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T cells orchestrate adaptive and innate immune responses against pathogens

and transformed cells. However, T cells are also the main adaptive effector

cells that mediate allergic and autoimmune reactions. Within the last few

years, it has become abundantly clear that activation, differentiation, effector

function, and environmental adaptation of T cells is closely linked to their

energy metabolism. Beyond the provision of energy equivalents, metabolic

pathways in T cells generate building blocks required for clonal expansion.

Furthermore, metabolic intermediates directly serve as a source for epigenetic

gene regulation by histone and DNA modification mechanisms. To date,

several antibiotics were demonstrated to modulate the metabolism of T

cells especially by altering mitochondrial function. Here, we set out to

systematically review current evidence about how beta-lactam antibiotics,

macrolides, fluoroquinolones, tetracyclines, oxazolidinones, nitroimidazoles,

and amphenicols alter the metabolism and effector functions of CD4+ T

helper cell populations and CD8+ T cells in vitro and in vivo. Based on this

evidence, we have developed an overview on how the use of these antibiotics

may be beneficial or detrimental in T cell-mediated physiological and

pathogenic immune responses, such as allergic and autoimmune diseases,

by altering the metabolism of different T cell populations.
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Introduction

The discovery of antibiotics as antibacterial substances
was one of the most significant scientific findings in the
last century. Since then, several antibiotics targeting specific
bacteria have been developed. Conversely, antibiotics were also
reported to affect the host immune system by modulating
adaptive immune cells such as T cells. In this context,
especially beta-lactam antibiotics, macrolides, fluoroquinolones,
tetracyclines, oxazolidinones, nitroimidazoles, and amphenicols
were demonstrated to interfere with T cell metabolism and
effector functions.

Naïve T cells in secondary lymphoid organs predominantly
perform oxidative phosphorylation (OXPHOS). However, T
cell activation, for example by recognition of bacterial, viral
and parasitic antigens, induces the expression of several genes
including genes encoding for the rate-limiting enzymes of
glycolysis but also of the electron transport chain, which
cumulates in a switch to aerobic glycolysis (Buck et al.,
2017). Importantly, expression of glycolysis genes is to a
significant degree directly regulated through T cell receptor
(TCR)-mediated store-operated calcium entry (SOCE) and
mediated by calcium-dependent transcription factors such as
nuclear factor of activated T cells (NFAT) family members
(Vaeth et al., 2017, 2020; Kahlfuss et al., 2020). The switch
of activated T cells from OXPHOS to glycolysis is known
as metabolic reprogramming. Following activation, T cells do
not utilize glycolysis simply to generate energy equivalents
but rather to form building blocks such as amino acids and
nucleotides for consecutive proliferation. The latter is crucial
as T cells have to acquire a critical amount of biomass
in preparation for prospective cell divisions during clonal
expansion. Importantly, after an infection is cleared, a minor
fraction of T cells differentiate into memory T cells, which switch
back to OXPHOS as their low division rate does not require
the generation of a significant amount of metabolic building
blocks. Antibiotics were shown to partially interfere with the
activation, metabolism, differentiation, and effector functions
of T cells. Based upon their structure and/or mode of action,
antibiotics are divided into different groups (Hutchings et al.,
2019; Figure 1).

In this context, beta-lactam antibiotics including penicillins,
cephalosporins, carbapenems, and monobactams contain a
beta-lactam ring, that inhibits the bacterial D-alanyl-D-alanine
carboxypeptidase often referred to as DD-transpeptidase or
functionally paraphrased as penicillin-binding protein (PBP)
(Hutchings et al., 2019). Inhibition of the DD-transpeptidase
impedes cell wall synthesis during bacterial proliferation
by binary fission. The lead substance penicillin shows
efficiency against Gram-positive bacteria such as Streptococcus
species and Clostridium perfringens but also against Gram-
negative germs such as Neisseria species and Spirochaete.

Furthermore, penicillinase-resistant penicillins (second-
generation penicillins) such as flucloxacillin are frequently used
against Staphylococci that express penicillinases. In addition,
extended-spectrum penicillins such as aminopenicillins,
carboxypenicillins or ureidopenicllins are efficient against
several Gram-negative bacteria. There is also a gradation
in the activity spectrum of cephalosporins. While first- and
second-generation cephalosporins show relatively good activity
against Gram-positive pathogens, the extended-spectrum
cephalosporins of the third and fourth generation are more
effective against Gram-negative rods. Carbapenems, e.g.,
imipenem and meropenem, are considered broad-spectrum
antibiotics and should be used judiciously to prevent the
generation of resistant bacterial strains. The only monobactam
in clinical use, aztreonam, has found its niche in the treatment
of bacteria expressing metallo-beta-lactamases as it is not
hydrolyzed by them.

Macrolides prevent bacterial protein synthesis by interfering
with 50S ribosome subunits. Macrolides are used to treat Gram-
positive bacteria such as, e.g., Streptococcus pneumonia but also
Gram-negative bacteria, e.g., Haemophilus influenza. Macrolides
are frequently used as an alternative treatment option for
patients suffering from allergy against beta-lactam antibiotics
(Hutchings et al., 2019).

