxonomic level for all samples by sampling time point; arrival at feedlot, a second time point closer to 
exit of the feeding period, or just prior to shipment to the abattoir.
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However, the inclusion of these variables in a model only 
explained 0.8%, 0.6%, and 0.2% of the constrained variance at the 
phylum level, respectively. For the RDA of pen-floor composite 
samples from all 3 time points, DOF, total parenteral ADD 
exposures, and parenteral sulfonamide ADD were statistically 
significant (p < 0.05), but only explained 1%, 0.5%, 0.2%, and 
0.15% of the constrained variance, respectively.

When analyzing the samples collected at the second time 
point separately, 1.3% of the constrained variance of the 
microbiome of individual animal samples was statistically 
significantly explained by feedlot ID (p < 0.05). For pen-floor 
composite samples, the variables feedlot ID, total ADD exposure, 
and total MLS ADD exposure were statistically significant 
(p < 0.05) in the RDA of samples collected at the second time 
point, explaining 1.2%, 0.3%, and 0.3% of the constrained variance 
at the phylum level, respectively.

Discussion

This unique study leveraged AMD use data from commercial 
beef feedlots in combination with state-of-the art target-enriched 
metagenomic sequencing and 16S rRNA gene sequencing to 
investigate critically important questions about factors affecting 
the promotion of AMR. Results suggested that AMD exposures in 
beef feedlot cattle do not strongly affect the fecal resistome or 
microbiome, compared to other factors measured in this study. 
Despite examination of 14 permutations of AMD exposure in this 

population that were derived from exceptionally detailed records 
of AMD exposures in individuals and in groups, these exposure 
variables were only significantly associated with explaining <1% 
of the variance in the composition of the resistome or microbiome. 
While the factor most strongly associated with resistome and 
microbiome composition was time in the feedlot, the majority of 
variability in the resistome composition remained unexplained. 
Indeed, the variance in the microbiome and resistome that can 
be explained by the exposure data in this study, or constrained 
variance, was much smaller than the variance that could not 
be  modeled, unconstrained variance, so results should 
be interpreted with caution. Results of Procrustes analyses showed 
only moderate correlation between compositions of the 
microbiome and resistome features, and when stratifying on AMD 
exposure categories (Low vs. Medium vs. High), patterns in the 
Procrustes correlations were not consistent between individual 
animal samples and pen-floor composite samples. These findings 
suggest that the relationships between microbiome and resistome 
compositions were not predictably affected by AMD exposures in 
these populations.

This study was one of the largest conducted to date regarding 
the potential anthropogenic impact of AMD exposures typical of 
those used throughout the beef industry in North America as a 
promoter of AMR, as assessed using genomic sequencing. These 
findings add to the growing evidence suggesting that total AMD 
exposure is not associated with large shifts in the resistome or 
microbiome of cattle (Vikram et al., 2017; Doster et al., 2018; 
Rovira et al., 2019).

A B

FIGURE 4

Ordination comparing microbiome composition at the phylum, class, and order levels using non-metric multidimensional scaling (NMDS), for 
samples collected at arrival, re-handling, or pen-floor samples collected just prior to shipment. (A) In individual animals, the separation of 
resistomes between sampling time was statistically significant at the phylum (ANOSIM R = 0.19, p < 0.01), class (ANOSIM R = 0.21, p < 0.01), and order 
(ANOSIM R = 0.22, p < 0.01) taxonomic levels. (B) In pen-floor samples, resistome composition shifted significantly between the first and second 
sampling time and was statistically significant at the phylum (ANOSIM R = 0.08, p = 0.01), class (ANOSIM R = 0.12, p < 0.01), and order (ANOSIM 
R = 0.14, p < 0.01) taxonomic levels.
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The higher prevalence of tetracycline, MLS, and 
aminoglycoside AMR determinants within the cattle 
resistome, and of Bacteroidota, Firmicutes, and Proteobacteria 
within the fecal microbiome of cattle is well documented 
(Ghosh and LaPara, 2007; Chen et al., 2008; Platt et al., 2008; 
Kyselková et al., 2015; Noyes et al., 2016b, 2017; Doster et al., 
2018; Rovira et al., 2019). As such, their dominance within 
individual feedlot cattle and pen-floor composite samples 
collected in this study was unsurprising. Similarly, a greater 
variation in resistome and microbiome composition within 
individual animals upon feedlot arrival compared to pen-floor 
composite samples and later timepoints was expected, as 
cattle-associated microbial communities are influenced by the 
multitude of environmental pressures involved with 
transportation to a feedlot, initial processing, and diet changes 
typical of feedlot arrival (Noffsinger et al., 2015). Similar shifts 
in the resistome and microbiome diversity and composition of 
feces over time have been documented in previous studies of 
beef cattle during their transition to the feedlot environment 
(Checkley et al., 2008; Beukers et al., 2015; Noyes et al., 2016b; 
Doster et al., 2018). These changes are also consistent with the 
broader conclusion that the function and composition of host-
associated microbial communities are significantly influenced 
by environmental factors (Shafquat et al., 2014). In particular, 
shifts in microbial community structure resulting from diet 
changes are well-documented (e.g., Singh et  al., 2017; Ijaz 
et al., 2018; Youngblut et al., 2019), and it follows that shifts in 
resistome and microbiome composition observed in our study 
would occur as cattle and their associated microbial 
communities adapted to feedlot environmental pressures. 
Further, it stands to reason that the microbiome and resistome 
of pen-floor composite samples would contain less variation 
as the microbial community is influenced by contact with the 
soil microbiome over longer periods of times as pen-floors. 
Additionally, once cattle feces is exposed to the environment, 
the microbial community would be  influenced by distinct 
factors such as UV light, pH, soil nutrients, moisture levels, 
and weather.

