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Identifying novel antimicrobial 
peptides from venom gland of 
spider Pardosa astrigera by deep 
multi-task learning
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Antimicrobial peptides (AMPs) show promises as valuable compounds for 

developing therapeutic agents to control the worldwide health threat posed 

by the increasing prevalence of antibiotic-resistant bacteria. Animal venom 

can be  a useful source for screening AMPs due to its various bioactive 

components. Here, the deep learning model was developed to predict 

species-specific antimicrobial activity. To overcome the data deficiency, 

a multi-task learning method was implemented, achieving F1 scores of 

0.818, 0.696, 0.814, 0.787, and 0.719 for Bacillus subtilis, Escherichia coli, 

Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus 

epidermidis, respectively. Peptides PA-Full and PA-Win were identified from 

the model using different inputs of full and partial sequences, broadening 

the application of transcriptome data of the spider Pardosa astrigera. Two 

peptides exhibited strong antimicrobial activity against all five strains along 

with cytocompatibility. Our approach enables excavating AMPs with high 

potency, which can be expanded into the fields of biology to address data 

insufficiency.
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Introduction

The overuse and the misuse of antibiotics have contributed to the increased selective 
pressure for antibiotic resistance (Cantón and Morosini, 2011). As a result, the emergence 
and spread of antibiotic-resistant bacterial strains have risen dramatically during recent 
years and caused at least 35,000 deaths in the United States, according to a 2019 report 
(Centres for Disease Control and Prevention, 2019). As the widespread of antibiotic-
resistant bacteria has become a serious medical threat, there is an urgent need for 
discovering novel antimicrobial reagents that can directly contribute to the development 
of next-generation antibiotics. Among various bioactive molecules, peptides are 
advantageous for therapeutic applications because of their distinctive characteristics and 
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physiological roles, such as immunomodulators, hormones, 
ligands, and signals (Cunha et al., 2008; Posner and Laporte, 2010; 
Krumm and Grisshammer, 2015). The intrinsic diversity in the 
sequence of peptides leads to a broad spectrum of molecular 
targets with high specificity and selectivity (Tsomaia, 2015). In 
addition, peptides have low cytotoxicity, low tissue accumulation, 
and cost-effectiveness compared with small molecules and 
recombinant proteins (Recio et al., 2017).

Antimicrobial peptides (AMPs) play a key role in the innate 
immune system, contributing to the defense against pathogens 
like bacteria, fungi, parasites, and viruses and exhibiting 
immunomodulatory activities (Yeung et al., 2011; Van Dijk et al., 
2016; Mookherjee et al., 2020). Generally, AMPs are less than 50 
amino acids (AAs) in length with hydrophobic residues and high 
positive net charges, leading to interactions with pathogen 
membranes and intracellular molecules (Huan et al., 2020). By 
virtue of their non-specific and rapid killing mechanisms against 
pathogens, AMPs are a promising novel class of antibiotics for 
preventing and combating antibiotic-resistant bacteria (Nuti et al., 
2017; Lei et al., 2019). AMPs are found in almost every organism 
and are highly abundant in animal venoms. For example, in the 
antimicrobial peptide database 3 (APD3), 153 AMPs originated 
from the venom of various species, including spider (Wang et al., 
2016). Spiders are among the most successfully evolved taxa of 
venomous animals, which led to the possession of venom with 
remarkably diverse mixtures comprising thousands of different 
components (Langenegger et al., 2019). Therefore, spider venom 
could be a useful source of novel AMPs (Budnik et al., 2004; Wang 
and Wang, 2016; Wadhwani et al., 2021).

The increased utilization of deep learning in biological and 
medical research enabled high-throughput analyses, aided by 
exponentially accumulating biological datasets (Schmidt and 
Hildebrandt, 2021). Various deep learning models have been 
developed for the prediction of miRNA targets, the identification 
of biological signals, the inference of gene expressions, and the 
prediction of DNA functions based on large amounts of genomic 
data (Chen et al., 2016; Lee et al., 2016; Quang and Xie, 2016; Tan 
et al., 2017). Although deep learning techniques have also been 
applied in neurotoxic, antibacterial, antifungal, and anticancer 
peptides discovery, the expansion of similar approaches to some 
fields is challenging due to the data limitations (Fjell et al., 2009; 
Lata et al., 2010; Waghu et al., 2016; Meher et al., 2017; Ashfaq 
et  al., 2021; Charoenkwan et  al., 2021; Lee et  al., 2021). The 
diversity of bacterial genomes led to distinctive bioactivities of 
individual strains, as well as numerous defense mechanisms 
toward antibacterial agents (Zhou et al., 2015). Even though it is 
not our intention to diminish the importance of developing 
narrow-spectrum antibiotics, each type of pre-existing method 
may predict AMPs working on only one or a few types of bacterial 
species. Thus, we  tried to build a generalized model that can 
predict AMPs working on multiple species to suggest reliable 
candidates of novel antibiotics.

