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Bacteria residing within biofilms are more resistant to drugs than planktonic 

bacteria. They can thus play a significant role in the onset of chronic infections. 

Dispersion of biofilms is a promising avenue for the treatment of biofilm-

associated diseases, such as dental caries. In this review, we  summarize 

strategies for dispersion of cariogenic biofilms, including biofilm environment, 

signaling pathways, biological therapies, and nanovehicle-based adjuvant 

strategies. The mechanisms behind these strategies have been discussed from 

the components of oral biofilm. In the future, these strategies may provide 

great opportunities for the clinical treatment of dental diseases.
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Introduction

Dental caries is a common oral disease that is mainly caused by cariogenic  
biofilm. Cariogenic biofilms constantly form in the oral cavity. Besides mechanical 
cleaning, auxiliary chemical methods are necessary to control their spread (Pratten 
et al., 1998).

For better physical settlement, microorganisms produce, and wrap themselves in a 
matrix that acts like a “protective scaffold” (Jamal et al., 2018). As an architectural colony, 
the microbial ecosystem of caries is an ordered and spatial community (Kim and Koo, 
2020), which offers opportunities for close relationships and high mutation frequency to 
virulence genes. In addition, as active and complex organizations, cariogenic biofilms 
colonize competitive niches and are resistant to stressful environments. Cariogenic biofilms 
restrict and sequestrate the penetration of chemicals through the matrix (Sims et al., 2020). 
Therefore, it is not surprising that bacteria in the biofilm state are more tolerant to various 
antibiotics, and thus, are more difficult to control than bacteria in the planktonic state 
(Davies, 2003). With long-term applications, antibiofilm drugs may not only induce 
resistance of cariogenic bacteria but also disrupt healthy microbiota, resulting in the 
limitation of existing antimicrobial therapies (Perez-Diaz et al., 2015).

Several studies have focused on the inhibition of biofilms and most present agents can 
inhibit biofilm-forming bacteria without eradicating the mature biofilm. Due to the short 
effect time of inhibitors, they cannot control the biofilm well. Therefore, to some extent, 
dispersion and eradication of mature biofilms are very important for biofilm control.
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Most strategies for cariogenic biofilm dispersion are restricted 
to a particular approach; however, each approach has advantages 
and disadvantages. It is important to reinforce the concept of 
co-administration of different strategies. In this review, 
we summarize the applications and mechanisms of the strategies 
for dispersion of cariogenic biofilms, including changing the micro-
environment, modulating signaling molecules, and so on. In 
addition, we explore a few novel biological and nanovehicle-based 
strategies, which have the potential to be combined with traditional 
approaches or strengthen the effects of cariogenic biofilm dispersion.

The biofilm lifestyle and 
dispersion

The life cycle of cariogenic biofilms has already been studied 
thoroughly. The development of biofilms is generally considered to 
be a different stage of a cyclic process. During the infection, biofilm 
formation is initiated by the aggregation of planktonic cells. In the 
biofilm, single bacterial cells are protected against the immune 
system and antimicrobial agents (Serra and Hengge, 2014). The 
concentration gradient of oxygen, nutrient resources and waste 
products become steepening. These stress factors of the different 
micro-environment may activate the starvation mechanisms and 
accumulation of molecules to induce dispersion (Nguyen et al., 
2011). The life cycle of a biofilm is finalized with the cells escaping 
via dispersion to new sites for colonization. The biofilm releases the 

bacterial cells and allows them to recolonize at other sites (Koo 
et al., 2017). Evacuation of bacteria leave behind voids in the center 
of mature biofilm (Rumbaugh and Sauer, 2020). Although self-
disassembly can result in infection and bacteremia (Fleming and 
Rumbaugh, 2018), the dispersed bacteria and biofilm with center 
voids become much more sensitive to antimicrobial agents.

Therefore, in the final stage of biofilm development, dispersion 
provides a great opportunity for us to remove biofilm unaffectedly 
(Lin et al., 2022). It is possible to create an environment that is 
experienced by bacteria in biofilms during the terminal stages 
(such as by mediating extracellular signaling molecules, nutrient 
resources, and oxygen) to induce biofilm degradation and diffusion. 
Taking advantage of the metabolites or enzymes of microorganisms 
would be a gentle and specific approach that would not affect the 
development of dysbiosis or the balance of the beneficial oral 
microbiome (Pleszczynska et  al., 2015). Therefore, biofilm life 
cycles can be exploited in effective biofilm dispersion strategies.