Fluoroquinolones act as inhibitors of the bacterial
topoisomerase II and IV. By inhibiting DNA despiralization,
supercoil relaxation, and DNA unlinking after DNA replication,
they interfere with DNA synthesis (Figure 1). Fluoroquinolones
can be divided into four generations (Hutchings et al., 2019).
While second generation fluoroquinolones feature higher
efficiency against Gram-negative bacteria including non-
fermenter, third and fourth generation fluoroquinolones are
used in the treatment of Gram-positive and bacteria without
cell wall as well as Gram-positive anaerobic bacteria such as
Peptostreptococci.

Tetracyclines inhibit protein synthesis by interaction with
the ribosomal 30S subunit (Figure 1). Tetracyclines are
frequently used to treat infections in patients, who are allergic
to beta-lactam antibiotics and macrolides. As a common
structural characteristic, all tetracyclines share a linear fused
tetracyclic nucleus with different functional groups. Clinically,
tetracyclines are effective in the treatment of Gram-negative
intracellular bacteria such as Chlamydia or Rickettsia.

Linezolid is used against infections caused by Gram-
positive bacteria including penicillin-resistant streptococci,
vancomycin-resistant enterococci (VRE), and methicillin-
resistant Staphylococcus aureus (MRSA) (Figure 1). Linezolid
is a bacterial protein synthesis inhibitor that prevents
translation by interfering with the formation of the initiation
complex, which is composed of the 30S and 50S subunits
of bacterial ribosomes, N-formyl-methionyl-tRNA, and
mRNA. Metronidazole is a nitroimidazole used to treat
Trichomonas vaginalis, Giardiasis, or C. difficile colitis as it
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FIGURE 1

Categorization and mode of actions of antibiotics. According to their barrier structure, bacteria can be divided into gram positive (gr +) and
gram negative (gr–). Antibiotics differ in terms of their mechanisms. Some antibiotics target the bacterial cell wall. Beta-lactam antibiotics
directly inhibit the enzyme D-alanine-transpeptidase, which impedes cross-linking of building blocks in bacterial murein synthesis.
Glycopeptides such as vancomycin, which only attack gram positive bacteria, inhibit bacterial cell wall synthesis by complex formation with
murein components. Diaminopyrimidines, e.g., trimethoprim, inhibiting the enzyme dihydrofolate reductase, and sulfonamides, which target
the diydropteroatsynthase, inhibit bacterial tetraydrofolate (THF) synthesis and, hence, DNA synthesis. Fluoroquinolones negatively regulate the
bacterial enzymes topoisomerase II (gyrase) and topoisomerase IV, which impairs DNA replication. Actinomycin has cytostatic capabilities by
intercalating into DNA and thus inhibiting RNA elongation. Moreover, certain antibiotics impede bacterial protein synthesis through binding to
70S ribosomes. In this context, macrolides, phenicols and oxazolidiones inhibit the large 50S subunit, whereas tetracyclins, aminoglycosides
and glycylcylins are potent 30S inhibitors. In addition, drugs like puromycin interfere with tRNA function and thus represent another mechanism
of protein synthesis inhibition. Metronidazol induces DNA strand breaks. The figure was created with BioRender.com.

inhibits nucleic acid synthesis by forming radicals, which
disrupts DNA structure.

Chloramphenicol, belonging to the amphenicols, reversibly
binds to the catalytic site of the 50S subunit peptidyl transferase
of bacterial 70S ribosomes and is effective against Staphylococcus
aureus, Streptococcus pneumoniae, and Escherichia coli.

CD8+ T cells mediate immunity against viruses but also
against other infectious pathogens and tumors. CD4+ T cells
can differentiate into several T helper (Th) cell populations
such as Th1, Th2, Th17, and regulatory T cells (Tregs).
Th1 cells provide cell-mediated immunity against intracellular
bacteria and viruses, while Th2 cells are involved in humoral
immune response against extracellular bacteria and parasites

(Dong, 2021). Th17 cells regulate cell-mediated immunity
against extracellular pathogens (bacteria and parasites) and
fungi. However, Th1, Th2, and Th17 cells are also involved
in mediating autoimmune and allergic reactions (Skapenko
et al., 2005; Zhao et al., 2013; León and Ballesteros-Tato, 2021).
Tregs negatively regulate CD8+ T cells and all other CD4+ Th
cell populations to prevent overwhelming and/or long-lasting
immune reactions. It should be taken into consideration that
other Th cell populations such as the recently described Th9
cells exist, and that the different Th cell populations especially
in vivo are assumed to represent rather a continuum with
intersubset plasticity than distinct lineages. Interestingly, it was
reported that the differentiation of T cells into distinct T cell
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populations is accompanied by the usage of specific metabolic
pathways. In vivo, Th cells must metabolically adapt to their
environment. Thus, T cell metabolism is significantly involved
in the activation, differentiation, and effector function of CD8+

cytotoxic T cells (CTLs) and CD4+ Th cells. However, how
antibiotics exert pleiotropic effects on T cell metabolism and
function has not yet been comprehensively reviewed.