In this study, an accurate deep learning model for predicting 
antimicrobial activities against five bacterial strains was developed 

via multi-task learning (MTL), a method that can overcome the 
lack of data by improving generalization (Wang et  al., 2017; 
Figure 1A). We curated the dataset with AMP and non-AMP data 
for model training and testing. Due to the extreme data limitation 
when training the model, prediction targets were restricted to five 
bacterial species, Bacillus subtilis (B. subtilis), Escherichia coli 
(E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus 
aureus (S. aureus), and Staphylococcus epidermidis (S. epidermidis). 
The MTL was applied for model training and was compared with 
the single-task learning (STL) application. The implementation of 
the MTL resulted in the best-performing model, which was used 
for screening potential AMPs from the transcriptome of the spider 
Pardosa astrigera (P. astrigera). Two spider-derived peptides, 
PA-Full and PA-Win, were selected and were verified of their 
antibacterial activities by functional evaluation. Notably, PA-Win 
was shown to be  a strong AMP with low cytotoxicity in 
mammalian cells. Our results demonstrated that the deep learning 
model trained by the MTL achieved an improved prediction 
performance, overcame the data deficiency, and predicted novel 
AMPs with high cytocompatibility compared with the application 
of the STL.

Materials and methods

Dataset preparation

The AMP data for model training were collected from the 
database of antimicrobial activity and structure of peptides 
(DBAASP; Pirtskhalava et al., 2016). The dataset contains 14,708 
monomer sequences of peptides with known minimum inhibitory 
concentration (MIC) values against diverse microbial species. The 
MIC values in the dataset expressed as micromolar (μM) were 
converted to microgram per milliliter (μg/ml) for consistency. For 
peptides that had multiple MIC test results in an identical species, 
the average value of MIC was calculated and used. Among the 
AMP data, several peptides had high MIC values that indicated 
extremely low antibacterial activity. Thus, we filtered the AMPs by 
a cutoff value of 267.7 μg/ml, which is the lower 95% range of MIC 
values from the entire AMP data. We obtained the non-AMP data 
from UniProt using the keyword “NOT antimicrobial” (Bateman 
et al., 2019).

There were many peptide sequences showing high similarity 
with other peptides and the peptide sequence redundancy can 
interfere with model training and performance evaluation. 
Therefore, the redundancy between training and test datasets as 
well as within the sequences in the test dataset were controlled by 
the CD-HIT program with a cutoff value of sequence identity 
threshold < 0.5 to evaluate the model performance accurately (Fu 
et al., 2012). For the training data, the cutoff value of 0.9 was used 
to increase the data for model training. We selected five target 
bacterial species for prediction based on the amount of the AMP 
sequences that was greater than 190, of which the positive data for 
respective species were divided into train and test datasets. The 
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non-AMP data possessed more diverse functionality than the 
AMP data, so we prepared two types of datasets with ratios of 1:1 
and 1:3 between the non-AMP and AMP data, and test datasets 
were organized with the ratio 1:10 (Table 1).

Prediction model structure and training

There are various types of deep learning networks, among 
which a recurrent neural network (RNN)-based model is known 
as an effective way to process sequential data. Peptide data can 
be considered sequential data because the function of a peptide is 

determined by a sequential chain of AA residues. Thus, 
we  organized the model structure based on long-term short 
memory (LSTM), a type of RNN that can tackle the vanishing or 
explosion gradient problem of RNN (Hochreiter and 
Schmidhuber, 1997). In addition, bidirectional long short-term 
memory (BiLSTM) was implemented to reflect both the forward 
and backward direction of the peptide in the model prediction.

For model training, the MTL and STL were applied, 
respectively. In the MTL, a shared layer was connected to five 
different task-specific layers to predict the antimicrobial activity 
for each target bacterial species. The model architecture of the STL 
was identical to that of MTL but without a sharing layer with other 

A
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B

FIGURE 1

An overview of research workflow, dataset information, and deep learning model structures. (A) A schematic representation of discovering novel 
AMPs from Pardosa astrigera spider venom via deep learning model. (B) A Venn diagram showing the number of antimicrobial peptides targeting 
each bacterial species. Only 14 peptides exhibited antimicrobial activities for five target bacterial species under a MIC value of 267.7 μg/ml. (C) An 
illustration of the model structure for the multi-task learning (MTL). The model was organized by a single shared layer composed of embedding 
and BiLSTM layers and task-specific layers for each target composed of BiLSTM and fully connected layers. The loss value of each prediction 
target was calculated, resulting in five values, which were backpropagated at the same time. (D) An illustration of the model structure for the STL. 
The model was constructed using embedding, BiLSTM, and fully connected layers without parameter sharing through a shared layer.
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prediction targets. The configuration of the model architectures 
was organized with varying BiLSTM node sizes 
(Supplementary Table 1). We applied hyperparameters for model 
training with the Adam optimizer with a learning rate of 1E-4 and 
a maximum training epoch of 500 (Kingma and Ba, 2014).

The performances of the trained models were measured by 
precision, recall, F1 score, and Matthews correlation coefficient 
(MCC) as follows:
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TP FP
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+
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Precision Recall
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where TP stands for a true positive number, TN for a true 
negative number, FP for a false positive number, and FN for a false 
negative number. We selected the best-performing model in the 
MTL and STL, respectively, according to the highest F1 score.

