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Manure application is an effective way to improve the utilization efficiency

of organic resources and alleviate the adverse effects of long-term

application of chemical fertilizers. However, the impact of applying

manure under different nitrogen rates on soil microbial community in

wheat field remains unclear. Treatments with and without chicken manure

application under three nitrogen rates (N 135, 180 and 225 kg·hm−2)

were set in wheat field. Soil organic carbon, available nutrients, and

abundance, diversity, structure and co-occurrence pattern of soil

microbial community at wheat maturity were investigated. Compared

with no manure application, chicken manure application increased

the soil organic carbon and available phosphorus, while the effects

on soil mineral nitrogen and available potassium varied with different

nitrogen rates. Chicken manure application significantly increased

soil bacterial abundance under the nitrogen fertilization of 135 and

225 kg·hm−2, increased soil fungal abundance under the nitrogen

fertilization of 135 kg·hm−2, but decreased soil fungal abundance

under the nitrogen fertilization of 180 and 225 kg·hm−2 (P < 0.05).

There was no significant difference in alpha diversity indices of soil

microbial communities between treatments with and without chicken

manure application under different nitrogen rates (P > 0.05). Chicken

manure application and its interaction with nitrogen rate significantly

changed soil bacterial and fungal community structures (P < 0.05).

There were significantly different taxa of soil microbial communities

between treatments with and without chicken manure application. Chicken

manure application reduced the ecological network complexity of soil

bacterial community and increased that of soil fungal community.
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In summary, the responses of soil available nutrients and microbial

abundance to applying chicken manure varied with different nitrogen

rates. One growing season application of chicken manure was sufficient

to alter the soil microbial community structure, composition and co-

occurrence pattern, whereas not significantly affected soil microbial

community diversity.

KEYWORDS

manure, soil, microbial community structure, microbial community diversity,
co-occurrence network, winter wheat

Introduction

For more than a century, the application of chemical
nitrogen fertilizer has greatly boosted crop productivity and
provided food security for about half of the population in the
world (Erisman et al., 2008). Meanwhile, long-term excessive
application of chemical nitrogen fertilizer has resulted in adverse
consequences for crop production and environment, such as
reduced fertilizer utilization efficiency (Anas et al., 2020),
accelerated soil acidification (Guo et al., 2010), and increased
water and air pollution (Zhang et al., 2013; Wang H. et al., 2017).

The livestock and poultry industry produces a large amount
of manure with low utilization efficiency (Bai et al., 2018).
However, livestock and poultry manure is an important organic
resource, rich in organic matter and a variety of nutrients
available for crop growth, and could be used as an effective
substitution for chemical fertilizer (Du et al., 2020). Moreover,
recycling manure back to cropland is also an important means
to realize the organic waste reutilization and increase ecosystem
service (Tang et al., 2019). Many studies have shown that
application of manure (including supplemental application and
partial substitution for chemical fertilizer) has multiple benefits
compared to chemical fertilizer, including improving soil
physical characteristics (Khaliq and Abbasi, 2015), preventing
soil acidification (Wang et al., 2019), increasing soil organic
carbon (Tang et al., 2019; Wang et al., 2019), increasing
soil enzyme activity (Liu et al., 2021), improving soil fertility
(Kobierski et al., 2017; Wei et al., 2017; Liu et al., 2021), reducing
greenhouse gas emission (Tang et al., 2019), promoting crop
nutrient accumulation (Xin et al., 2017; Zhang et al., 2018),
improving fertilizer utilization efficiency (Xin et al., 2017; Wei
et al., 2020), and increasing crop yield (Zhang et al., 2018; Du
et al., 2020; Liu et al., 2021).

Soil microbial community is an important part of soil
ecosystem, which is related to the regulation of nutrient
biogeochemical cycling and maintenance of soil fertility. The
species diversity, composition and interaction of the soil
microbial community determine the resistance and stability
of soil ecosystem, and are important indicators to assess soil

quality (Anderson, 2003; Schloter et al., 2018). Thus, revealing
the impacts of agricultural management practices on soil
microbial community diversity, structure, species composition
and co-occurrence pattern are vital to regulate soil ecosystem
function. Among agricultural practices, fertilization (organic
and chemical fertilizer) has great impact on soil microorganisms
and is the primary factor affecting soil microbial community
structure (Guo et al., 2020). Previous studies have shown that
the application of nitrogen fertilizer and manure had significant
effect on soil microbial community. Long-term nitrogen
application increased the soil fungal abundance, decreased its
alpha diversity, and changed its species composition (Zhou et al.,
2016). Fungal community composition differed among soils
under different nitrogen application rates (Zhou et al., 2016).
High nitrogen rate significantly increased soil fungal abundance,
while soil bacterial abundance had no significant response
to different nitrogen application rates (Zhao S. et al., 2014).
Compared with chemical fertilization, manure application
combined with chemical fertilization could reduce the influence
of environmental factors on soil microbial community (Guo
et al., 2020). The application of manure increased soil microbial
diversity (Legrand et al., 2018), changed the community
structure and species composition of soil bacteria and fungi, had
a significant impact on soil microbial ecological network and key
taxa (Ji et al., 2021), and enhanced the potential soil ecosystem
function (Gu et al., 2019).

