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Gluconobacter oxydans has been widely acknowledged as an ideal strain for 

industrial bio-oxidations with fantastic yield and productivity. Even 600 g/L 

xylose can be  catalyzed efficiently in a sealed and compressed oxygen-

supplying bioreactor. Therefore, the present study seeks to explore the osmotic 

stress tolerance against extra-high titer of representative lignocellulosic 

sugars like glucose. Gluconobacter oxydans can well adapted and fermented 

with initial 600 g/L glucose, exhibiting the highest bio-tolerance in prokaryotic 

strains and the comparability to the eukaryotic strain of Saccharomyces 

cerevisiae. 1,432 differentially expressed genes corresponding to osmotic 

pressure are detected through transcriptome analysis, involving several 

genes related to the probable compatible solutes (trehalose and arginine). 

Gluconobacter oxydans obtains more energy by enhancing the substrate-

level phosphorylation, resulting in the increased glucose consumption rate 

after fermentation adaption phase. This study will provide insights into further 

investigation of biological tolerance and response to extra-high titers of 

glucose of G. oxydans.
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Introduction

Gluconobacter oxydans (G. oxydans), an obligate aerobic Gram-negative bacterium 
belonging to the family Acetobacteraceae, is common in the sugar-enriched environments, 
such as nectars, flowers, fruits, and fermented foods (Raspor and Goranovič, 2008; Qin 
et al., 2021). Its respiratory metabolism is characterized by rapid selective oxidation of 
oxy-compounds to obtain energy from incomplete oxidation (Ehrenreich and Liebl, 2017; 
Lynch et al., 2019). The catalytic reaction center of the membrane-bound dehydrogenases 
participating in the incomplete oxidation is directed toward the periplasmic space, making 
substrate and product transport through cell membrane unnecessary (Deppenmeier et al., 
2002; Keliang and Dongzhi, 2006; Gao et al., 2020) and rapid accumulation of incompletely 
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oxidized product in the medium (Keliang and Dongzhi, 2006; 
Zhou et al., 2018).

So far, this bacterial strain has been adopted for the 
bioconversion of various aldonic acids (Jin et al., 2019), hydroxy 
acids (Hua et al., 2019), ketones (Chen et al., 2021), and furan 
acids (Du et al., 2021), etc., using a sealed and compressed oxygen 
supply biotechnology (SOS) with whole-cell catalysis (Hua et al., 
2020b). Hua et al. obtained ultrahigh-titer erythrulose at 364.7 g/L 
by SOS technology and exceeded the inhibitory concentration of 
erythrulose (about 250 g/L; Hua et al., 2020b). Even 600 g/L xylose 
was fermented efficiently at the productivity of 4.69 g/L/h (Zhou 
et al., 2015). Therefore, G. oxydans has gained worldwide attention 
lately as an ideal strain for industrial bio-oxidation.

According to previous knowledge, G. oxydans often 
encounters dehydration in a hypertonic medium, impeding the 
cellular metabolism, fermentation, growth, and survival (Zahid 
et al., 2015). Microorganisms have developed two basic survival 
strategies, the “salt in” and the “compatible solutes” to resist 
osmotic stress generated by decreased water activity (Vyrides and 
Stuckey, 2017). For instance, anaerobic halophilic bacteria 
counteract osmotic stress by the first strategy and allow the 
intracellular enzymes to adapt to the newly elevated ion titer 
environment (Naufal and Wu, 2020). In this regard, many 
microorganisms often apply the compatible solute strategy 
without special adaptation, which are the uncharged, polar, and 
hydrosoluble compounds at physiological pH conditions (Brown 
and Simpson, 1972). Few compounds, meeting the specific 
requirements, could be  classified into 4 structural categories: 
sugars, polyols, free amino acids and its derivatives, and 
heterosides (Vyrides and Stuckey, 2017; Liang et al., 2020; Gregory 
and Boyd, 2021). So far, only mannitol has been identified as a 
compatible solute in G. oxydans against the sucrose-mediated 
osmotic pressure (Zahid et al., 2015).