Despite the perception that AMD use in food animals is a 
contributor to AMR and treatment failure in humans, there is 
a paucity of data documenting that these AMD exposures in 
animals significantly change the resistome, and that resistance 
determinants are systematically transferred to humans 
through direct and indirect transmission routes (Robinson 
et al., 2016; Williams-Nguyen et al., 2016). Concerns regarding 
anthropogenic promoters of AMR have been especially strong 
regarding genes that can be  found in medically important 
human pathogens, such as those of ESKAPE pathogens 
(Pendleton et al., 2013; Santajit and Indrawattana, 2016). The 
use of third generations cephalosporins, fluoroquinolones, 
and extended spectrum macrolides in cattle have been noted 
by some critics as being particularly concerning regarding 
risks to public health, and antimicrobial resistance 

determinants for these classes of AMDs, including those that 
are of high concern when found in medically important 
human pathogens (Supplementary material S8) were identified 
in these samples. However, antimicrobial use was not 
associated with the resistome composition or changes over the 
feeding period. Additionally, resistance determinants were 
identified for a number of important classes of AMDs that are 
not approved for use in cattle (e.g., aminoglycosides, 
carbapenems, streptogramins, lincosamides, linezolid, and 
pleuromutilins), and therefore antimicrobial use practices 
cannot directly explain the presence of these important 
AMR determinants.

We acknowledge that our study faces the same limitations 
of many high-throughput sequencing studies. Given the 
understated nature of the effects of AMD exposure, 
sequencing depth could have been inadequate to fully 
characterize the subtle dynamics occurring in low abundance 
features. However, use of target-enriched sequencing greatly 
enhanced depth of sequencing that can be efficiently achieved 
by typical shotgun sequencing, and numbers of reads 
associated with the resistome that were analyzed in this study 
are multiple logs greater than in previous studies (Noyes 
et al., 2016b, 2017; Weinroth et al., 2018; Rovira et al., 2019). 
The impact of this target-enrichment approach can be noted 
by the numbers of sequencing reads aligning to medically 
important genes in this study, which were much greater in 
number and allowed identification of broader range of 
important yet rare features than were identified in previous 
studies investigating the resistome in feedlot cattle (Noyes 
et  al., 2016b; Weinroth et  al., 2018; Rovira et  al., 2019). 
Further, while this study serves as an example of how the use 
of metagenomics can produce significant and complimentary 
results from archived samples, it should be noted that samples 
were originally processed for aerobic culture and stored in 
Cary Blair media in a refrigerator prior to freezing. Therefore, 
our internal validity is sound, but comparisons to external 
studies using different methods of sample preprocessing 
should be made with caution.

A thorough search of the current literature yielded no 
other metagenomic studies investigating the impact of AMD 
exposure in beef feedlot cattle on the structure and function 
of microbial communities. This study substantiates evidence 
that prior AMD exposure may exert a subtle effect on the 
microbiome and resistome of feedlot cattle within an 
ecological context. These results further our understanding 
of how herd management decisions can influence the 
microbiome and the resistome, and provide data to help 
identify practices that maintain the critical balance between 
the benefits of AMD use and the risk of AMR emergence. As 
we learn to better manage AMR through livestock production 
practices, metagenomic analysis will be  a critical tool for 
incorporating a holistic perspective into community-
wide changes.
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