Discovering novel AMPs from Pardosa 
astrigera spider transcriptome data

The transcriptome of the venom gland of P. astrigera spider 
obtained from the previous study was utilized (Shin et al., 2020). 
The unigenes were processed for abundance estimation and open 
reading frame (ORF) region prediction by RSEM and 

TransDecoder program, respectively (Li and Dewey, 2011). The 
predicted coding regions was translated into AA residues, and the 
translated coding regions were used for discovering novel AMPs 
by deep learning model.

The translated sequences were prepared for two types of input 
data, using full sequence under length of 50 AAs and partial 
sequence of the full sequence by sliding window. The sliding 
window truncated the sequence for desired length and step size 
from the original sequence, where the truncates were generated 
with 20-mer length with a step size of five AA in this study. Two 
types of prepared input data were fed into the selected best-
performing model via MTL, and the probabilities of antimicrobial 
activity against five strains were provided. The two peptides, 
PA-Full and PA-Win, were selected from the model, and net 
charge and water solubility were calculated using PepCalc.1

Bacterial strains and cell lines

Bacterial strains of E. coli (KCCM 11234), P. aeruginosa 
(ATCC 9027), B. subtilis (ATCC 6051), S. epidermis (ATCC 
12228), S. aureus (KCCM 11335), and methicillin-resistant 
S. aureus (MRSA, ATCC 33591) were used in this study. Every 
strain was maintained in Mueller-Hinton broth (MHB, Difco 
Laboratories, Detroit, MI, United States) under shaking conditions 
at 37°C. In addition, human cell lines of A549 (ATCC CCL-185), 
MCF7 (ATCC HTB-22), HaCaT (CLS 300493), NHA (Sciencell 
1800), and NHDF (ATCC PCS-201–012) were used. The cells 
were cultured under a humidified atmosphere with 5% CO2 at 
37°C. A549 cells were cultured in RPMI-1640 (Gibco, Grand 
Island, NY, United States) supplemented with 10% fetal bovine 
serum (FBS, Gibco) and 1% penicillin and streptomycin (PS, 
Gibco). HaCaT and NHDF cells were cultured in Dulbecco’s 
modified Eagle medium supplemented with 10% FBS and 1% 
PS. MCF7 cells were cultured in minimum essential media 
(Gibco) supplemented with 10% FBS, 1% PS, and 1 × non-essential 
amino acids solution (Gibco). Finally, NHA cells were cultured in 
astrocyte medium (Gibco).

Antibacterial activity assessment

The MIC values of peptides were measured by performing the 
broth microdilution method. Bacterial strains were cultured in 
MHB at 37°C to reach an exponential phase. The bacterial 
suspension was prepared into 2 × 105 CFU/ml and transferred 50 μl 
to 96-well microplates. An equal volume of peptides was added to 
each well, reaching a final concentration from 0.125 to 256 μg/ml 
of the peptides. The wells containing either only media or the 
mixture of inoculant and media served as blank and control, 
respectively. The bacterial growth was measured using a microplate 

1 http://pepcalc.com

TABLE 1 The number of peptide sequences used for model training 
and testing.

Target 
species

Training 
dataset (1:1)

Training 
dataset (1:3) Test dataset

AMP Non-
AMP AMP Non-

AMP AMP Non-
AMP

Bacillus subtilis 155 155 155 465 60 600

Escherichia coli 435 435 435 1,305 160 1,600

Pseudomonas 

aeruginosa

301 301 301 903 107 1,070

Staphylococcus 

aureus

380 380 380 1,140 142 1,420

Staphylococcus 

epidermidis

145 145 145 435 54 540
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reader (Molecular Devices, Sunnyvale, CA, United  States) at 
600 nm after incubation at 37°C for 18 h. MIC values of the 
peptides were determined of the lowest concentration without 
observable growth of bacteria. To assess the bactericidal effect of 
the peptides, 50 μl of the samples from each well below the MIC 
values were plated onto tryptic soy agar (Difco Laboratories) 
plates. The agar plates were incubated at 37°C overnight, and the 
minimum bactericidal concentration (MBC) values were defined 
as the lowest peptide concentrations without any colony formation.

Measuring bacterial membrane 
permeabilization

The measurement of outer membrane permeabilization and 
cytoplasmic membrane depolarization was performed using 
1-N-phenylnapthylamine (NPN) and 3,3′-dipropylthiadicarbocyanine 
iodide (DiSC3(5)), respectively, as previously described (Shin 
et al., 2022).