Herein, we studied the effect of the extremely high titer of 
main lignocellulosic sugar of glucose on the cellular metabolism, 
fermentation, growth, and survival of G. oxydans. High-
throughput transcriptome sequencing technology was used to 
generate transcriptional profiles of G. oxydans against sugar 
osmotic stress. The comparative study of these profiles might 
reveal the genes responsible for osmotic tolerance and help to 
understand the molecular mechanisms associated with the 
hyperosmotic stress tolerance of G. oxydans.

Materials and methods

Strains and growth conditions

Gluconobacter oxydans NL71 strain (derived from ATCC 
621H) was cultured in a yeast extract (0.5%)-sorbitol (5%) 
medium (YS) and incubated at 30°C and 220 rpm for 24 h. 
Escherichia coli (E. coli) was cultured in an LB medium and 
incubated at 37°C and 200 rpm for 12 h. Saccharomyces cerevisiae 
(S. cerevisiae) was cultured in a yeast extract (0.3%)-peptone 

(0.5%)-glucose (2.0%) medium (YPG) and incubated at 30°C and 
150 rpm for 24 h.

Cultural conditions
The synthetic medium (g/L) contained yeast extract (5.0), 

(NH4)2SO4 (5.0), K2HPO4 (2.0), KH2PO4 (1.0), MgSO4 (0.5), 
ZnCl2(0.4), CaCl2(0.2), and different titers of glucose (100, 200, 
400, or 600).

Fermentations were performed in 250 ml Erlenmeyer flask 
containing 50 ml medium for 24–48 h shaking at optimum 
temperature and speed for each strain. The initial OD600 for 
fermentation was 2.0. The pH value of medium containing 
G. oxydans was stabilized between 5 and 6 using 50% NaOH solution.

Spot assay
Saccharomyces cerevisiae, E. coli, and G. oxydans cells in 

logarithmic growth phase were diluted with saline to an 
absorbance at 600 nm (OD600) of 2.0. 4 μl of 10-fold serial 
dilutions were spotted on YS, LB, or YPG-agar plates containing 
different titers of glucose. Cell growth was evaluated after 36 h 
of incubation at the optimum temperature for each strain.

CFU counts
To analyze cell viability, appropriate dilutions of G. oxydans 

in synthetic medium containing different titers of glucose were 
plated onto YS-agar plates at various time points. The YS-agar 
plate contained yeast extract (0.5%), sorbitol (5%), and agar 
(1.5%). Colony-forming units (CFU) were calculated by counting 
the number of viable colonies after 2 days of incubation at 30°C.

Whole-cell activity assays
Whole-cell activity assays were analyzed by a method 

developed by Peters et  al. (2017). Briefly, cells of G. oxydans 
obtained at different time points from different titers of glucose 
were harvested and washed twice with normal saline and were 
resuspended in phosphate buffer (pH 5.5). The whole-cell 
2,6-dichlorophenolindophenol (DCPIP) assays were performed 
in 96-well plates (Thermo Fisher Scientific, America). Each well 
contained 166 μM of DCPIP and 110 μM of phenazine 
methosulfate, combined with cells (OD600 of 0.2) and 25 mM 
glucose. The reaction was measured by Infinite 200 PRO Tecan 
microplate readers (TECAN, Switzerland) at 594 nm for 30 cycles 
at 30°C and was shaken every 10 s. The oxidative activity of the 
substrate is quantified by linear regression of the initial 
absorbance reduction. One unit of oxidation activity was defined 
as 1 μmol glucose oxidized per minute as determined by a 
reduction of 1 μmol DCPIP (Peters et al., 2017). The extinction 
coefficient of DCPIP at 594 nm was 5,800 L/(mol·cm) with a 
pH of 5.5.

Determination of ATP
Cells obtained at different time points from different titers of 

glucose were harvested and washed twice with normal saline and 
were resuspended in phosphate buffer. The determination of 
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adenosine triphosphate (ATP) was carried out by ATP Assay Kit 
(Beyotime Biotechnology, China) according to the manufacturer’s 
protocol. The samples were placed in 96-well white plates 
(Corning Incorporated, America) and their chemiluminescence 
values were measured using an Infinite 200 PRO Tecan microplate 
readers (TECAN, Switzerland). The protein content was 
determined by the Bradford Protein Assay Kit (Beyotime 
Biotechnology, China) according to the manufacturer’s protocol.