Therefore, here we have set out to systematically
discuss the current evidence how beta-lactam antibiotics,
macrolides, fluoroquinolones, tetracyclines, oxazolidinones,
nitroimidazoles, and amphenicols interfere with T cell
metabolism and thus T cell-mediated immunity, and what
therapeutic potential this may provide for autoimmune and
allergic diseases independent of their primary indication in
bacterial infections.

Antibiotics influence CD4+ T
helper cell function

Aside from antimicrobial activity, several antibiotics have
immunomodulatory capacities by altering the function of CD4+

T cells (Figure 2). In general, antibiotics have been reported
to downregulate proinflammatory cytokine responses including
IL-1β, IL-6, IL-8, and TNF-α (Bailly et al., 1990; Dalhoff and
Shalit, 2003; Williams et al., 2005; Shams et al., 2021), to alleviate
inflammatory processes by inducing IL-10 (Becker et al., 2016;
Seifert et al., 2018) or to directly affect the development and/or
function of Th1, Th2 and Th17 cells (Williams et al., 2005;
Matsui et al., 2016, 2019).

Linezolid, a ribosomal-targeting antibiotic (RAbo)
belonging to the substance group of oxazolidinones, inhibits
bacterial protein synthesis by targeting the formation of
bacterial 70S ribosomes, particularly affecting Gram-positive
bacteria. According to the endosymbiont theory, mitochondria
possess prokaryotic origin (Esposti et al., 2014), and therefore
structural similarities between bacterial and mitochondrial
ribosomes are conserved (Kondo and Westhof, 2008; Esposti
et al., 2014). Linezolid and other RAbos such as tigecycline and
thiamphenicol show pleiotropic effects on host cell physiology
by inhibiting mitochondrial translation (Zhang et al., 2005;
McKee et al., 2006; Moullan et al., 2015; Almeida et al., 2021),
which was reported to impair T cell function (Almeida et al.,
2021; Figure 2). Especially, linezolid was shown to inhibit
Th cell effector functions including IFN-γ, IL-13 and IL-17
production, while viability of Th1, Th2 and Th17 cells appeared
unaffected (Almeida et al., 2021). Mechanistically, ribosome-
targeting antibiotics inhibit mitochondrial translation of
electron transport chain complexes (ETCs) by blocking the
peptidyl transferase center of mitochondrial ribosomes (Leach
et al., 2007; Almeida et al., 2021). This results in an imbalance
between nuclear- and mitochondrial-encoded ETC subunits
(Houtkooper et al., 2013), which compresses the integrity

of the ETC and subsequently disrupts OXPHOS (Almeida
et al., 2021). As a result, OXPHOS-derived ATP production
is impaired and nicotinamide adenine dinucleotide (NAD+)
regeneration in differentiating T cells appears compromised,
leading to impaired Th cell function and cytokine production,
particularly in Th17 cells (Almeida et al., 2021). Whether
and to which extent this mechanism of action also applies to
other Th cell populations besides Th17 cells is currently under
investigation. In addition, linezolid treatment interferes with
the expression of glycolysis genes (Almeida et al., 2021), which
are mainly involved in TCR-induced T cell activation.

Fluoroquinolones were shown to exert immunomodulatory
properties by suppressing the production of proinflammatory
cytokines including IL-1β, IL-6, TNF-α. Here, various
underlying mechanisms were proposed, including inhibition
of phosphodiesterases and transcription factors, such as AP-1,
NF-AT, NF-IL-6, and NF-κB (Khan et al., 2000; Dalhoff and
Shalit, 2003; Dalhoff, 2005; Zhang and Ward, 2008; Ogino
et al., 2009; Zusso et al., 2019). However, for T cells, there
are numerous contradictory reports that ciprofloxacin either
activates or inhibits T cell activation-induced gene expression,
such as IFN-γ, TNF-α, IL-4, and IL-2 (Stünkel et al., 1991;
Williams et al., 2005; Katsuno et al., 2006; Zhang and Ward,
2008; Kamiński et al., 2010). The latter regulates T cell growth
and effector functions (Kamiński et al., 2010; Assar et al., 2021;
Figure 2). Comparable to RAbos, ciprofloxacin evokes loss
of mitochondrial DNA, which compromises mitochondrial
function and suppresses cell growth in pre-activated human
T cells (Kamiński et al., 2010). Mechanistically, prolonged
ciprofloxacin treatment was shown to lead to impaired activity
of the mtDNA-encoded complex I of the ETC, which reduces
T-cell activation-induced ROS production and thereby enhances
activation of the redox-dependent transcription factors NF-κB
and AP-1.