Field emission scanning electron 
microscope (FE-SEM) imaging

Morphological changes upon treating peptides were observed 
using FE-SEM imaging. Target bacteria strains in the exponential 
phase were diluted in medium to reach 1 × 107 CFU/ml in MHB and 
seeded onto cover glass coated with poly-L-lysine. After 2 h at room 
temperature (RT), the bacteria were washed with PBS and treated 
with 1 × MIC of each peptide for 4 h at RT. The samples were 
washed with PBS and fixed with 2.5% glutaraldehyde solution at 
4°C overnight. After washing with distilled water, bacterial samples 
were dehydrated with a series of gradient ethanol concentrations 
(30, 50, 60, 70, 90%, twice for 100%) and then air-dried. Following 
the platinum coating, bacterial morphology was observed under the 
FE-SEM sigma instrument (Carl Zeiss Microscopy, Jena, Germany).

Cytotoxicity assay

For cytotoxicity assay of the peptides, the cells were seeded at 
a density of 1 × 104 cells/well in 96-well microplates. Various 
concentrations of peptides ranging from 1 to 256 μg/ml were 
treated and then incubated for 24 h. The microplate was incubated 
for 1 h after adding Quanti-Max WST-8 Cell Viability assay 
solution (Biomax, Seoul, South Korea) to each well. For calculating 
relative cell viability, the absorbance (Ab) was read using a 
microplate reader (Molecular Devices) at 450 nm.

Hemolysis assay

To determine the hemolytic effects, bovine red blood cells 
(RBCs, Innovative Research, Novi, MI, United States) were used. 

RBC suspensions of 100 μl were transferred to each microtube and 
were combined with an equal volume of peptide solution. PBS and 
0.1% Triton X-100 were used as the negative and positive controls, 
respectively. The samples were incubated for 1 h at 37°C and then 
centrifuged at 3,000 × g for 10 min at 4°C. After transferring the 
supernatants to a 96-well microplate, the Ab was measured using 
a microplate reader (Molecular Devices) at 450 nm. The hemolytic 
activity was calculated using the following equation:

 
Hemolytic activity

Ab Ab

Ab Ab

peptide PBS

Triton X PBS

%( ) = −
−

×
−100

1000.

Statistical analysis

All experimental work was independently conducted, and the 
results were expressed as mean ± standard error of the mean 
(SEM). The statistical significance of the data was evaluated by 
performing a one-way analysis of variance (ANOVA) test, 
followed by Bonferroni correction using GraphPad Prism 9.0 
(GraphPad Software, La Jolla, CA, United  States). p-Values of 
< 0.05 were considered statistically significant.

Results

Training deep learning model for 
antimicrobial activity prediction via MTL

To predict antimicrobial activities targeting a selected set of 
bacteria, a model should provide several independent prediction 
results for individual targets. The prediction targets were five 
different bacterial species, which could be considered multiple 
related tasks. Multi-label classification could be one approach to 
model training (Zhang and Zhou, 2013). However, because only 
14 peptide sequences were fully labeled for all prediction targets, 
multi-label classification was not applicable (Figure  1B). Thus, 
we applied the MTL on non-overlapping datasets by optimizing 
the model with multiple loss functions (Zhang and Yang, 2017). 
The model structure was organized as one shared layer connected 
to several task-specific output layers, otherwise known as hard 
parameter sharing, and the method effectively prevented an 
overfitting problem (Figure  1C; Strezoski et  al., 2019). During 
model training, the gradients from the individual prediction target 
flowed through each task-specific layer and were merged into a 
shared layer. In comparison, the model for the STL was organized 
as serially stacked BiLSTM layers without a shared layer, where one 
model predicts for each target species only (Figure  1D). 
Considering that the antimicrobial activity of the peptide is 
exhibited regardless of sequence direction, the BiLSTM-based 
prediction model was used. Essentially, the STL and the MTL 
adopted an identical model structure for predicting individual 
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target species, but only the MTL with the shared layer is trained by 
broad features of AMPs from the integrated dataset. To determine 
the model structure with better performance than others, 
we applied various BiLSTM unit sizes and hyperparameters. The 
input sequence length fed into the model was restricted to be under 
50 AAs, as most AMPs in the database rarely exceed 50 AAs. As 
multiple trained weights were generated during model training, the 
optimized model in each training strategy and hyperparameter 
that resulted in the highest F1 score on the validation dataset was 
selected for further evaluation of prediction performance.

To evaluate the trained model performance, the prediction 
performances of the MTL and the STL were compared by 
performance metrics. As the number of positive class dataset was 
extremely small for model performance test, the non-AMP dataset 
was sampled 10 times larger than the positive data for the test dataset 
for the better evaluation of the model. Hence, three performance 
metrics, precision, recall, and F1 score, were determined. When 
comparing the box plots of model performance grouped by the STL 
and the MTL, the MTL showed the best prediction performance in 
every performance metric and for every target species (Figure 2A). 
From the scatter plot comparing the prediction performance values 
trained by the STL versus the MTL under identical model structures, 
92.2% of the total results showed improved performances by the 
MTL than the STL based on the F1 score (Figure  2B). Finally, 
we achieved the best performing model in the STL and the MTL 
strategies based on the F1 score of the test dataset, and the precision-
recall curves of the models were exhibited (Figure 2C). A model 
with the best performance in the MTL outperformed that in the STL 
for every prediction target species, except for S. epidermidis (Table 2). 
The MTL achieved a precision-recall area under the curve (PRAUC) 
score of 0.758 for B. subtilis, 0.738 for E. coli, 0.886 for P. aeruginosa, 
0.826 for S. aureus, and 0.918 for S. epidermidis. In addition, the size 
differences between the non-AMP and the AMP datasets affected 
the model performance, where the ratio of 1:3 showed better results 
than that of 1:1 in precision, F1 score, and PRAUC, but not recall 
(Supplementary Figure 1). Overall, the MTL improved the model 
prediction of the antimicrobial activities of peptides against five 
species, suggesting that the shared layer boosted the extraction of the 
latent representation of peptides.