Change in biofilm environment

Extracellular matrix-inhibitor

Degradation of the matrix is an effective strategy for the 
“physical collapse” of the biofilms (Rainey et  al., 2019). As 
mentioned before, the extracellular matrix is a shield for the 
biofilm residents, which not only provides structural protection 
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to encase the community but also gain nutrients for metabolic 
utilization. Generally, these matrices comprise extracellular 
polymeric substances (EPS), extracellular DNA (eDNA), 
proteins, and lipids (Petersen et  al., 2005; Jakubovics and 
Burgess, 2015).

Extracellular polymeric substance-degrading 
enzymes and inhibitor

Extracellular polymeric substances is one of the most 
important components in cariogenic biofilm matrices and 
includes glucans, and fructans. The polysaccharides in EPS 
promote bacterial aggregation and mediate biofilm adhesion 
(Lynch et  al., 2007), which aids in avoiding a collapse of the 
biofilm architecture (Liljemark and Bloomquist, 1996). EPS are 
synthesized by extracellular enzymes of oral bacteria (Townsend-
Lawman and Bleiweis, 1991; Vacca Smith and Bowen, 2000), such 
as glucosyltransferase (Gtf) and fructosyltransferase (Ftf). Gtf and 
Ftf transform glucose and fructose to glucan and fructans, 
respectively (Munro et al., 1991). Some antiplaque agents inhibit 
the activity of dental plaques by reducing the production of 
extracellular glucans (Koo et al., 2000) and fructans (Steinberg 
et al., 2002).

Glucans and fructans comprise primarily a mixture of 
different linkages, including α-(1→3), α-(1→6), and β-(1→6) 
glucans (Bowen and Koo, 2011), as well as β-(2→6)-linked 
fructan (Willcox and Drucker, 1987). As the key fractions of the 
matrix, EPS provides sites for the formation of metabolizable 
polysaccharides, cell aggregation microbial colonization (Koo 
et al., 2010; Xiao and Koo, 2010), and adhesion among different 
species (Gregoire et al., 2011). The α-(1→3)-linked glucan is 
presented in insoluble glucans with high concentrations and 
α-(1→6)-linked glucan is abundant in soluble glucans (Bowen 
and Koo, 2011). Glucanohydrolases contain mutanase for 
insoluble glucans and dextranase for soluble glucan (Hayacibara 
et al., 2004). Mutanases catalyze the hydrolysis of glucosidic 
linkages and effectively help fight against Streptococcus mutans 
(S. mutans) (Thallinger et al., 2013). These abilities of mutanases 
mainly manifest in the degree of saccharification and dissolution 
of water-insoluble EPS in S. mutans. Dextranase hydrolyzes 
dextran, which is an acceptor molecule to synthesize soluble 
glucans (Xiao et al., 2012). Similar effects have been observed 
for dispersin B, which hydrolyzes β-(1→6)-glucans (Kaplan 
et  al., 2004). However, breaking one of the linkages in EPS 
monomers is not sufficient to degrade the biofilm completely. 
Ren et al. (2019) found that a combination of dextranase and 
mutanase can synergistically degrade different glycosyl linkages 
in a biofilm more efficiently.

Moreover, several phenols (including eugenol, catechins, 
quercetins, and sylvestris) showed similar functions as mutanase 
or dextranase. Eugenol inhibits both insoluble and soluble 
glucan activities of Streptococcus sobrinus (S. sobrinus) 
considerably (Li et al., 2012). Burt et al., reported that eugenol 
exhibits significant activity against the biofilm of Candida 
albicans (C. albicans) (Burt, 2004). C. albicans is one of the 

major etiological agents in early childhood caries (ECC), which 
may enhance the virulence of S. sobrinus and S. mutans as well 
(Wan et al., 2021). Meanwhile, eugenol presents low cytotoxicity 
and hemolytic activity. Catechins and quercetins interfere with 
both insoluble and soluble glucan activities (Zeng et al., 2019) 
by interacting with Gtf in S. mutans (Nakahara et al., 1993). This 
anti-Gtf action is also associated with sylvestris, which affects 
the quality of glucans formed by inhibiting GtfB activity. Ribeiro 
et  al. (2019) reported that FLO/SC, PAC/CE, and PRE/SP 
extracts remove a significant amount of S. mutans biofilms, 
probably because of a decrease in the biomass of glucans 
produced by GtfB.