RNA-seq analysis
The G. oxydans was cultured to logarithmic phase and then 

reinoculated into the synthetic medium at 100, 400, and 600 g/L 
glucose at an initial OD600 of 2.0. After incubation for 8 h, cells were 
harvested and washed twice with normal saline. Total RNA was 
isolated using the Bacterial RNA Miniprep Kit (Biomiga, America) 
and stored at −80°C. The concentration and quality of total RNA 
were determined by NanoPhotometer spectrophotometry (IMPLEN, 
America) and Agilent 2100 Bioanalyzer (Agilent Technologies, 
America), respectively. The frozen samples were shipped to Gene 
Denovo Biotechnology Co. Ltd. (Guangzhou, China) for RNA-seq 
analysis using the Illumina NovaSeq 6000 platform (Liu et al., 2017, 
2021). The raw sequencing data in this study have been submitted to 
the NCBI SRA database under the BioProject number of 
PRJNA755830. A parallel experiment was conducted in triplicate.

qRT-PCR
RNA was extracted as described in the section RNA-Seq 

analysis. Real-time quantitative polymerase chain reaction (qRT-
PCR) was performed using SYBR Premix ExTaq Kit (TaKaRa, 
Japan) in ABI StepOnePlusTM Real-Time PCR System (Applied 
Biosystems, America), as reported previously (Miao et al., 2017). 
The primers for qRT-PCR were listed in Table  1. Relative gene 
expression was calculated using the 2−ΔΔCt method with 16S rRNA 
as internal control. A parallel experiment was conducted in triplicate.

Intracellular arginine
The G. oxydans was cultured to logarithmic phase and then 

reinoculated into the synthetic medium at 200, 400, and 600 g/L 
glucose at an initial OD600 of 2.0. After incubation for 8 h, cells 
were harvested and freeze-dried. The intracellular substances were 
extracted using the method of Zahid et al. (2015). The extract was 
added with sulfosalicylic acid (final concentration 4%) at 4°C 
overnight and freeze-dried. After freeze-dried sample was 
dissolved, the arginine concentration was determined by 
automatic amino acid analyzer (Sykam, Germany).

Analytical methods
Glucose, sodium gluconate, 2-keto-gluconic acid hemicalcium 

salt hydrate, and 5-keto-gluconic acid potassium salt hydrate were 
all purchased from Sigma.

Glucose, glucose acid (GA), 2-keto-D-gluconic acid (2-KGA), 
and 5-keto-D-gluconic acid (5-KGA) were quantitatively 
determined by high-performance anion exchange chromatography 
coupled with pulsed amperometric detection (Dionex ICS-3000), 

and equipped with CarboPac™ PA200 column with a flow rate of 
0.3 ml/min at 30°C according to reports from Zhou et al. (2017).

The data were analyzed by SPSS Statistical Software. T-test was 
employed for differences between groups. Significant differences 
for results were considered when p < 0.05.

Results

The glucose titer effect on the growth 
and fermentation of Gluconobacter 
oxydans (vs. Escherichia coli and 
Saccharomyces cerevisiae)

The effect of glucose content on microorganism growth was 
demonstrated by the change in opacity and colony size in the 
colony pattern (Zhang et al., 2016). In this study, the growth ability 
of G. oxydans with another classical Gram-negative bacterial type 
strain Escherichia coli (E. coli) and the eukaryotic type strain 
S. cerevisiae on 100–600 g/L glucose agar plates was compared 
(Figure 1). Gluconobacter oxydans could grow in white and round 
colonies on a 100 g/L glucose plate. The opacity of colonies 
decreased with the increase of glucose titers. Only undiluted 
samples could obtain colonies on 400 g/L glucose agar plate 
(Figure 1A). The opacity and diameter of S. cerevisiae colonies 
gradually decreased with the increase of glucose content, but it 
could not grow colonies on an agar plate at 600 g/L glucose content 
(Figure 1B). Escherichia coli could grow on a 100 g/L LB agar plate, 
but it did not show any growth at 200 g/L glucose content 
(Figure 1C).