Penicillin G was shown to exhibit anti-inflammatory
properties by impairing GATA3, TBX21, IFNG, and IL17A
gene expression in T cells (Shams et al., 2021; Figure 2).
However, beta-lactam antibiotics also have opposing effects on
immune-related gene expression in T cells: This is reflected
by the fact that cefuroxime was shown to downregulate genes
related to Th2 and Treg differentiation, while ampicillin was
reported to upregulate these genes (Christie et al., 1987; Mor and
Cohen, 2013). Mechanistically, beta-lactams such as penicillin
covalently bind to serum albumin (Christie et al., 1987; Mor
and Cohen, 2013), which can be taken up by T cells. Uptake
of beta-lactams bound to albumin may then secondarily alter T
cell gene expression (Mor and Cohen, 2013). However, the exact
molecular mechanisms of penicillin-modified albumin on gene
expression remain unknown.

Upon doxycycline and metronidazole treatment, induction
of proliferation-associated signaling pathways was observed
(Becker et al., 2016; Figure 2). Doxycycline upregulates
proinflammatory signaling pathways in Tregs and naive T cells
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FIGURE 2

The influence of antibiotics on CD4+ T cells. CD4+ T cell proliferation is inhibited by tetracycline, azithromycin, and metronidazole.
Chloramphenicol, in turn, forces proliferation by increasing cyclin B expression. Azithromycin, favoring the downregulation of the antiapoptotic
Bcl-xl protein, increases CD4+ T cell apoptosis, whereas chloramphenicol hampers apoptosis by downregulating Fas ligand. Antibiotics like
fluorochinolones, tetracyclines, and oxazolidinones inhibit mitochondrial function leading to decreased mitochondrial translation and ATP
production via OXPHOS and increased levels of NADH+ and mitochondrial reactive oxygen species (mROS). Moreover, antibiotics influence
important transcription factors in various ways. GATA-3 is downregulated by penicillin, while chloramphenicol treatment leads to FoxP3
upregulation. Rapamycin likewise induces the upregulation of FoxP3, which promotes the generation of CD4+CD25+ regulatory T cells (Treg)
while conventional T cells (Tconv) are driven to apoptosis. Moreover, fluorochinolones, azithromycin, and penicillin could lead to decreased
production of CD4+ T cell effector cytokines. Created with BioRender.com.

including NF-κB and IL-13 signaling (Becker et al., 2016). Vice
versa, metronidazole induced an anti-inflammatory expression
profile in these cells (Becker et al., 2016).

Chloramphenicol was reported to cause abnormal cellular
differentiation in activated T cells via overexpression of cyclin
B as well as inhibition of activation-induced cell death via
downregulation of Fas ligand (FasL) expression. In fact, this
mechanism also confers to the leukemia-inducing potential
of chloramphenicol (Yuan and Shi, 2008; Figure 2). In
addition, chloramphenicol treatment was shown to promote
differentiation into Tregs via upregulation of the fate-specific
transcription factor FOXP3 (Yuan and Shi, 2008).

Macrolides, such as clarithromycin, erythromycin,
azithromycin, and the immunosuppressant rapamycin
(sirolimus), which belongs to the same substance group,
have been recognized for their immunomodulatory effects
(Plewig and Schoepf, 1975; Kudoh et al., 1998; Khan

et al., 1999; Zuckerman, 2004; Kanoh and Rubin, 2010;
Ratzinger et al., 2014; Zimmermann et al., 2018; Bergström
et al., 2019; Weng et al., 2019). This has cumulated in further
research on the usage of macrolides for the treatment of chronic
inflammatory diseases (Kudoh et al., 1998; Wolter et al., 2002;
Gotfried, 2004; Clement et al., 2006; Simpson et al., 2008;
Sadreddini et al., 2009; Albert et al., 2011; Koutsoubari et al.,
2012; Wong et al., 2012; Brusselle et al., 2013; Zimmermann
et al., 2018). CD4+ T cells were reported to show suppressed
Th1 and Th2 effector cytokine production in a dose-dependent
manner in the presence of macrolides (Macleod et al., 2001;
Kraft et al., 2002; Uli et al., 2002; Berg et al., 2003; Park et al.,
2004; Pukhalsky et al., 2004; Williams et al., 2005; He et al.,
2010; Perica et al., 2010; Periæ et al., 2012; Tkalèeviæ et al., 2012;
Zimmermann et al., 2018). Furthermore, azithromycin was
demonstrated to inhibit CD4+ T cell proliferation (Hiwatashi
et al., 2011; Ratzinger et al., 2014; Lin et al., 2016) and to
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promote apoptosis through the modulation of the mammalian
Target of Rapamycin (mTOR) (Mizunoe et al., 2004; Ratzinger
et al., 2014; Figure 2). Mechanistically, azithromycin, and
clarithromycin inhibit phosphorylation of ribosomal S6
protein, a downstream target of mTOR and thereby impair cell
growth and proliferation in a manner independent of 12-kDa
FK506-and-Rapamycin-binding protein (FKBP12) (Ratzinger
et al., 2014). Downstream of mTOR, macrolides inhibit the
expression of Bcl-xl, an inhibitor of apoptosis, which makes it
likely that the downregulation of antiapoptotic factors is one of
the molecular mechanisms underlying how macrolides enhance
T cell apoptosis (Mizunoe et al., 2004). Of note, macrolides
also exert immunomodulatory effects on other cells of the
adaptive and innate immune systems, such as neutrophils
and eosinophils (Sugihara, 1997; Wallwork and Coman, 2004;
Zimmermann et al., 2018).