The soil nutrient stoichiometry could cause changes
in soil microbial community and interactions among
species (Zechmeister-Boltenstern et al., 2015). The effects
of nitrogen fertilization and manure application on soil
microbial community in previous studies may also be related
to the changes of soil resource stoichiometry. However, most
studies only focused on evaluating the effects of applying
chemical nitrogen or manure alone on soil microbial
community, while the impact of applying manure under
different nitrogen rates on soil microbial community in
wheat field remains poorly understood. Consequently, this
study examined the responses of chicken manure application
under three nitrogen rates on soil microbial abundance,
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diversity, structure and ecological network. The objectives
of this work were to (i) investigate the effects of chicken
manure application on soil microbial abundance, diversity and
structure under different nitrogen rates; and (ii) reveal the
short-term effects of chicken manure application on species
composition and co-occurrence pattern of soil microbial
community in wheat field. We hypothesized that short-
term application of chicken manure would significantly
affect soil properties and microbial community, and the
effect of chicken manure application would varied with
different nitrogen rates, considering the change of carbon and
nitrogen inputs.

Materials and methods

Study site

The field experiment was carried out from October 2020
to June 2021 in Haojie Village, Xigang Town, Qi County, Hebi
City, Henan Province, China (35◦35′ N, 114◦13′ E). The average
annual temperature and precipitation in this region are 14.4◦C
and 594 mm, respectively. The soil type was fluvo-aquic soil,
and the previous crop was summer corn. The initial properties
of 0–20 cm soil were as follows: organic carbon 10.84 g·kg−1,
total nitrogen 1.10 g·kg−1, total phosphorus 0.38 g·kg−1, total
potassium 16.37 g·kg−1, pH 8.07.

Experimental design

In the experiment, no manure (C) and applying chicken
manure (M) treatments were set under three nitrogen rates
(N 135, 180 and 225 kg·hm−2), respectively. The experiment
was set up in a randomized block design, with three replicates
for each treatment. There were a total of 18 plots, and each
plot was 7 m long and 5 m wide. The chicken manure for
application was composted until thermal stabilization, and
then air-dried. It contained 46.42% organic matter, 7.18%
nitrogen (N), 1.82% phosphorus (P2O5), and 2.42% potassium
(K2O). The amount of chicken manure application was
2250 kg·hm−2 dry weight. The application rates of phosphorus
and potassium fertilizers in all plots were 120 kg·hm−2 P2O5

and 90 kg·hm−2 K2O, respectively. The 135 kg·hm−2 of
nitrogen fertilizer and all of chicken manure, phosphate and
potassium fertilizer were applied as basal fertilization, and
the remaining nitrogen fertilizer was applied as topdressing
during the jointing period of wheat. Urea (46% N), calcium
superphosphate (12% P2O5) and potassium chloride (60%
K2O) were used as chemical fertilizers. Wheat was sown on
October 18, 2020. Before sowing, the basal fertilizers were
evenly broadcast on the soil surface, and then the soil was
rotated by tillage of 20 cm. Except for the application rate of

manure and nitrogen fertilizer, the field management of each
treatment was same.

Soil sampling and chemical analysis

Soil samples were collected at the depth of 0-20 cm
after harvesting the winter wheat on June 5, 2021. Five soil
cores (2.5 cm diameter) were collected randomly from each
plot and mixed as soil sample for the plot. Soil samples
were sieved through 5 mm to remove impurities and further
homogenize. Each sample was divided into two parts and
brought back to the laboratory on ice. One was stored at
a −80◦C for soil microbial community analysis, and the
other was air-dried for soil organic carbon and available
nutrient analysis.

Soil organic carbon (SOC) was determined by potassium
dichromate volumetric method. Soil NO3

−-N and NH4
+-N

were determined by continuous flow analyzer after extracting
with 1 mol·L−1 KCl. Soil mineral nitrogen was expressed as
the total concentration of NO3

−-N and NH4
+-N. Soil available

phosphorus was extracted with 0.5 mol·L−1 NaHCO3 and
determined by the molybdenum antimony colorimetric method.
Soil available potassium was extracted with 1 mol·L−1 NH4OAc
and determined by flame photometry.