Effects of different initial titers of glucose in the liquid medium 
on the fermentation ability of each microorganism were compared 
(Figure 2). Gluconobacter oxydans and S. cerevisiae showed similar 
trends in the liquid medium. When the initial glucose titer was 
100–200 g/L, its consumption rate was rapid within 24 h, reaching 
7.56 g/L/h for G. oxydans (Figure 2C) and 7.03 g/L/h for S. cerevisiae 
(Figure 2B). Moreover, these two strains could not grow on the 

TABLE 1 Primers used for qRT-PCR in this study.

Gene Sequence (5′–3′)

16S-F AGGACCTGATTACTGTCTTCGG

16S-R TTCCACGCACCATTTCTTC

VZ55_RS06850-F GTTGGACAGGCTGTTGCG

VZ55_RS06850-R TAGGGGGAGATATTCGGG

VZ55_RS10065-F GAACCTCGTTTACATCCCA

VZ55_RS10065-R GACAGCTTACCCGTCTCTG

VZ55_RS08395-F CGGTGAGATTGAGTGGGC

VZ55_RS08395-R ATCGGCAGGTAAAGCAGG

VZ55_RS05735-F TGGACAGCACCAAGAGCA

VZ55_RS05735-R CCCGAGAGGAGCATCAGA

VZ55_RS08235-F ACACCGACCAACAAACCT

VZ55_RS08235-R ATTCCAAGCGGGACGTAA

F/R: forward primer/reverse primer.
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600 g/L glucose agar medium while showing a certain metabolic 
capacity in the corresponding liquid medium. In contrast, E. coli 
was unable to metabolize at 100 g/L glucose solution (Figure 2A) 
but grew on the equal concentration of the solid medium.

The effect of high glucose titers on the 
physiological status of Gluconobacter 
Oxydans

The fermentation of G. oxydans was carried out in the 
synthesis medium with glucose titers ranging from 100 to 
600 g/L. As illustrated in Figure  3A, gluconic acid (GA) was 
metabolized to 2-keto gluconic acid (2-KGA) and 5-keto gluconic 
acid (5-KGA) after 18 h, which was consistent with the previous 

study results (Zhou et al., 2017). When the initial glucose titer was 
increased to 200 g/L (Figure  3B), glucose was consumed 
completely within 36 h. When the initial glucose titer was 400 g/L 
(Figure 3C), there was still 37.3% of glucose remained left in the 
medium after 48 h of fermentation. Gluconobacter oxydans 
eventually consumed only 22.5% of the glucose in the medium 
and was incapable of producing keto-gluconic acid with initial 
600 g/L glucose (Figure 3D).

Herein, the effect of high glucose titer on the viable count was 
first analyzed to investigate the effect of high glucose concentration 
on the physiology and biochemistry of G. oxydans during 
fermentation (Figure  4). At 100 g/L glucose, the viable count 
increased and then fell due to the proliferation of G. oxydans in 
the presence of glucose. Subsequently, G. oxydans began to die and 
the viable count gradually decreased due to the shortage of 

A

C

B

FIGURE 1

Spot assays of the E. coli (A) grown on LB medium, S. cerevisiae grown on YPG medium (B), and G. oxydans (C) grown on YS medium at different 
glucose titers.
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glucose. However, the viable count did not change a lot at 200 g/L 
glucose, indicating that G. oxydans could not use glucose to 
proliferate in this situation. In this process, G. oxydans only 
converted glucose into GA and converted GA to 2/5-KGA when 
glucose was depleted. When titer was further increased to 
400–600 g/L, the viable count decreased by 3.6% and 21% within 
24 h and further decreased to 62.9% and 68.2% at 48 h. As 
illustrated in Figure 3C, when the glucose titer was increased to 
400 g/L, the glucose consumption rate reached 6.72 g/L/h during 
24–48 h, which was 2.21 times higher than that within 23 h.