Discovering novel AMPs from the 
transcriptome of Pardosa astrigera spider 
venom via the MTL model

In order to discover novel AMPs from the spider venom, venom 
gland transcriptome analysis of P. astrigera, a wandering spider, was 
performed (Shin et al., 2020). The venom gland was separated from 
the spider, and RNA-sequencing and de novo assembly were 
conducted after total RNA isolation (Haas et al., 2013). A total of 
149,710 genes with expression levels > 1.0 fragments per kilobase of 
transcript per million (FPKM) among 169,160 unigenes were 
identified. The ORF region was predicted by the TransDecoder 
program, resulting in total 56,373 coding sequence regions (Hwang 

et al., 2021). The coding regions were translated into AA residues, 
and the sequences were used for further discovery of AMPs.

Transcripts often consist of signal and propeptide sequences 
that are cleaved to produce the mature protein with a shortened 
peptide length but full biological activity (Kuhn-Nentwig, 2021). 
However, the prediction model was designed to have a maximum 
input sequence length limitation of 50 AAs, leading to a problem 
that a substantial portion of the peptides with signal and/or 
propeptide sequences cannot be used for the antimicrobial activity 
prediction. Thus, we applied the “sliding window” technique for 
discovering potential AMPs from not only short sequences but 
long sequences, as 64% of the transcript was over 50 AAs in length 
(Figure 3A). The “sliding window” technique truncated sequences 
with the desired length by horizontally moving the “window frame” 
on an input peptide (Figure 3B). We selected a window size of 20 
AAs because the length of most known AMPs is around 20 AAs.

We predicted AMPs from P. astrigera data using the input of 
full sequences under length of 50 AAs and partial sequences by 
sliding window technique (Figure 3C). The histogram presented 
the count of peptides by the total number of bacterial targets 
predicted as AMPs. For example, the case of “2” represents the 
total sum of AMPs predicted for two species in every combination 
among five targets. Initially, 20,239 peptide sequences from 
P. astrigera were predicted to have antimicrobial activities without 
the sliding window technique, and 588 sequences were predicted 
AMPs against the five bacterial species. When the sliding window 
technique was implemented using the window size of 20 AAs and 
step size of 5 AAs, we  obtained 1,581,209 partial peptide 
sequences, of which 167,267 were predicted to be AMPs against 
five bacterial species. In the case of other window size ranging 
from 14 to 24, the results are shown in Supplementary Table 2.

Among numerous potential sequences with antibacterial 
effects, we selected two peptide sequences from each screening 
method that met the following criteria: FPKM > 10, net charge 
above + 3, and good water solubility. Each peptide selected from 
the results with or without the sliding window technique was 
named PA-Win or PA-Full, respectively (Table  3). The model 
predicted the two putative AMPs with almost 100% probability, 
and the peptides were not homologous to any known AMPs found 
by APD3 and NCBI BLAST (Camacho et al., 2009; Wang et al., 
2016). Only uncharacterized proteins with unknown function 
from diverse spiders were annotated to PA-Win with an E-value 
of 3E–13. Notably, the discovery of PA-Win would not have been 
possible from the prediction model were it not for local activity 
prediction via the sliding window technique. The two selected 
peptides, PA-Full and PA-Win, were synthesized and used for 
further experimental evaluation.

Functional evaluation of the PA-Full and 
PA-Win predicted from the model

The functional properties of the selected peptides were 
evaluated by in vitro experiments. First, PA-Full and PA-Win were 
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tested for their antimicrobial activities against Gram-negative 
bacteria E. coli and P. aeruginosa, and Gram-positive bacteria 
B. subtilis, S. epidermidis, and S. aureus, which are the five strains 
used for securing the AMP sequence data. As a representative 
AMP, melittin, a major component of bee venom, was used as a 
positive control because it rapidly kills microbes (Lee et al., 2013). 
The bacteria were treated with peptide concentrations between 
0.125 and 256 μg/ml; that is, under the cutoff value of 267.7 μg/ml 
applied for pre-processing the model dataset. As shown in Table 4, 
the two peptides exhibited significant growth inhibition of the 
target strains. PA-Win showed stronger antibacterial effects than 
PA-Full, having MIC values ranging from 1 to 8 μg/ml on every 
strain. The potency of bacterial eradication was then measured by 

the MBC of the peptides. The MBC of PA-Win was obtained 
against every species, whereas PA-Full was measured only on 
B. subtilis. It was confirmed that the two peptides have 
antimicrobial function against five different strains, and PA-Win 
was demonstrated to be  a strong AMP, showing a strength 
comparable to melittin.