DNA extraction and real-time
fluorescent quantitative polymerase
chain reaction

Soil total DNA was extracted from ∼0.5 g of each soil
sample using the FastDNA Spin Kit for Soil (MP Biomedicals,
United States). The concentration and quality of the extracted
DNA were evaluated using NanoDrop 2000 (Thermo Scientific,
United States) and 1% agarose gel electrophoresis.

Real-time fluorescent quantitative polymerase chain
reaction (PCR) of the bacterial 16S rRNA gene and the fungal
ITS sequence was performed using the primers 515F/907R
(Song et al., 2019) and ITS3F/ITS4R (Gade et al., 2013). The
qPCR reagent kit was ChamQ SYBR Color qPCR Master Mix
(Cat. No. Q411-02, Vazyme Biotech, China). According to the
pre-experiment results, the optimal annealing temperatures
for the 16S rRNA gene and ITS sequence were set at 60◦C
and 58◦C, respectively. A total of 40 cycles of qPCR were
performed. The plasmid DNA containing the target sequence
with known concentration was used as standard. The standard
series was prepared by a 10-fold serial dilution, which was
detected by qPCR at the same time as the sample. Each
sample and the standard were measured three times to
obtain the average value, and the copy number of the target
sequence in the sample was calculated according to the
standard curve.
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PCR amplification and
high-throughput sequencing

PCR amplification of the bacterial 16S rRNA gene and
the fungal ITS sequence was performed using the primers
515F/907R (Song et al., 2019) and ITS3F/ITS4R (Gade et al.,
2013). The PCR reagent kit was TransStart FastPfu DNA
Polymerase (CAT. No. Ap221-02, TransGen Biotech, China).
PCR conditions for the bacterial 16S rRNA gene and fungal ITS
sequence were as follows: 3 min of initial denaturation at 95◦C,
followed by 27 (16S rRNA gene) and 35 (ITS sequence) cycles
of 95◦C for 30 s, 55◦C for 30 s and 72◦C for 45 s, and then a
final extension step at 72◦C for 10 min. The PCR amplification
volume was 20 µL, and each sample had three replicate wells.
The AxyPrep DNA Gel Extraction Kit (CAT. No. AP-GX-
250, Axygen, United States) was used to obtain the target
DNA fragment. Miseq PE300 high-throughput sequencing was
performed after the sequencing library preparation.

Statistical analysis

The high-throughput sequencing data were analyzed using
the online platform of Majorbio Cloud Platform1 (Ren et al.,
2022). FLASH (Magoč and Salzberg, 2011) and fastp (Chen
et al., 2018) were used for assembly, quality control and filtering
of the raw data. USEARCH (Edgar, 2010) was used for OTU
clustering according to 97% similarity, and the sequences were
randomly resampled with the minimum sequence number.
The OTU taxonomy assignment of bacteria and fungi was
performed by RDP Classifier (Wang et al., 2007) based on
the SILVA (Pruesse et al., 2007) and UNITE (Nilsson et al.,
2019) databases, respectively. The mothur (Schloss, 2020)
was used to calculate alpha diversity indices (Chao1 index
and Shannon index) of soil microbial community at OTU
level. Non-metric multidimensional scale analysis (NMDS)
based on Abund Jaccard distance algorithm and similarity
analysis (ANOSIM) were used to analyze the differences of soil
microbial community structure. Mantel test was used to analyze
the correlation between soil microbial community structure
and soil properties. Linear discriminant analysis effect size
(LEfSe) analysis (LDA > 3) (Segata et al., 2011) was used
to analyze the differential taxa of soil microbial communities
in treatments with and without chicken manure application.
According to the Spearman correlation (| r | > 0.7, Benjamini-
Hochberg adjusted P < 0.05), soil microbial ecological
network analysis among genera with relative abundance of
>0.1% was performed by the Cytoscape plugin CoNet (Faust
and Raes, 2016). Topological parameter of the network
was calculated by NetworkAnalyzer (Assenov et al., 2008).

1 https://cloud.majorbio.com/

Finally, Gephi was used to visualize the network. Soil organic
carbon, available nutrients, microbial abundance and alpha
diversity indices among different treatments were compared
under ANOVA and LSD test for multiple comparisons at
P < 0.05 in SPSS.