Although enzymes that degrade EPS can be used as moderate 
anti-biofilms agents (Otsuka et al., 2015), their applications alone 
have not been tested clinically due to their limited antimicrobial 
activity (Balakrishnan et  al., 2000). Promising antibacterial 
activity in plant species has been noted. Piceatannol could be acted 
as an inhibitor of gtfC, which shares the same space as acarbose 
(Ito et  al., 2011). Due to its specificity for the S. mutans Gtf, 
piceatannol interacted specifically with the adhesion of S. mutans 
biofilms and did not influence cell viability (Nijampatnam et al., 
2018). Similarly, osteopontin exhibited an apparent selectivity 
toward Streptococcus mitis SK24 biofilms instead of the planktonic 
cells by changing the hydrophobicity of the biofilm surface 
(Schlafer et al., 2012).

Extracellular enzymes can successfully weaken the structure 
of the biofilms by targeting glucans, fructans, and their different 
linkages in EPS. Furthermore, a synergistic approach that 
combines antimicrobial agents with EPS matrix-degrading 
enzymes can potentially increase the effect of biofilm disruption 
and prevent dental caries.

Deoxyribonuclease
In recent years, environmental DNA (eDNA) has attracted 

much attention as a component of the matrix of cariogenic 
biofilms (Pedraza et al., 2017; Tawakoli et al., 2017). There are 
multiple functions of eDNA in biofilm formation, such as 
establishing the basis for initial bacterial adhesion and mediating 
subsequent attachment (Das et  al., 2011). In addition, eDNA 
facilitates the transmission of genetic information among oral 
biofilms (Roberts and Kreth, 2014). It can also be a source of 
nutrients, including phosphate, carbon, and fixed nitrogen for oral 
bacteria (Liu et al., 2018b).

Zhang et al. (2020) designed a type of helical peptide, which 
could interact with eDNA to induce dispersion of the S. mutans 
biofilm. Several studies have used DNase to cleave 
eDNA. Endogenous DNase encoded by deoC can significantly 
decrease the biofilm biomass and regulate the dispersion of the 
S. mutans biofilm (Liu et  al., 2017). Although DNase barely 
decreases the viability of planktonic C. albicans and S. mutans, the 
human recombinant DNase I  can significantly enhance the 
eradication of dual-species biofilm during its initial stages (Guo 
et al., 2021). DNase can enhance the susceptibility of antimicrobial 
agents and their antibiofilm activities by cleaving eDNA.
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Proteinases and proteins inhibitor
Besides EPS and eDNA, proteins also act as a scaffold to 

protect the community. Bacteria produce multiple proteins to 
enhance bacterial adhesion. Surface adhesion proteins, including 
glucan-binding proteins (GbpA, GbpB, GbpC, and GbpD) and 
streptococcal protein antigen P (SpaP), can facilitate sucrose-
dependent attachment of matrix glucans, salivary agglutinin, and 
bacteria (Biswas and Biswas, 2005). For instance, Gbp in S. mutans 
can mediate the adhesion of S. mutans and promote the functions 
of the viscoelastic structure (Matsumoto-Nakano, 2018). 
Proteinase acting on the Gbp proteins exhibits an anti-Gtf effect, 
which leads to a reduction in the volume of EPS or even bacterial 
biomass. Proteinase K could affect the biofilm infrastructure of 
S. mutans and Streptococcus oralis (S. oralis) by removing most of 
the extracellular proteins (Karygianni et al., 2020). Flavonoids 
have a similar function as proteinase. They not only interact with 
extracellular and soluble proteins on the bacterial surface but also 
inhibit the activity of Gtfs (Koo et al., 2003).

In sum, endogenous and exogenous nucleases for eDNA and 
proteinase for surface adhesion proteins may effectively promote 
the dispersion of cariogenic biofilm.

Electrostatic interactions agents

The electrostatic interactions involved in the bonding of the 
biofilm matrix could be affected by hydrophilic agents (Venault 
et al., 2014), surfactants (Wang et al., 2021), and metal chelators 
(Roman et al., 2014). Such electrostatic interaction agents have 
been found to destabilize the biofilm matrix and facilitate biofilm 
separation (Xavier et al., 2005). However, there are a relatively 
small amount of studies about electrostatic interactions involved 
in the bonding of the cariogenic biofilm matrix.