The toxicity of the peptides on mammalian cells was also 
tested to investigate the cytocompatibility for further biological 
applications. The cytotoxic effect was measured on various cell 
lines, such as human lung carcinoma (A549), immortalized 
human keratinocytes (HaCaT), human breast adenocarcinoma 
(MCF7), normal human astrocytes (NHA), and normal  
human dermal fibroblasts (NHDF), using the WST assay 

A B

C

FIGURE 2

Comparisons of the model performance of the MTL and the STL using the test dataset. (A) Boxplots of performance metric results. The MTL 
scored higher than the STL in precision, recall, F1 score, and MCC. (B) Scatter plot showing F1 scores of the MTL and the STL of the identical 
model structure. The gray line indicates the equivalent performance of the MTL and the STL in F1 score, where dots above the line show that the 
F1 score of the MTL was higher than that of the STL. More than 90% of the dots were above the gray line, suggesting the MTL improved prediction 
performance effectively. (C) Precision-recall curves of the best-performing models in the MTL and the STL. The MTL achieved improved 
prediction performances of the AUC values.

TABLE 2 Prediction results of the best-performing model by multi-task learning (MTL) and single-task learning (STL) on the test dataset.

Bacterial strain Training strategy Precision Recall PRAUC F1 score MCC

Bacillus subtilis STL 0.632 0.800 0.741 0.706 0.678

MTL 0.750 0.900 0.758 0.818 0.802

Escherichia coli STL 0.587 0.756 0.639 0.661 0.629

MTL 0.628 0.781 0.738 0.696 0.667

Pseudomonas aeruginosa STL 0.713 0.860 0.815 0.780 0.759

MTL 0.789 0.841 0.886 0.814 0.796

Staphylococcus aureus STL 0.624 0.796 0.700 0.700 0.672

MTL 0.736 0.845 0.826 0.787 0.766

Staphylococcus epidermidis STL 0.681 0.907 0.839 0.778 0.762

MTL 0.663 0.981 0.918 0.791 0.784

The numbers in boldface indicate the best performance.
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(Supplementary Figure  2). The half-maximum inhibitory 
concentration (IC50) values and their 95% confidence interval 
were calculated from three individual tests for each cell line. When 
treated with PA-Full, cell lines were not affected and remained 
viable even at peptide concentrations above 256 μg/ml (Figure 4A). 
The IC50 values of PA-Win on cell lines were at least eight times 
higher than the highest MIC value, 8 μg/ml (Figure  4B). The 
hemolytic activities of the peptides were evaluated using bovine 
erythrocytes. Hemolytic activity was presented as the relative 
value to 0.1% Triton-X treatment, exhibiting 100% hemolysis, and 
the concentrations of 0.5 ×, 1 ×, and 2 × MIC of PA-Full, PA-Win, 
and melittin were tested. When treated with 2 × MIC, PA-Full and 
PA-Win caused almost no hemolysis which was below 3%, 
whereas the melittin caused hemolysis over 90% (Figure 4C). Both 
peptides showed inhibitory concentrations that can exert sufficient 
antibacterial activity without affecting mammalian cells, and 

PA-Win was observed to be  the stronger AMP among the 
two peptides.

Effects of PA-Full and PA-Win on 
bacterial membrane integrity

It is well known that AMPs exert their antibacterial activity by 
disrupting the membrane, causing pore formation and leakage of 
cellular components. Fluorescent dyes DiSC3(5) and NPN were 
used to evaluate the effects of the selected AMPs on bacterial 
membrane integrity, individually targeting the cytoplasmic and 
outer membrane. Along with the two selected peptides, 1 × MIC of 
melittin (shown in Table 3) was again used as a positive control 
because it kills microbes by membrane disruption. As depicted in 
Figure 5A, bacterial cells treated with the two respective peptides 

A

C

B

FIGURE 3

The input data composition and the prediction results from the model. (A) A schematic view of the sliding window technique. An example of the 
truncation of a sequence with a 10-AAs window size and 2-AAs step size. (B) Histogram showing AA sequence length of ORF regions from P. 
astrigera transcriptome. The sequences under 50 AAs in length accounted for 36% of the data. (C) Sequence prediction results according to the 
input data type; full and partial sequences. The prediction results from the deep learning model provided the probability of antimicrobial activity 
for five target bacterial species. The numbers under each histogram represent the counts predicted as AMPs against five bacterial species, where 
588 peptides from full sequences and 167,267 peptides from partial sequences of P. astrigera were found as AMPs against all the bacterial species.
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showed either an instant or time course increase in relative 
fluorescence intensity by DiSC3(5) due to a depolarized cytoplasmic 
membrane. PA-Full and PA-Win caused sharp increases in the 
relative fluorescence of Gram-positive strains than Gram-negative 
bacteria. In Gram-negative strains, the NPN uptake assay was 
additionally conducted to measure the outer membrane disruption 
caused by treating with the peptides (Figure 5B). The maximum 
relative fluorescence intensity was reached within a minute for both 
peptides, where the relative fluorescence intensity obtained by 
treating with PA-Full exceeded that by melittin. The results showed 
that PA-Full and PA-Win effectively led to biomembrane defects.