Results

Soil organic carbon and available
nutrients

Soil organic carbon and available nutrients under different
treatments are shown in Figure 1. Compared with no manure
application, manure application increased soil organic carbon,
and the increase rate was the largest under 135 kg·hm−2

nitrogen fertilization (increased by 13.90%). With the increase
of nitrogen rate, the soil mineral nitrogen was increased at
wheat maturity. Manure application significantly increased
soil mineral nitrogen under 135 and 180 kg·hm−2 nitrogen
fertilization (P < 0.05), while there was no significant difference
in soil mineral nitrogen between treatments with and without
manure application under 225 kg·hm−2 nitrogen fertilization
(P > 0.05). Compared with no manure application, applying
manure significantly increased soil available phosphorus under
different nitrogen rates (P < 0.05), the increase rates were
76.71–97.87%. The effect of manure application on soil available
potassium was not significant under 135 and 180 kg·hm−2

nitrogen fertilization (P > 0.05), while manure application
under 225 kg·hm−2 nitrogen rate significantly increased soil
available potassium (P < 0.05).

Soil microbial abundance

Quantitative PCR analysis showed that compared with
135 kg·hm−2 nitrogen fertilization, increasing nitrogen rate
(180 and 225 kg·hm−2) increased the abundance of soil
bacteria (Figure 2). Under 135 and 225 kg·hm−2 nitrogen
fertilization, the application of manure significantly increased
the abundance of soil bacteria (P < 0.05). Compared
with 135 kg·hm−2 nitrogen fertilization, increasing nitrogen
rate (180 and 225 kg·hm−2) without manure application
significantly increased the abundance of soil fungi (P < 0.05),
while increasing nitrogen fertilizer rate (180 and 225 kg·hm−2)
with manure application significantly decreased the abundance
of soil fungi (P < 0.05), which indicated that application
of manure changed the response of soil fungal abundance
to nitrogen rate. Compared with no manure application, the
application of manure significantly increased the soil fungal
abundance under 135 kg·hm−2 nitrogen fertilization (P < 0.05),
but significantly decreased soil fungal abundance under 180 and
225 kg·hm−2 nitrogen fertilization (P < 0.05).
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FIGURE 1

Soil organic carbon and available nutrients under different nitrogen and manure treatments. M and C indicate treatments with and without
chicken manure application, respectively. Error bars represent standard deviations (n = 3). Different letters above bars indicate significant
difference at 0.05 level.

FIGURE 2

Soil microbial abundance under different nitrogen and manure treatments. M and C indicate treatments with and without chicken manure
application, respectively. Error bars represent standard deviations (n = 3). Different letters above bars indicate significant difference at 0.05 level.
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Alpha diversity and structure of soil
microbial community

After the sequencing data of 16S rRNA gene were randomly
resampled according to the minimum sequence number, 27952
sequences with an average length of 377 bp were obtained
for each sample. After OTU taxonomy assignment, a total of
4860 OTUs were obtained from 18 samples, belonging to 828
genera, 471 families, 298 orders, 125 classes and 45 phyla.
After the sequencing data of ITS sequence were randomly
resampled according to the minimum sequence number, 49288
sequences with an average length of 312 bp were extracted
from each sample. After OTU taxonomy assignment, a total
of 1400 OTUs were obtained from 18 samples, belonging
to 394 genera, 209 families and 104 orders, 53 classes
and 18 phyla.

The alpha diversity indices (Chao1 richness index and
Shannon diversity index) of soil microbial community in
different treatments are shown in Table 1. Under the same
nitrogen rate, there was no significant difference in alpha
diversity indices of soil microbial communities between
treatments with and without manure application (P > 0.05). In
addition, there was no significant difference in alpha diversity
indices of soil microbial communities among treatments with
manure application under different nitrogen rates (P > 0.05).
The above results indicated that short-term nitrogen rate and
manure application had little impact on the alpha diversity of
soil microbial community.

As shown in Figure 3, non-metric multidimensional
scale analysis (NMDS) was used to study the differences
of soil microbial community structure under different
treatments. The structure of soil bacterial and fungal
community responded identically to different treatments.
The soil microbial communities in treatments with and without
manure application were separated obviously at NMDS1
axis, while there was no obvious separation among different
nitrogen rates. The results of similarity analysis (ANOSIM)
were shown in Table 2. Nitrogen rate had no significant
effect on soil bacterial and fungal community structure, while

manure application and its interaction with nitrogen rate
significantly changed soil bacterial and fungal community
structure (P < 0.05).