Besides, the relationship between the whole-cell activity of 
G. oxydans, initial glucose titers, and fermentation time with glucose 
as substrate was established (Figure  5). The highest activity of 
G. oxydans was 404.9 U at 12 h, which was 1.66 times higher than the 
original one with initial 100 g/L glucose. Subsequently, the whole-
cell activity was reduced to the same level as initially. In combination 
with the viable count (Figure 4), the membrane-bound enzymes 
associated with glucose-catalyzed metabolism were coupled to the 
growth of G. oxydans and had the highest activity during their 
proliferation period. When the initial titer was 200–600 g/L, the 
whole-cell activity of G. oxydans decreased continuously with an 

increase of fermentation time. The whole-cell activity decreased by 
31.3% (400 g/L) and 42.9% (600 g/L) at 48 h, respectively.

The changes in intracellular ATP with different fermentation 
times were measured at the initial glucose titers of 400 g/L and 
600 g/L (Figure 6). The intracellular ATP content was elevated 
with the increase of fermentation time corresponding to the 
glucose consumption rate.

Transcriptome analysis of Gluconobacter 
oxydans to extra-high titers of glucose

In combination with the effects of different initial glucose titers 
on cellular metabolism, fermentation, growth, and survival of 
G. oxydans, the samples treated with 100 (control), 400, and 600 g/L 
glucose for 8 h were subjected to transcriptome analysis. A total of 
1,432 differentially expressed genes (DEGs) corresponding to high 
osmotic pressure were obtained (Figure 7B). These two groups 
showed consistent trends but different specific fold changes in 6 of 
the top 15 genes with |Maximum log2FC|. While the remaining 9 
genes were unique DEGs to each group (Figure 7A). These indicated 

A

C

B

FIGURE 2

Glucose consumption of the E. coli (A), S. cerevisiae (B), and G. oxydans (C) at different glucose titers.
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that G. oxydans had a different response to extra-high titers of 
glucose and there were significant differences between groups.

The results of KEGG enrichment of 400 and 600 g/L glucose-
treated samples are illustrated in Figure 8. The samples treated 
with 600 g/L glucose were significantly enriched in the sulfur 
metabolism pathway (Figure  8B). Besides, 2 DEGs (VZ55_
RS10120, VZ55_RS03000) associated with arginine biosynthesis 
were found to be significantly up-regulated. The samples treated 
with 400 g/L glucose were significantly enriched in the starch and 
sucrose metabolism pathway (Figure  8A). Ten DEGs were 
attributed to this pathway, including 3 genes associated with 
sucrose metabolism (VZ55_RS06725, VZ55_RS11225, and VZ55_
RS04715) and two genes associated with trehalose (VZ55_
RS05465 and VZ55_ RS05470).

RNA-Seq data validation by qRT-PCR

Five DEGs (VZ55_RS10065, VZ55_RS08235, VZ55_
RS13980, VZ55_RS08395, VZ55_RS09870) about glucose 
metabolism on the periplasmic space, including both 

up-regulated and down-regulated genes, were selected. The 
transcript levels of G. oxydans treated with different titers of 
glucose (100, 400, and 600 g/L) for 8 h were analyzed by 
qRT-PCR to verify the reliability of the RNA-Seq analysis 
results. As illustrated in Figure 9A, the relative expression of the 
five genes tested showed two patterns of down-regulation 
followed by up-regulation and always down-regulation upon 
osmotic stress attack. This result suggested that G. oxydans 
antagonized different high titers of glucose in different ways, 
and adopted a variety of strategies to antagonize osmotic stress. 
Although the gene expression fold changes for the five DEGs 
detected by qRT-PCR were slightly lower than the RNA-Seq 
data, the trends in expression multiples were consistent with the 
transcriptome analysis (Figure 9B).