Furthermore, electrostatic interactions exist among anionic 
metabolites and anionic components on the bacterial surface. 
Postollec et  al. (2003) reported that static electricity affects 
bacterial adhesion and aggregation via isothermal reaction 
calorimetry. For instance, the static electricity of polypyrrole 
affects the positively charged cross-bridging. Most surfaces of the 
biofilm are negatively charged, and polypyrrole also binds to 
negatively charged amino acids. Enhancing electrostatic 
interactions may promote the physical removal of bacteria from 
the tooth surface by facilitating the biofilm to remain intact and 
by inhibiting cell separation from long chains. It has been shown 
that aspartic acid451 is a part of the active site that controls the 
catalytic activity in Gtfs in response to sucrose binding, i.e., the 
DSIRVDAVD (residues 446–454) (Mooser et  al., 1991). High 
concentrations of polypyrrole can absorb Gtf-I and Gtf-SI and 
block the action of Gtfs (Kato et  al., 1992). Through the 
electrostatic interactions with S. mutans, the polypyrrole structure 
physically inhibits the formation and colonization of the biofilm. 
It can also promote the physical removal of the biofilm from the 
tooth surface by enhancing electrostatic adsorption aggregation 
(Senpuku et al., 2019).

Either synchronous modification of antimicrobial 
polyethylene glycol (PEG) or pH-activated charge conversion with 
cationic peptides has recently emerged as effective approaches to 
target negatively charged sites (Tian et al., 2020). In this manner, 
the micelle structures enhanced penetration and self-regulation 
by anchoring to the targeted biofilm.

Such specific electrostatic interaction agents can facilitate 
cariogenic biofilm removal by promoting concentrations of 
effective constituent and affecting the Gtfs.

Oxygen radicals

During metabolism, endogenous H2O2 is produced by natural 
bacteria. The neighboring streptococci in oral micro-ecology, such 
as Streptococcus gordonii (S. gordonii), Streptococcus sanguis, and 
Streptococcus oligofermentans, can impact the pathogenesis of 
S. mutans via self-produced H2O2 (Kreth et  al., 2009). H2O2 
generates free radicals, which not only degrade EPS but also 
promote the physical removal of biofilms by oxidative cleavage 
(Noyori et al., 2003). Although S. mutans is sensitive to oxidative 
stress (Liu et al., 2018b), the inhibitory effect of S. gordonii through 
H2O2 is far from adequate (Tanzer et al., 2012).

Exogenous application of H2O2 is common in household and 
clinical disinfection. It has little toxicity even at concentrations as 
high as 10% of effective concentration. The high peroxidase-like 
catalytic activity of metals or metal oxides under acidic pH has led 
to an increased interest in their biomedical application. Silver 
(Metin-Gursoy et  al., 2017) and zinc oxide nanoparticles 
(Hernandez-Sierra et al., 2008), as well as iron oxide nanozymes 
(Cormode et  al., 2018), have been reported to have potent 
antibiofilm nature. For instance, iron oxide nanozymes in acidic 
environments have the similar activity as peroxidase. They 
disrupts the constituents of the biofilm matrix and kill S. mutans 
(Liu et al., 2018a). Dextran-coated iron oxide nanoparticles (Dex-
NZM) can degrade EPS at an acidic pH (Naha et  al., 2019). 
Furthermore, the combination of iron oxide nanozymes and 
H2O2-generating bacteria improves the overall cleansing effect 
(Wang et  al., 2020). Gao et  al. (2016) synthesized catalytic 
nanoparticles (CAT-NP) to degrade insoluble glucans by the 
generation of free radicals from H2O2 in pathogenic acidic biofilms.

Photosensitizer (PS) can also activate molecular oxygen 
radicals and produce reactive oxygen species (ROS) (Cieplik 
et al., 2018). Through an oxidative burst, the PS compounds 
cause bacterial death and biofilm dispersion (de Souza et al., 
2020; Martins Antunes de Melo et  al., 2021). This method 
provides a robust direct ablation without drug resistance (Zhao 
et  al., 2019a). Methylene blue (MB) caused a significant 
reduction in S. mutans biofilms, allowing the prospect of 
eliminating bacterial infections in deep carious lesions 
(Legenova et al., 2020). Fotoenticine (FTC) is a new derivative 
of chlorin e-6, which showed significant photodynamic effects 
against cariogenic bacteria, including S. mutans that was isolated 
from patients with dental caries (Terra Garcia et  al., 2018).  
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Due to the high carbohydrate content, the S. mutans biofilms 
exhibited greater absorption to PS than fungal cells, which might 
be the reason for the susceptibility of S. mutans (Sharma et al., 
2011). Even in a complex polymicrobial biofilm, S. mutans are 
more susceptible to FTC-mediated photodynamic therapy 
(Garcia et al., 2021).