Since the application of manure had the significant effect
on soil microbial community structure, Linear discriminant
analysis effect size (LEfSe) analysis was further used to
recognize the differential taxa between treatments with
and without manure application (LDA > 3). A total of
13 bacterial taxa and 58 fungal taxa were identified with
significant differences (Supplementary Table 1). In soil
bacterial community, the family Comamonadaceae was
significantly enriched in no manure application treatments,
while the order Solirubrobacterales and Gaiellales, the family
Entotheonellaceae, and the genus Luteimonas were significantly
enriched in manure application treatments. In soil fungal
community, the treatments without manure application had
significant enrichment of 14 genera, 8 families, 5 orders and 2
classes, and treatments with manure application had significant
enrichment of 16 genera, 9 families, 3 orders and 1 class. At
the genus level, Fusariella, unclassified Sympoventuriaceae,
Preussia, Neosetophoma, Alternaria, Rhizophlyctis, Ochroconis,
Schizothecium, unclassified Dothideomycetes, Setophoma,
Monocillium, unclassified Sordariomycetes, Podospora
and Staphylotrichum were significantly enriched in the
treatments without manure application, while Leucothecium,
Niesslia, Actinomucor, unclassified Ascodesmidaceae, Diutina,
Cephaliophora, Dactylaria, Pseudaleuria, Cutaneotrichosporon,
Microascus, Lophotrichus, unclassified Sporormiaceae,
Neonectria, unclassified Chaetomiaceae, Hyalorbilia and
Thelonectria were significantly enriched in the treatments with
manure application.

Correlations between soil microbial
community structure and soil
properties

As shown in Table 3, mantel test was conducted to analyze
the correlation between soil microbial community structure and

TABLE 1 Soil microbial community alpha diversity indices under different nitrogen and manure treatments.

Treatment Bacterial community Fungal community

Chao1 index Shannon index Chao1 index Shannon index

C135 3451± 161ab 6.60± 0.04a 614± 54a 4.16± 0.28a

M135 3296± 37b 6.57± 0.01ab 641± 92a 3.63± 0.85ab

C180 3484± 103a 6.52± 0.03b 582± 51a 3.91± 0.49ab

M180 3401± 31ab 6.53± 0.04b 606± 20a 3.94± 0.04ab

C225 3326± 101ab 6.59± 0.01a 617± 57a 3.96± 0.41ab

M225 3342± 111ab 6.57± 0.03ab 591± 78a 3.12± 0.72b

Values are means± standard deviation (n= 3). Different letters in the same column indicate significant difference at 0.05 level. C, no manure; M, applying manure.
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FIGURE 3

Non-metric multidimensional scaling analysis of soil microbial communities under different nitrogen and manure treatments. M and C indicate
treatments with and without chicken manure application, respectively.

TABLE 2 Similarity analysis (ANOSIM) of soil microbial communities under different nitrogen and manure treatments.

Characteristics Bacterial community Fungal community

r P-value r P-value

Nitrogen rate −0.0374 0.661 −0.0033 0.456

Manure application 0.5175 0.001 0.6235 0.001

Nitrogen rate×Manure application 0.2354 0.024 0.4058 0.001

soil properties. Soil bacterial and fungal community structures
were significantly correlated with soil available phosphorus and
potassium (P < 0.05), and soil fungal community structure
was also significantly correlated with soil organic carbon
(P < 0.05), while the correlation between soil microbial
community structure and soil mineral nitrogen was not
significant (P > 0.05).

Network analysis of soil microbial
community

In order to decipher the potential interactions among
microbial taxa, network analysis was performed with sequence
data of soil microbial community. As shown in Figure 4 and
Table 4, the soil bacterial ecological network of no manure
application treatments was composed of 160 nodes and 967
edges, and the soil bacterial ecological network of manure
application treatments was composed of 161 nodes and 710
edges. The average number of neighbors, clustering coefficient
and network density of soil bacterial ecological network of
manure application treatments were smaller than those of no
manure application treatments, which indicated that applying

manure reduced the complexity of soil bacterial ecological
network. The response of soil fungal ecological network to
manure application was on the contrary to that of soil bacterial
community. The soil fungal ecological network of no manure
application treatments was composed of 70 nodes and 186
edges, and the soil fungal ecological network of manure
application treatments was composed of 74 nodes and 356
edges. Compared with no manure application, the average
number of neighbors, clustering coefficient and network density
of soil fungal ecological network were increased by applying
manure, which indicated that applying manure increased the
complexity of soil fungal ecological network. For the ecological
networks of soil total microbial community, compared with no
manure application, manure application decreased the number
of total and mutual exclusion edges, while there was little
difference of other topological parameters (Supplementary
Figure 1 and Table 4). As shown in Supplementary Table 2,
the percentage of bacterial-bacterial correlation was higher
than those of fungal-fungal and bacterial-fungal correlations
in soil total microbial networks. Compared with no manure
application, manure application decreased the percentage of
bacterial-bacterial correlation and increased the percentage of
fungal-fungal correlation in soil total microbial network.
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Discussion