Discussion

The colony morphological traits alterations could be  a 
macroscopic manifestation of several biological strategies adopted 
by microorganisms to resist stress conditions, such as starvation, 

A B

C D

FIGURE 3

The production of GA, 2-KGA and 5-KGA in various glucose titers. (A) Initial 100 g/L glucose; (B) initial 200 g/L glucose; (C) initial 400 g/L glucose; 
(D) initial 600 g/L glucose.
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antimicrobial resistance, and osmotic pressure (Sousa et al., 2013; 
Wang et  al., 2019). Compared with liquid medium, bacterial 
immobilization often inhibits their growth and increases their 
sensitivity to environmental stress under adverse conditions 
(Jeanson et al., 2015). Therefore, we specifically compared the 
growth on agar plate and fermentation behavior in liquid media 
with typical Gram-negative bacteria (E. coli) and eukaryotic strain 
(S. cerevisiae). Both S. cerevisiae and G. oxydans showed adaptation 
behavior in the medium of initial 400–600 g/L glucose titers, but 
the adaptation time of G. oxydans was longer. The performance of 
G. oxydans in an extreme high titer liquid medium was not 
inferior to that of S. cerevisiae.

Further, we examined the effect of high glucose titers on the 
specific physiological state of G. oxydans. Both the viable count 
and whole-cell activity continued to decrease in the high glucose 
titer medium (400–600 g/L). For organic acid fermentation 
process, the increased environmental osmotic stress always caused 
by adding a neutralizer (Tian et  al., 2014). Thus, the osmotic 
pressure in the medium increased due to the accumulation of 
sodium gluconate resulting in a significant decrease of viable 
count and whole-cell activity. As described previously, G. oxydans 
showed an adaptation behavior to the high osmotic stress 
generated by high glucose titers (400–600 g/L), and the glucose 
consumption rate increased after the adaptation phase (Figure 2B). 
The results were contradictory to each other. Gluconobacter 
oxydans could gain energy from the incomplete oxidation of 
glucose to GA (Ehrenreich and Liebl, 2017). However, it could not 
obtain enough energy from the incomplete oxidation process due 
to the high osmotic stress. Hua et  al. reported that when the 
uncoupling agent (2,4-Dinitrophenol) disrupted the proton 
gradient resulting in the loss of ATP synthesis driving force, 
G. oxydans promoted catabolic substrates utilization, such as 
sorbitol and glucose through the substrate level phosphorylation 
pathway to compensate for the lack of ATP (Hua et al., 2020a). 
Thus, it was speculated that G. oxydans enhanced the substrate 
level phosphorylation to obtain sufficient energy. The results of 
ATP content assay confirmed that the intracellular ATP content 
did increase continuously after adaptation phage indicating that 
G. oxydans gained more energy due to the increased substrate 
level phosphorylation.

The 17 DEGs concentrated in the sulfur metabolism pathway 
(600 g/L) were mainly associated with cysteine synthesis. Cysteine 
synthesis in Gram-negative bacteria involved two main pathways. 
In the first route, sulfate was converted to 3′-phosphoadenosine-
5′-phosphosulfate by sulfate adenylyltransferase, and subsequently 
reduced to sulfite (Kertesz, 2006). In the second route, extracellular 

FIGURE 4

The effect of glucose titers on the viable count of the G. oxydans 
(*p < 0.05, **p < 0.01).

FIGURE 5

The effect of glucose titers on the whole-cell activity of the 
G. oxydans (*p < 0.05).

FIGURE 6

The effect of glucose titers on the intra-cellular ATP 
concentration of the G. oxydans.
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A

B

FIGURE 7

Radar map (A) and Venn diagram (B) of DEGs in G. oxydans responding to extra-high titers of glucose (400 and 600 g/L) with 100 g/L as control. 
The filter criteria of DEGs were q  <  0.05 and |log2FC|  >  1. A parallel experiment was conducted in triplicate. (A) The outermost circle are the gene 
name and log2FC; the yellow and sky-blue circle represent up-regulated and down-regulated genes, respectively, and the size of the circle 
represents the size of the log2FC value; outer data of third circle represents the average expression amount of the initial 100 g/L glucose and inner 
data of third circle represents the average expression amount of the initial 400 g/L (or 600 g/L) glucose; the irregular shapes in the circles are the 
expression abundance on each axis for initial 100 g/L glucose and initial 400 g/L (or 600 g/L) glucose; the innermost circle center indicates the 
legend.