H2O2 and nanoparticles with the peroxidase-like activity 
present an ideal antibiofilm strategy by generating free radicals for 
the elimination of oral biofilms.

Modulation of signaling pathways

Instead of targeting the biofilm matrix, small molecules have 
been used to influence signaling systems by disaggregating 
bacteria (Ren et al., 2016; Fleming and Rumbaugh, 2017; Snarr 
et al., 2017). Due to its unique patterns of gene expression and 
protein production in each developmental stage of biofilms, 
bacterial signaling systems can minimize the impact on normal 
bacterial flora and prevent dental plaque infectious diseases 
(Lamont et al., 2018).

Quorum sensing

Quorum sensing (QS) is a microbial communication response 
in the entire cell population and has a significant impact on the 
biofilm life cycle (Li and Tian, 2012). QS is a typical microbial 
communication mode that enables bacteria to display cooperative 
group mechanistic behavior, which controls the expression of 
genes to virulence factors, biofilm dispersion, biofilm activity, and 
secondary metabolism (Li et al., 2001). Therefore, inhibition of the 
QS pathway would be  a potential strategy for attenuating 
bacterial virulence.

The comCDE system
The comCDE system and the agglutinin-like sequence (Als) 

family are important in QS. The comCDE system responds to 
environmental signals, such as acid, and mediates pheromone 
competence stimulating peptide (CSP) activity (Lemos and Burne, 
2008). High concentrations of CSP, which is a QS molecule in 
streptococci, may reduce biofilms and elongate the cells (Qi et al., 
2005). Cvitkovitch et  al., synthesized an analog of CSP (KBI-
3221), which specifically targeted the QS pathway and decreased 
biofilms in various streptococcus biofilm dispersal (LoVetri and 
Madhyastha, 2010). Carolacton triggered the death of S. mutans 
by interfering with the comCDE system, and ComX in a growth-
dependent way (Kunze et al., 2010).

Curcumin could downregulate the expression of the comCDE 
system (comC, comD, and comE) (Li et al., 2019) to inhibit QS (Li 
et al., 2018) and alter the EPS production (Falsetta et al., 2014). 
Hoyer et al., indicated that the expression of the Als family in 
C. albicans, which controls adhesion and aggregation, is 
suppressed by curcumin (Hoyer and Cota, 2016).

The LuxS system
In S. oralis, S. gordonii, and S. mutans, sulfated vizantin (Viz-S) 

reduces the expression of luxS and the downstream pathway of 
AI-2. With the deletion of the luxS gene, gtfB and gtfC genes are 
upregulated, which markedly reduces biofilm formation (Yoshida 
et  al., 2005). Activation of the luxS gene downregulates the 
expression of gtfG in S. gordoni (Mcnab et al., 2003). AI-2 was also 
found in the inner cellular matrix of S. mutans and S. sobrinus. 
AI-2 inhibits the expression of gbpC and dblB, and induces the 
production of dextran-dependent aggregation (DDAG) (Lee 
et al., 2015).

Downregulation of the luxS gene alters biofilm structure in 
S. oralis and S. gordonii resulting in dispersion (Cuadra-Saenz 
et al., 2012).

Others
There has been increased interest in the QS system for the 

development of Chinese traditional medicine in recent years. 
Zingiber officinale reduces the expression of the entire set of 
S. mutans virulent genes and genes related to the biofilm life cycle, 
including comDE (for part of the QS cascade), relA (for oxidative 
stress and acid tolerance mechanisms) (Liu et al., 2011), brpA (for 
biofilm development and maturity), and gtfC (for the synthesis of 
glucans). The repression of these genes, especially their inhibition 
through the QS system, would attenuate their internal 
communication systems (Hasan et al., 2015). Cannabigerol also 
exerted an anti-bacterial effect against S. mutans (Karas et al., 
2020; Aqawi et al., 2021). Cannabigerol suppressed the expressions 
of gbpB (for growth essential), vicR (for cell wall derivation and 
biofilm formation) (Lei et al., 2018), brpA (Wen et al., 2018), and 
wapA (for cell aggregation and biofilm architecture) (Zhu et al., 
2006), with a concomitant increase in spaA (for binding S. mutans 
to tooth surfaces) expression and activity (Yang et al., 2019). Taken 
together, the above findings show that affecting the QS pathway 
can alter various gene expressions and attenuate the internal 
communication system, which may lead to biofilm disruption.