Effects of manure application under
different nitrogen rates on soil organic
carbon and available nutrients

It is expected that soil organic carbon and available nutrients
could be affected by manure application because manure itself
is rich in organic carbon and available nutrients. In this
study, manure application increased soil organic carbon under
different nitrogen rates (Figure 1), which was consistent with
the results of previous studies (Zhong et al., 2010; Wei et al.,
2017; Lin et al., 2019). The increase of soil organic carbon was
related to the additional carbon input. Although the increase
in soil carbon input could stimulate the mineralization of soil
organic carbon, the replenishment was more than priming loss
of soil organic carbon with additional carbon input (Liang
et al., 2018). The results of previous studies showed that the
soil available phosphorus with long-term manure application
was significantly higher than that without (Zhong et al., 2010;
Kobierski et al., 2017; Wei et al., 2017). Ma et al. found that
short-term application of manure (four rice growing seasons)
significantly enriched soil total and available phosphorus (Ma
et al., 2016). In this study, applying chicken manure in one
wheat growing season could significantly increase the soil
available phosphorus at wheat maturity, with an increase of
76.71-97.87% (Figure 1). It has been demonstrated that soil
available phosphorus was significantly positively correlated with
soil organic matter (Shen et al., 2014). Compared with chemical
fertilization, manure application could improve the activity
of soil phosphatase, which is responsible for soil phosphorus
cycling and could increase available phosphorus (Li et al.,
2015). The improvement of soil phosphatase activity by manure
application may be another reason for the increase of soil
available phosphorus in this study. Therefore, it may be feasible
to rapidly increase soil available phosphorus by applying chicken
manure to meet the phosphorus demand of crop production in
phosphorus-restricted soil. Meanwhile, it could not be ignored
that a large amount of available phosphorus residues at crop
harvest may increase the risk of phosphorus leaching.

TABLE 3 Mantel test correlations between soil microbial community
structure and soil properties.

Soil property Bacterial community Fungal community

r P-value r P-value

Soil organic carbon 0.0498 0.595 0.2817 0.011

Soil mineral nitrogen −0.0574 0.622 0.0261 0.801

Soil available phosphorus 0.3215 0.002 0.4817 0.001

Soil available potassium 0.4590 0.002 0.3418 0.011

The results also showed that the responses of soil organic
carbon, mineral nitrogen and available potassium to manure
application were affected by different nitrogen rates (Figure 1).
The increase of soil organic carbon and mineral nitrogen
with manure application under low nitrogen rate was greater
than that under high nitrogen rate, and the difference was
not significant under high nitrogen rate. The response of soil
available potassium was on the contrary that the application of
manure under low nitrogen rate had no significant effect on
soil available potassium, while increased significantly under high
nitrogen rate. It was speculated that these results may be related
to crop absorption under different treatments and soil enzyme
activity under different soil nutrient stoichiometry.

Effects of manure application under
different nitrogen rates on soil
microbial community diversity and
structure

This short-term experimental results showed that there
was no significant difference in alpha diversity indices of
soil microbial communities among treatments with manure
application under different nitrogen rates (P > 0.05) (Table 1).
In previous studies, the effects of manure application on soil
microbial alpha diversity were inconsistent among different
crop systems. In a double-cropping rice system, 3-year manure
application increased soil bacterial and fungal alpha diversity
compared to chemical fertilization (Tang et al., 2020). In a
broccoli system, soil bacterial community richness index was
significantly increased by short-term application of chicken
manure, but there was no significant difference in soil bacterial
Shannon diversity index between chicken manure application
and control soil (Ye et al., 2022). In a winter wheat-summer
maize system, there was no significant difference in Chao1 and
Shannon indices of soil bacterial and fungal community between
short-term manure and chemical fertilizer treatments (Wang
et al., 2022). In a rice-wheat rotation system, long-term manure
application had no significant effect on Shannon index of soil
bacterial and fungal community, and Chao1 index of soil fungal
community, while significantly increased the Chao1 index of
soil bacterial community (Wang J. et al., 2017). The results of
this and previous studies showed that soil microbial community
was acclimated to manure application, and the reasons for the
inconsistent results in different experiments may be related to
the soil and manure types.