In agreement with the DiSC3(5) and NPN fluorescent 
measurements, FE-SEM revealed the morphological changes 
upon peptide treatment (Figure 5C). The control groups were 
treated with an equal volume of PBS. While the control group 
retained their normal shape with an intact surface, the bacteria 
treated with the two respective peptides for 4 h showed apparent 
damages on cells. The peptide-treated groups showed blebs and 
deformations on the cell surface and even complete rupture. 
Altogether, these results indicated that PA-Full and PA-Win 
permeabilized the cells and disrupted bacterial membranes, like 
other known AMPs.

Discussion

Antimicrobial peptides (AMPs) have recently received major 
attention for the potential new therapeutic agents because of their 
ability to efficiently kill a broad range of microorganisms by 
permeating biomembranes, damaging cellular components, and 
inhibiting metabolic processes (Mwangi et  al., 2019). Animal 
venoms comprise various biological components that are used in 
predation and defense, such as AMPs. However, identifying 
potential AMPs from animal venoms via conventional 
experimental methods is time-consuming and labor-intensive. 
Therefore, we  developed a deep learning model that predicts 
potential candidate AMPs based only on AA sequences and then 
used the transcriptome data obtained from the venom gland of 
spider P. astrigera to discover novel AMPs.

Spider venom is a rich source of functional biomolecules as it 
is well known of its diversity in venom components with  
various effects, such as antimicrobial, analgesic, antimalarial, and 
anti-arrhythmic activities. Thus, we  obtained venom gland 
transcriptome data from the spider P. astrigera to identify novel 
AMPs. Many studies are based on homology search when handling 
the transcriptome data for investigating and characterizing animal 
venoms. However, because homology search is based on the 
sequence similarity with already discovered peptides, it has 
limitations in identifying completely novel functional peptides with 
no resemblance to known peptide sequences. By contrast, the deep 
learning approach predicts the antimicrobial functionality based 
on the peptide sequence per se; that is, the antimicrobial activity is 
predicted based on the input sequences of AAs without considering 
any physicochemical properties, only using the latent representation T
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of the AA sequences. Thus, the deep learning model can broaden 
the search for AMPs that the homology search cannot discover.

In order to discover peptides with antibacterial activity against 
a broad range of bacterial species, we aimed to develop a deep 
learning model for predicting antimicrobial functionality against 
five bacterial species. Among the various criteria employed for 
categorizing AMPs by several databases, a cutoff value of MIC of 
267.7 μg/ml was applied to obtain more data in the means of 
increasing the prediction target species. Lowering the MIC cutoff 
may possibly identify stronger AMPs than the current model, 
however, it should limit the prediction target by diminishing the 

number of peptides that can be utilized to train the model. Finally, 
the AMP data used for this study were selected based on available 
peptides that met the minimum number applicable for the deep 
learning model training. However, about 60% of the peptides were 
demonstrated to kill only single bacterial species among five target 
species (Figure 1B). The majority of the positive data was AMPs 
with narrow-spectrum antimicrobial activity; although such 
sequences may be active against species that were not tested yet, it 
still provides information only on narrow-spectrum until 
experimentally validated. In this context, a prediction model for 
AMPs without considering species-specific targets will provide 

TABLE 4 The MIC, MBC, and IC50 values of PA-Full and PA-Win.

MIC (μg/ml) MBC (μg/ml) IC50 (μg/ml)
(95% CI)

Bacterial strain PA-Full PA-Win Melittin PA-Full PA-Win Cell line PA-Full PA-Win

Bacillus subtilis 16 2 8 16 2 A549 > 256 65.9

(59.6–72.5)

Escherichia coli 256 8 4 > 256 8 HaCaT > 256 >256

Pseudomonas 

aeruginosa

256 4 16 > 256 8 MCF7 > 256 81.7

(77.6–86.0)

Staphylococcus aureus 32 1 2 > 256 4 NHA > 256 140.3

(133.7–147.4)

Staphylococcus 

epidermidis

256 2 2 > 256 2 NHDF > 256 178.8

(162.9–196.3)

A

B

C

FIGURE 4

Comparisons between MIC values and cytotoxic effects of PA-Full and PA-Win. (A,B) The left bar graph in each panel indicated MIC values of five 
bacterial species. The right bar graph showed the best-fitted IC50 values of five human cell lines with a 95% confidence interval. Both (A) PA-Full 
and (B) PA-Win showed MIC values lower than the IC50. (C) The hemolytic effect of the peptides was compared with that of melittin. Almost no 
hemolysis was occurred up to 2 × MIC of PA-Full and PA-Win, which was under 3%. On the other hand, melittin caused hemolysis over 90% at 2 × 
MIC. Data are represented as mean ± SD; ****p < 0.0001, one-way ANOVA with Bonferroni correction as a post-test.
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AMP sequences with a narrow-spectrum, targeting only one or two 
strains. Therefore, we designed a species-specific prediction model 
that provides information about antimicrobial activity against 
multiple bacterial species, two Gram-negative and three Gram-
positive species, to avoid the discovery of narrow-spectrum AMPs.