alkanesulfonate was transferred into the cell and oxidized by 
alkanesulfonate monooxygenase, resulting in the production of 
aldehyde and sulfite (Park et al., 2020). The sulfite generated by 
both pathways was reduced to sulfide by sulfite reductase and 
subsequently transferred onto O-acetylserine to yield cysteine. 
Four DEGs involved in first route (VZ55_RS06350, VZ55_
RS06345, VZ55_RS06340, and VZ55_RS09905), 10 DEGs involved 
in the second route (VZ55_RS12750, VZ55_RS12775, VZ55_
RS12825, VZ55_RS13290, VZ55_RS13365, VZ55_RS12795, 
VZ55_RS13385, VZ55_RS12790, VZ55_RS13275, and VZ55_
RS12785), and 3 DEGs associated with the conversion of sulfite to 
cysteine (VZ55_RS05185, VZ55_RS10370, and VZ55_RS04470), 
were all significantly down-regulated. This may be  to strictly 
regulate the cysteine content to control its toxicity to cells 
(Sorensen and Pedersen, 1991; Takumi et al., 2017). In addition, 
two arginine-related were upregulated. The intracellular arginine 

concentration did increase with the initial glucose titers 
(Supplementary Figure S1). Xu et al. (2011) reported that Candida 
glabrata transported large amounts of arginine from the 
environment to the cell as a compatible solute to counteract 
osmolality in the environment. The osmotic tolerance of 
microorganisms was closely related to the compatible solutes. A 
study by Liang et al. on freshwater cyanobacterium Synechococcus 
elongatus PCC 7942 found that it exclusively accumulated sucrose 
as a compatible solute upon salt stress (Liang et al., 2020). Trehalose 
is a non-reducing disaccharide found in many organisms from 
bacteria to mammals (Thierry et al., 2011). In bacteria, trehalose 
could be utilized as a carbon and energy source and accumulated 
as a compatible solute for its specific physical properties (Vyrides 
and Stuckey, 2017; Thorwall et al., 2020; Zeidler and Müller, 2020). 
Studies by Woodcock et al. showed that Pseudomonas aeruginosa 
collaboratively antagonized osmolarity by producing trehalose and 
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α-glucan (Woodcock et al., 2021). Thus, it was speculated that the 
5 DEGs enriched to this pathway might be  associated with 
compatible solutes formation. However, no intracellular trehalose 

was detected by high-performance liquid chromatography 
(coupled with Aminex HPX-87H). This may be  due to the 
involvement of up-regulated OtsA (VZ55_RS05465) in the 

A B

FIGURE 8

KEGG enrichment analysis of the DEGs obtained at 400 g/L (A) and 600 g/L (B) glucose with 100 g/L as control. A parallel experiment was 
conducted in triplicate.

A B

FIGURE 9

Compared transcription levels of genes of interest by qPCR and RNA-Seq. (A) Gene expression levels in qPCR. (B) Comparison of gene expression 
level between qPCR and RNA-Seq. A parallel experiment was conducted in triplicate.
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regulation of cell morphology (Chen et al., 2017) or glycolysis 
(Eastmond and Graham, 2003). Although Zahid et al. found that 
mannitol was a compatible solute against the sucrose mediated 
osmotic pressure in G. oxydans, intracellular mannitol was not 
found under high glucose titer mediated hypertonic condition.

Conclusion

In this study, the effects of high titer glucose on fermentation 
performances and cell morphology of G. oxydans were 
investigated. The results showed that G. oxydans could not grow 
on the 600 g/L glucose agar medium and showed a certain 
metabolic capacity in the corresponding liquid medium, reaching 
the highest tolerance ability of S. cerevisiae. Gluconobacter oxydans 
obtained efficient energy by enhancing the substrate level 
phosphorylation, resulting in the increased glucose consumption 
rate. A total of 1,432 DEGs corresponding to high osmotic stress 
were obtained from the transcriptome analysis. Several genes 
related to compatible solutes were founded, primarily associated 
with trehalose and arginine metabolism.
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