Wang et al. found that fertilization regime of wheat and
rice did not change the soil bacterial community diversity,
but changed the soil bacterial community structure (Wang
et al., 2016). Similarly, the results showed that the application
of manure had no significant effect on the diversity, but
significantly changed the structure of soil microbial community
(Figure 3), which indicated that soil microbial community
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FIGURE 4

Ecological networks of soil bacterial community and fungal community under different organic manure treatments. M and C indicate
treatments with and without chicken manure application, respectively. Genera are represented as nodes and correlations as edges (red:
copresence, blue: mutual exclusion). The node sizes are correlated to the genus degree, and node color indicates the corresponding taxonomic
assignment at phylum level.

TABLE 4 Topological parameters of soil microbial ecological networks under different organic manure treatments.

Topological parameter Bacterial community Fungal community Total microbial community

C M C M C M

Number of nodes 160 161 70 74 236 237

Number of edges 967 710 186 356 1643 1523

Number of copresence edges 496 380 158 321 932 954

Number of mutual exclusion edges 471 330 28 35 711 569

Average number of neighbors 12.088 8.820 5.314 9.944 13.924 12.852

Clustering coefficient 0.388 0.364 0.380 0.466 0.369 0.349

Network density 0.076 0.055 0.077 0.142 0.059 0.054

C, no manure; M, applying manure.
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structure was more sensitive than soil microbial community
diversity to the application of manure. Our results echoed
the viewpoint of previous studies what the soil bacterial and
fungal community structure could be significantly affected by
manure application (Gu et al., 2019; Lin et al., 2019; Ren
et al., 2021). In line with the previous research (Wei et al.,
2017; Luan et al., 2020), the results of NMDS and ANOSIM
showed that the impact of manure application on soil microbial
community structure was more significant than that of nitrogen
rate, and manure application and its interaction with nitrogen
rate significantly changed soil bacterial and fungal community
structure (P < 0.05) (Figure 3 and Table 2). It was suggested
that the mineralization of organic matter in manure is a long-
term process, which is difficult to fully exert its nutritional
potential on soil microbial community in a short-term period
(Zhang M. et al., 2021). Chemical nitrogen fertilizers had
stronger effect on soil microbial community than manure
under short-term condition, as nitrogen addition could increase
microbial activities by mitigating nitrogen limitation (Zhang
M. et al., 2021). While in this study, nitrogen may not be the
main factor limiting soil microbial growth. Mantel test results
further demonstrated that soil microbial community structure
was not significantly correlated with soil mineral nitrogen,
but significantly correlated with soil available phosphorus
and potassium (Table 3). The results were supported by Ma
et al. who found that phosphorus and phosphorus-related
nutrient stoichiometry drove the changes of soil microbial
community composition in paddy soil (Ma et al., 2016).
Additionally, livestock and poultry manure is rich in gut
microbial communities (Bebber and Richards, 2022), and the
microorganisms in manure may also have an impact on the
structure of soil microbial community. Studies have shown that
gut microorganisms could survive in manure- or compost-
amended soils for a long time (Sharma and Reynnells, 2016),
and diverse fungal taxa in manure were transmitted into soil by
the application of manure, which account for 1.10-2.04% of the
relative abundance of soil fungal community (Sun et al., 2020).
Therefore, the effect of manure application on soil microbial
community structure could also be attributed to the microbial
community brought by manure itself.

This study used the same LDA threshold for soil bacterial
and fungal communities to detect the differential taxa between
treatments with and without manure application. The results
showed that the number of differential taxa of fungi was more
than that of bacteria (Supplementary Table 1), which indicated
that the effect of manure application on composition of fungal
community was greater than that of bacterial community.
For soil bacterial community, manure application reduced
relative abundance of the family Comamonadaceae. Certain
members of the family Comamonadaceae have been reported
to exhibit extensive metabolic pathways, such as degradation
of cyclohexane, accumulation of polyphosphate, denitrification,
etc. (Ding et al., 2019). Previous results confirmed that