Various effects of antibiotics on
proliferation, apoptosis, and
effector functions of CD8+ T cells
and Jurkat T cells

CD8+ CTLs eliminate intracellular pathogens and mediate
tumor surveillance. To this end, CTLs secrete proinflammatory
cytokines, produce and release cytotoxic granules and
induce active cell death of infected or transformed cells
via Fas/FasL interaction (st. Paul and Ohashi, 2020). Compared
to CD4+ T cells, relatively little is known about if and how
antibiotics influence the mitochondrial function and/or
metabolism of CTLs.

Beta-lactam antibiotics have been shown to suppress the
generation and proliferation of virus-specific CTLs in a dose-
dependent manner (Huegin et al., 1986). Furthermore,
antibiotics such as tetranactin, a macrotetrolide, and
cyclosporine A inhibit CTL proliferation (Callewaert et al.,
1988; Kamiński et al., 2010; Figure 3), however the exact
mechanism for tetranactin remained elusive in these studies.
Cyclosporine A, which inhibits nuclear factor of activated T
cells (NFAT), is highly effective in inhibiting the production
of IL-2 and in preventing IL-2 receptor expression on CTLs.
In addition, ciprofloxacin interferes with the production of
IL-2 and IL-4 and shows an immunosuppressive effect on both
CD4+ and CD8+ T cells (Kamiński et al., 2010).

Antibiotics do not only interfere with the proliferation of
CD8+ T cells but they also influence apoptosis. In this specific
context, antibiotics such as actinomycin D, daunorubicin
or the translational inhibitors cycloheximide and puromycin
were reported to inhibit glucocorticoid-induced apoptosis in
CD4+CD8+ thymocytes in a dose-dependent manner (Dezitter
et al., 2011; Figure 3). On the other hand, sulfamethoxazole-
hydroxylamine treatment was shown to induce a concentration-
dependent decrease of CD8+ T cell viability and causes

suppression of proliferation in vitro (Hess et al., 1999). One
could assume that these cytotoxic and immunomodulatory
effects of sulfonamide reactive metabolites occur selectively
in CD8+ cells, since purified human CD4+ cells appear to
be more resistant to sulfamethoxazole-hydroxylamine-induced
apoptosis in vitro (Hess et al., 1999). Oligomycin, a frequently
used ATP synthase inhibitor, potentiated the proapoptotic
effects of the Fas-activating antibody (CH11) in Jurkat T cells.
Specifically, CH11 and oligomycin led to a decrease in cellular
ROS production by attenuating mitochondrial membrane
potential (Tirosh et al., 2003). Another inducer of apoptosis is
bovine lactoferricin (LfcinB). LfcinB is a cationic antimicrobial
peptide that was reported to induce cell death of Jurkat T
cells via initial cell membrane damage and consequent intrinsic
mitochondrial apoptosis pathways (Mader et al., 2007).

Regarding CD8+ T cell effector function, penicillin and
streptomycin were shown to accelerate target cell lysis by
CTLs (Horai et al., 1982) and sulfamethoxazole-hydroxylamine
was found to promote the transcription of mitochondrial iron
transporters that are important for CTL-mediated cytotoxicity
(Reinhart et al., 2018).

Fever is a common symptom of infection and inflammation,
but also in advanced stages of cancer. Activated CD8+ T
cells exposed to febrile temperature promote metabolic activity
and functional capacity by enhancing mitochondrial translation
(OSullivan et al., 2021). Tigecycline treatment limited this
temperature-induced increase in mitochondrial translation and
inhibited OXPHOS (OSullivan et al., 2021; Figure 3). In this
context, tigecycline attenuated the antitumor response of 39◦C
primed CD8+ T cells in leukemic mice (OSullivan et al., 2021).

Rapamycin strongly interferes with
CD4+ and CD8+ T cell immunity

Macrolides, such as clarithromycin, erythromycin, and
azithromycin, are known for their immunomodulatory effects.
The macrolide rapamycin is widely used for the prevention
of transplant rejection. As rapamycin was shown to have
significant impact on T cell metabolism and effector function,
it is discussed here in a separate section.

Rapamycin (sirolimus), discovered in the 1970s on the
Easter islands (Fowler, 2014; Lamming, 2016), is produced
by the actinomycete Streptomyces hygroscopicus (Shan et al.,
2014), and has strong immunosuppressive/immunomodulatory
capabilities (Shan et al., 2014; Stallone et al., 2016; Figures 2, 3).
Clinically, rapamycin is used in order to prevent graft rejection
after transplantation (Shan et al., 2014; Bergström et al., 2019;
Scheurer et al., 2020) in combination with calcineurin inhibitors
(Ehx et al., 2021) and glucocorticoids (Zheng et al., 2007).