The data for AMPs against B. subtilis, E. coli, P. aeruginosa, 
S. aureus, and S. epidermidis barely met the minimum amount of 
data for the deep learning approach, while the other strains were 
not even close. Thus, we developed a deep learning model via the 
MTL approach to overcome and compensate for these data 
limitations. The MTL is known to improve predictive performance 
by training multiple related tasks simultaneously, increasing data 
efficiency, and reducing overfitting (Crawshaw, 2020). Several 
efforts were made to increase the classification ability of the model 
using the data size between AMPs and non-AMPs. When it comes 

to the feature distribution on peptides, the AMP class can be said 
to be  “local,” whereas the non-AMP is scattered as “global,” 
comprising diverse peptides without distinctive functions. For the 
model to improve the discrimination between both classes, the test 
dataset was constructed with AMPs and non-AMPs with a 1:10 
ratio. In addition, two types of model training datasets were 
configured for each target bacterial species with the ratio between 
AMP and non-AMP as 1:1 and 1:3 for comparison. The MTL 
showed better predictive performance in the test dataset compared 
with STL. The weights of the shared layer were tuned by the 
gradient flows from five different tasks, which may facilitate the 
shared layer to learn more general latent representations of the 
peptides. When comparing the results based on the different 
amount of non-AMP in the training dataset, using a ratio of 1:3 
between AMP and non-AMP data in both MTL and STL showed 

A

C

B

FIGURE 5

Disruption of bacteria membrane upon PA-Full and PA-Win treatment. (A) The cell membrane permeability of DiSC3(5) was measured to evaluate 
the integrity of bacterial cytoplasmic membranes. The increase in fluorescence intensity was observed when Gram-positive and Gram-negative 
bacteria were treated with 1 × MIC of the peptides, PA-Full, PA-Win, or melittin. (B) The permeabilization of the outer membranes of Gram-
negative bacteria was observed by the NPN uptake assay. Treatment with PA-Full or PA-Win showed sharp increases in fluorescence intensity 
comparable to that of melittin. (C) Morphologies of bacteria imaged by FE-SEM. Every strain treated with 1 × MIC of peptides for 4 h showed 
damage to bacterial membranes with blebs and ruptures compared with the negative control treated with an equal volume of PBS. The scale bars 
represent 4 μm.
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better performance than a ratio of 1:1 in precision. Meanwhile a 
ratio 1:1 partially performed better in recall metric, which may 
be due to the imbalance of the training data. A ratio of 1:3 resulted 
in improved prediction performance based on both the F1 score 
and PRAUC, which denote the balanced model performance, 
suggesting the distinguishability between AMP and non-AMP has 
further improved. Finally, based on the highest F1 score, 
we selected the best-performing model for discovering novel AMPs.

The best-performing model was provided with two input data 
types from the transcriptome of the spider P. astrigera, the full 
sequences and the partial sequences created by the sliding window, 
for antimicrobial activity prediction. Input data was about 78 times 
larger in the case of the partial sequences by sliding window and 
predicted about 284 times larger potential AMPs compared with the 
full sequence data. The sliding window technique facilitated the 
expansion of the input data, as well as the prediction results from the 
same transcriptome data. We selected PA-Full and PA-Win each from 
the predicted results using the full and partial sequences as the input 
data. The transcripts showed no homology with known peptides 
found by NCBI BLAST, resulting in PA-Full with no match and 
PA-Win with a hypothetical protein of unknown function (E-value 
of 3E–13). Both peptides were identified as AMPs through 
experimental evaluation, and, particularly, PA-Win showed 
outstanding antimicrobial activity with low toxicity to mammalian 
cells. Our deep learning model discovered novel AMPs that otherwise 
cannot be suggested by the traditional methods, including but not 
limited to BLAST. The model also demonstrated that PA-Win would 
not have been identified without implementing the sliding window 
technique. Finally, PA-Win has shown significant antibacterial 
activity comparable to that of a representative AMP, melittin, against 
all the tested strains and exhibited cytocompatibility without 
hemolytic activity, further raising its value. By using the model that 
we  developed, it enables high-throughput prediction of novel 
functional peptides with low cost and effort, excavating peptides with 
high potential and high applicability as AMPs, such as PA-Win.

Our model can predict AMP functionality from any sequence 
data based on AAs, including the transcriptomes of other 
venomous species. The sliding window technique even accelerates 
the production of vast prediction results, which can contribute to 
the acquisition of AMP candidates for next-generation antibiotics. 
Conclusively, as our MTL-based deep model has successfully 
discovered an ideal AMP (i.e., PA-Win), we  believe the 
methodology can be  applied to the fields of biology with 
insufficient data for utilizing specific biological data and exploring 
multiple functional resources, including but not limited to AMPs.
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