exogenous fertilizers significantly affected an unclassified
Comamonadaceae, and the unclassified Comamonadaceae was
negatively correlated with soil nitrogen mineralization (Wu
et al., 2021). The results also showed that the order Gaiellales
and genus Luteimonas were significantly enriched in manure
application treatments. In a field experiment with Ultisols,
Gaiellales was also found to be enriched by pig manure
application (Lin et al., 2019). Luteimonas is a nirK-type
denitrifier, which is associated with soil nitrogen loss and
nitrous oxide emission (Zhong et al., 2020). For soil fungal
community, manure application reduced the relative abundance
of potential pathogens, such as Alternaria (Lou et al., 2013),
Setophoma (Ikeda et al., 2012; Yoshida, 2022), unclassified
Sordariomycetes (Maharachchikumbura et al., 2015, 2016).
Among the genus-level taxa enriched by manure application,
Dactylaria and Cutaneotrichosporon were potentially beneficial
fungi. In previous studies, Dactylaria brochopaga of the genus
Dactylaria could manage root-knot disease of wheat by trapping
Meloidogyne graminicola (Kumar and Singh, 2011). Dactylaria
higginsii of the genus Dactylaria could be used as fungal
bioherbicide agent for purple nutsedge (Kadir and Charudattan,
2000). Cutaneotrichosporon was negatively associated with
Fusarium oxysporum, and could inhibit the infection of
Fusarium oxysporum (Zhu et al., 2022). Notably, manure
application also enriched coprophilous fungi such as Niesslia,
Cephaliophora, Microascus and Chaetomiaceae (Dischler et al.,
2019; Zhang X. et al., 2021). Due to the lack of sufficient culture
studies for some differential species, it was difficult to estimate
the ecological impact brought about by the changes in their
relative abundance. It could be confirmed that the differences
in soil microbial community composition caused by manure
application would further affect soil ecological function. On
the other hand, the different composition of soil microbial
community may also cause changes in the interactions among
soil microbial taxa.

Effects of manure application on soil
microbial ecological network

Various microbial taxa do not exist independently in
ecosystem, but interact with each other to form a complex
network (Zhou et al., 2010). The co-occurrence network analysis
could explore the interactions among soil microbial taxa (Zhang
M. et al., 2021), which play an important role in ecosystem
process and function. In this study, the response of co-
occurrence network to manure application was different for
bacterial and fungal communities (Figure 4 and Table 4). After
one growing season, applying manure decreased the average
number of neighbors, clustering coefficient and network density
of soil bacterial ecological network, but increased those of
soil fungal ecological network, which implied that manure
application decreased the complexity of soil bacterial ecological
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network and increased the complexity of soil fungal ecological
network. The previous study has shown that the effect of
manure application on soil bacterial network was related to
the application rate, that is, low manure application rate could
lead to complex and stable bacterial community, while high
manure application rate decreased the stability of bacterial
network (Liu et al., 2020). For soil fungal community, previous
studies have consistently shown that manure application could
increase the network edges, average degree and density (Wang
et al., 2022), and enhance the network complexity (Ji et al.,
2020). As the C/N ratio of fungal hyphae is higher than that
of bacterial cells (Wallander et al., 2003), bacteria and fungi
often exhibit different substrate preference. Manure application
increased soil carbon input and the C/N ratio, which was
beneficial to the growth of soil fungi (Grosso et al., 2016).
Therefore, it was reasonable that manure application increased
the interaction between soil fungal species. The topological
data indicated that the increase of edge number in soil fungal
network was mainly due to the change of positive links
(Table 4). Positive correlations between microorganisms in
ecological network could be explained by common preferred
conditions or cooperative activities (Fuhrman, 2009). It could
be speculated that the recalcitrant organic matters introduced
by manure application required more microbial cooperation
to be degraded, which resulted in a complex fungal ecological
network (Ye et al., 2021). The more complex network indicates
that there is a closer interaction among microorganisms, which
would be beneficial to resist the environmental stresses (Ling
et al., 2016). In this study, manure application decreased the
number of mutual exclusion edges in the ecological network of
soil total microbial community. The studies of ecological theory
showed that competitive interactions could promote stability
of ecological networks (Coyte et al., 2015). It is worth noting
that interspecific interactions within microbial community
are highly complex, further studies with more experimental
evidence are needed to compensate for the limitations of co-
occurrence network analysis only (Banerjee et al., 2018; Guseva
et al., 2022; Jin et al., 2022).

In general, this study showed that application of chicken
manure could alter soil properties, microbial community
structure, species composition and co-occurrence pattern in
a short-term period. At the same time, it should be noted
that manure is also a pollution source rich in heavy metals,
antibiotics and antibiotic resistance genes (Zhao Y. et al., 2014;
Guo et al., 2018), and the potential environmental risks of long-
term manure application under the condition of this study need
to be further evaluated.

Conclusion

Results in this study showed that one growing season
application of chicken manure significantly increased

soil available phosphorus under different nitrogen rates,
significantly increased soil organic carbon and mineral
nitrogen under low nitrogen rate, and significantly
increased soil available potassium under high nitrogen
rate. The response of soil bacterial and fungal abundance
to applying chicken manure varied with different nitrogen
rates. Chicken manure application and nitrogen rate
did not significantly affect soil microbial community
alpha diversity in a short term, while applying chicken
manure significantly changed soil microbial community
structure and species composition. The application of
chicken manure reduced the complexity of soil bacterial
ecological network and increased the complexity of soil fungal
ecological network.
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