Mechanistically, rapamycin binds to the intracellular
FKBP12 (Battaglia et al., 2006; Fowler, 2014; Stallone et al.,
2016; Bergström et al., 2019), which promotes complex
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FIGURE 3

The influence of antibiotics on CD8+ T cells. In CD8+ T cells antibiotics like tetranactin and cyclosporin A interfere with proliferation by
inhibiting the transcription factor NFAT. Additionally, many antibiotics influence mitochondrial function in CD8+ T cells. Actinomycin D (Act D),
daunorubicin (DRB), cycloheximide and puromycin impair the glucocorticoid (GC)-induced loss of mitochondrial membrane integrity, which
prevents cell death in CD4+CD8+ thymocytes. Sulfamethoxazole hydroxylamine, in turn, amplifies apoptosis and is relevant for CTL-mediated
cytotoxicity. Furthermore, the attenuation of the mitochondrial membrane potential by Oligomycin and CH11 or activation of the intrinsic
mitochondrial apoptosis pathway by bovine lactoferricin (LfcinB) lead to cell death. Furthermore, oxazolidinones and tigecycline interfere with
mitochondrial function in CD8+ T cells by inhibiting mitochondrial protein translation. The fluoroquinolone ciprofloxacin suppresses the
induction of transcription factors NF-κB and AP-1, while Rapamycin favors to the generation of CD8+ T memory cells (Tmem). Created with
BioRender.com.

formation, raptor-association, structural changes (Bergström
et al., 2019) and results in the inhibition of the mammalian
target of rapamycin complex 1 (mTORC1) (Fowler, 2014;
Lamming, 2016; Bergström et al., 2019; Schreiber et al., 2019;
Scheurer et al., 2020). In addition, rapamycin is capable of
inhibiting mTORC2 (Chi, 2012; Lamming, 2016; Schreiber
et al., 2019; Scheurer et al., 2020). mTOR proteins are
cytoplasmic serine/threonine protein kinases that belong to the
phosphoinositide 3-kinase (PI3K)-related family, which act as
a key integrator of nutrient uptake, immune signaling, growth
signals, and other environmental input signals. Thereby, mTOR
factors regulate metabolism, cell cycle, protein synthesis, and
cell growth of T cells (Battaglia et al., 2006; Zheng et al., 2007;
Chi, 2012; Fowler, 2014; Shan et al., 2014; Lamming, 2016;
Stallone et al., 2016; Scheurer et al., 2020). Strikingly, mTOR-
deficient T cells are unable to differentiate toward Th1, Th2, and
Th17 cells upon TCR stimulation, as they lack the activation

of several important lineage-determining transcription factors
such as STAT4 (Th1) STAT6 (Th2) or STAT3 (Th17) (Chi, 2012;
Geltink et al., 2018). Rapamycin furthermore interferes with
cell cycle progression by mediating an arrest of T effector cells
in the G1 phase (Allen et al., 2004; Zheng et al., 2007; Chi,
2012; Stallone et al., 2016), which prevents T cell proliferation
(Battaglia et al., 2006).

Furthermore, inhibition of PI3K through PTEN or mTOR
inhibition by rapamycin was shown to induce FOXP3
expression and thus Treg differentiation (Allen et al., 2004;
Zeiser et al., 2008; Chi, 2012; Dikiy et al., 2021; Figure 2). In
line with this, rapamycin-treated human CD4+CD25+ T cells
proliferated less but showed higher frequencies of FOXP3+ cells
with suppressive function (Tresoldi et al., 2011). Conversely,
rapamycin was shown to decrease CD4+CD25− effector T
cell expansion but not CD4+CD25+FOXP3+ Treg proliferation
(Battaglia et al., 2005, 2006; Strauss et al., 2009). In clinical
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trials, rapamycin treated patients showed increased Treg counts
(Shan et al., 2014). In addition, in the presence of rapamycin
Tregs failed to expand to Th17 cells (Tresoldi et al., 2011).
Further, Rapamycin interferes with the metabolism of iTregs
as it induces metabolic reprogramming of Tregs leading to
decreased glucose metabolism and shifting toward enhanced
mitochondrial metabolism including increased OXPHOS and
FAO (Chen X. et al., 2021). This specific metabolic profile
is unique to Tregs (Geltink et al., 2018) which may reveal
the interplay between metabolism and Treg differentiation.
Together, these findings indicate that rapamycin fosters Treg

differentiation (Bergström et al., 2019) by interfering with the
Akt-mTORC1 pathway that is crucial for Treg differentiation
and function (Haxhinasto et al., 2008). However, mTOR is also
strongly involved in the regulation of activation and anergy
of T cells by signaling cascades leading to phosphorylation
of the downstream mTOR target S6 kinase 1 (Zheng et al.,
2007). It has been shown that rapamycin is capable of inducing
anergy in T cells (Zheng et al., 2007), even in the presence
of CD28 costimulation (Allen et al., 2004; Zheng et al., 2007;

Haxhinasto et al., 2008; Chi, 2012; Stallone et al., 2016). Besides
induction of anergy in vitro, rapamycin was also reported to
induce anergy in vivo (Zheng et al., 2007). However, cell cycle
arrest in G1 by usage of sanglifehrin A (SFA) (Allen et al., 2004;
Zheng et al., 2007) or inhibiting T cell proliferation alone is
not sufficient to induce anergy (Powell and Delgoffe, 2010; Chi,
2012). In this regard, rapamycin inhibits Cyclin D3 expression,
which is upregulated during T cell activation due to mTOR
signaling, but does not affect p27Kip1 levels, as demonstrated
in vitro using E7 T cell lines and western blotting (Colombetti
et al., 2006; Zheng et al., 2007). Hence, rapamycin treatment
in CD4+ OT-II T cells significantly reduced their activation
(measured as decreased CD44 expression) (Rao et al., 2010).
Others have reported that most of rapamycin-sensitive CD4+ T
cells in the presence of 100 mM Rapamycin indeed suffer from
enhanced cell death (Battaglia et al., 2006). However, cells that
survive rapamycin treatment proliferate even in the absence of
exogenous IL-2 (Battaglia et al., 2006). These results are in line
with the fact that rapamycin induces apoptosis in TCR-activated
CD4+CD25+ conventional T cells, while natural Tregs are

TABLE 1 Studies investigating the effect of macrolides (red), phenicols (blue) and oxazolidinones (green) on allergic and autoimmune diseases.

Allergic diseases
study

Antibiotic Outcome

Park et al., 2020 Azithromycin Alteration of gut microbiota may reduce airway inflammation in allergic asthmatic
patients

Watts, 2017 Chloramphenicol Severe delayed-type hypersensitivity (case report)

Ezeamuzie et al., 2022 Oxazolidinone hydroxamic acid derivative PH-251 Protection

Nam et al., 2018 Furaltadone Protection

Phillips et al., 2020 Oxazolidinone hydroxamic acid derivatives Anti-inflammatory activity in vitro

Yen et al., 2021 Erythromycin Protection (decrease in IgE and IgG2)

Aquino and Rosner, 2019 Erythromycin May cause systemic contact dermatitis

Lin et al., 2020 Macrolides 5-year antibiotic exposure to macrolides is associated with the risk of asthma
development in allergic rhinitis children before age of 12

Sadamatsu et al., 2020 Non-antibiotic macrolide EM900 Protection

Yamamoto-Hanada et al.,
2017

Macrolides a.o. Exposure to antibiotics to participants ≤ 3 years revealed higher risk of developing
allergic diseases at 5 years

Undela et al., 2021 Macrolides Macrolides probably deliver a moderately sized reduction in exacerbations requiring
hospitalizations compared to placebo (meta-analysis)

Autoimmune diseases
study

Antibiotic Outcome

Almeida et al., 2021 Linezolid Protection

Grohmann et al., 2020 Linezolid Induction of photoreceptor dysfunction which masquerades as autoimmune retinopathy
(case report)

Huang et al., 2021 Azithromycin Protection

Wang et al., 2018 Azithromycin Protection?/Immune modulation

Tso et al., 2018 Clarithromycin Protection (case report)

Ohe et al., 2018 Clarithromycin Protection (case report)

Chen I. L. et al., 2021 Macrolides (especially Azithromycin) Increased risk of new-onset asthma in children with atopic dermatitis

Drago et al., 2013; Butt et al.,
2019; Rossi et al., 2021

Roxithromycin
Clarithromycin
Azithromycin

Association/Induction with/of acute autoimmune thrombocytopenia (case reports)
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resistant to rapamycin-mediated apoptosis (Strauss et al., 2007).
Here, rapamycin induced an upregulation of antiapoptotic Bcl-2
proteins in CD4+CD25+ Tregs (Strauss et al., 2009).

Similar to CD4+ T cells, rapamycin also modulates
CD8+ T cell function. Rapamycin was reported to mediate
the formation of memory CD8+ T cells in vitro (Araki
et al., 2009; Pedicord et al., 2015; Moraschi et al., 2021).
Furthermore, during vaccination of non-human primates,
rapamycin enhanced CD8+ memory T cell responses in the
expansion and contraction phase (Araki et al., 2009), which
was associated with a loss of T-bet but a compensatory
upregulation of the transcription factor Eomes, which regulates
T-cell homeostasis and function (Rao et al., 2010; Figure 3).
The combination of cytotoxic T-lymphocyte-associated protein
4 (CTLA-4) inhibitors and rapamycin increased the frequency of
memory CD8+ T cells and improved memory response toward
tumors and bacterial challenges (Pedicord et al., 2015). These
results are in line with observations that a lack of mTORC2
signaling promotes CD8+ memory T cell function and that
Rictor-deficient CD8+ T cells showed increased metabolic
fitness (Pollizzi et al., 2015).

Rapamycin was shown to improve the effector and memory
CD8+ T cell responses following immunization with the
ASP2 protein of Trypanosoma cruzi (Moraschi et al., 2021).
Here, rapamycin increased proliferation and cytotoxicity and
stabilized effector, central memory, and effector memory
CD8+ T cells. In addition, IFN-γ, TNF-α, and CD107a
expression in CD8+ T cells appeared higher in the presence of
rapamycin (Moraschi et al., 2021). Furthermore, rapamycin also
increased the number of CD8+ virus-specific T cells after acute
lymphocytic choriomeningitis (Araki et al., 2009). However, the
exact mechanism remains unclear.

Taken together, rapamycin strongly interferes with T cell
proliferation, differentiation, metabolism, and T cell functions.
While rapamycin treatment of CD4 + T cells leads to robust
Treg differentiation, treatment of CD8 + T cells instead induces
memory formation.

Conclusion

Current literature shows that antibiotics preferentially
exert suppressive rather than activating effects on CD4+

Th cells. While this may be potentially detrimental during
infectious diseases, it could prove useful in the treatment
of autoimmunity and allergic diseases. Regarding the latter,
ciprofloxacin treatment resulted in a dose-dependent inhibition
of TCR-induced IL-4 production of T cells from patients that
suffer from atopic dermatitis (Kamiński et al., 2010).

In comparing the literature, it is clear that the effects of
antibiotics on CD8+ T cells vary significantly. While, in general,
antibiotics seem to reduce the effector functions of CD8+ T
cells by interfering with proliferation and by inducing apoptosis,

rapamycin selectively promotes the formation of memory CD8+

T cells. The latter may be beneficial especially during reinfection
with the same pathogen. On the other hand, antibiotics may
also interfere with antitumor immunity as demonstrated by
the treatment of CD8+ T cells with tigecycline (OSullivan
et al., 2021). In this regard, a clinical trial in patients with
advanced non-small cell lung cancer (NSCLC) also revealed
that antibiotic administration attenuates the efficacy of immune
checkpoint inhibitors (Huemer et al., 2018). Here, it should be
also mentioned that the usage of for instance rapamycin during
antitumor therapy, would likely not only impair anti-tumor
immunity but also evoke immunodeficiency and increase the
risk of secondary infections. However, further studies on the
administration of antibiotics during cancer therapy are needed
to elucidate these mechanisms.

Current studies indicate that especially linezolid and
rapamycin limit T cell-mediated autoimmunity (Seifert et al.,
2018; Li et al., 2020; Almeida et al., 2021). In this context,
linezolid was shown to impair central nervous system (CNS)
autoimmunity by inhibiting the proliferation of self-reactive T
cells during experimental autoimmune encephalitis (EAE), a
mouse model for multiple sclerosis. Here, linezolid was shown
to reduce the frequency of MOG-specific IL-17+ and IFN-γ+ T
cells, whereas the frequency of Tregs appeared unchanged during
CNS autoimmunity. It is of particular interest that the inhibitory
effect of linezolid on Th1, Th2 and Th17 cells appeared without
compromising the viability of Th cells (Almeida et al., 2021).
However, to which extent linezolid also attenuates Th2 cell-
mediated diseases like allergic asthma, atopic dermatitis, and
allergic rhinitis, remains to be resolved.

Furthermore, administration of broad-spectrum antibiotics
(ampicillin, metronidazole, neomycin, and vancomycin) were
demonstrated to increase the frequencies of IL-10-producing
regulatory B cells (CD19+CD138+CD44hi) and regulatory
CD8+ cytotoxic T cells (CD8+CD122+) during EAE (Ochoa-
Repáraz et al., 2009; Seifert et al., 2018). Rapamycin was
identified to limit peripheral autoimmunity by promoting the
expansion of Tregs and additionally by inhibiting Th17 cell
responses. During EAE, rapamycin alleviated the disease course
by promoting the TAM-TLRs-SOCS signaling pathway (Li et al.,
2020). However, it should be mentioned that others reported
that treatment with cefuroxime or other beta-lactam antibiotics
leads to more aggravated EAE and adjuvant-induced arthritis
due to directly increased T-cell pathogenicity and toxicity of
these antibiotics (Mor and Cohen, 2013).

Taken together, based on numerous in vitro studies,
mainly macrolides, fluoroquinolones and recently linezolid
have been investigated as potential therapeutic agents in
various allergic and autoimmune diseases due to their
immunomodulatory properties independently of their anti-
bacterial activity. Nevertheless, it should be critically considered
that therapeutical use of antibiotics besides their antibacterial
indication fosters the generation of multi-resistance germs
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creating a significant burden to our health care systems.
Table 1 summarizes studies from the last 5 years, in which
macrolides, phenicols, and oxazolidinones were tested in allergic
and autoimmune diseases. Understanding the cellular and
molecular effectors that contribute to the observed outcome
of the individual studies will require prospective studies which
investigate the effect of different antibiotics on T cells as well
as innate immune cell populations during pathogenesis of
such diseases.
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