The Gtf gene family

All the QS pathways mentioned above involving the Gtf gene 
family. As we mentioned before, Gtfs maintain the integrity of the 
biofilm (Klein et al., 2015). The Gtf gene family, which encodes all 
Gtfs in S. mutans, directly responds to glucan matrix formation 
(Lei et  al., 2015) and is regulated by the rnc gene. Increased 
expression of the rnc gene down-regulates vicRKX by 
posttranscriptional repression, followed by the promotion of the 
expression of gtfB and gtfC genes (Stipp et al., 2013; Mao et al., 
2016). Therefore, the rnc gene could be responsible for decreasing 
the EPS (Mao et al., 2018).

Mao et  al. (2021) reported that graphene oxide with Cu 
nanocomposites (GOCuNPs) can the antibacterial effects by 
decreasing the expression of the rnc gene. The regulatory role of 
graphene oxide with Ag nanocomposites has been reported to 
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be the same as GOCuNPs. They can alter the QS gene expressions 
of S. mutans and the biological process of adherence (Kulshrestha 
et al., 2017). GOCuNPs can also regulate the expression of the Cop 
family, including CopA (for P1-ATPase copper export), CopY (for 
negative DNA-binding repression), and CopZ (for copper 
chaperone) (Garcia et al., 2016). Cu is consistent with the effect of 
GOCuNPs in transcriptional repression of Gtfs by inhibiting the 
expression of the Cop family (Singh et al., 2015).

Besides being regulated by the QS system (Viszwapriya et al., 
2017), WIG-synthesizing Gtf genes promoted caries in 
Streptococcus species (Xu et al., 2018). Therefore, Gtf genes family 
plays an important role in biofilm dispersion.

Cue sensing

In addition to QS, cue sensing also plays a key role in bacterial 
communication. Cue sensing and its signal transmission 
eventually lead to the downregulation of the cyclic di-guanosine 
monophosphate (c-di-GMP). c-di-GMP is an intracellular 
secondary messenger for signal transduction. c-di-GMP-based 
regulatory systems are involved in diverse aspects of each stage of 
biofilm development, including biofilm dispersion (Rumbaugh 
and Sauer, 2020).

Peng demonstrated that S. mutans modulates the production 
of EPS and biofilm formation by regulating c-di-AMP levels (Peng 
et al., 2016). The gcp gene in S. mutans encodes AAN59731, which 
is a conserved hypothetical protein, which acts as a diadenylate 
cyclase (Yan et al., 2010). It was reported that downregulation of 
cdaA decreases the production of diadenylate cyclase and the 
levels of c-di-AMP, resulting in reduced EPS content and increased 
sensitivity to H2O2 (Cheng et al., 2016). Due to a reduction in 
c-di-GMP levels, the expression of matrix-degrading enzymes 
increases, resulting in matrix dispersal (Romling et  al., 2013; 
Srivastava et  al., 2013). Therefore, a decrease in the levels of 
c-di-GMP induces biofilm dispersion to planktonic mode, while 
an increase in intracellular c-di-GMP levels fosters it to a sessile 
mode (Hengge, 2009).

YidC family

The deletion of YidC in S. aureus inhibited biofilm formation 
and attenuated virulence. In Escherichia coli, YidC mutations 
were lethal (Samuelson et al., 2000). Although with phenotypic 
differences, mutants of either YidC1 or YidC2 still reduce 
virulence in S. mutans (Palmer et al., 2012; Crowley and Brady, 
2016). Particularly, YidC2 has recently been identified to have 
the capability of folding plasminogen-binding protein (PBPs) 
and secreting enzymatic activities. Therefore, deletion of YidC2 
causes significant alterations not only in cell physiology 
properties and division, but also in the EPS matrix assembly and 
mechanical stability associated with dental caries (Palmer 
et al., 2019).

Biological regulation of microbial 
homeostasis

Bacteriophages

Bacteriophages are viruses that invade bacteria with high strain 
specificity and low toxicity (Chan and Abedon, 2015). When 
bacteriophages infect bacteria, they induce EPS depolymerization 
and lysis, which degrades the biofilm matrix and impairs cell wall 
integrity (Azeredo and Sutherland, 2008). After accessing the 
biofilm, bacteriophages disrupt key metabolic processes, such as the 
QS system, and even affect the regulation of the eDNA release, 
which induce bacterial lysis (Rehman et al., 2019). Bacteriophages 
are good candidates for genetic engineering. They can co-evolve 
with the bacterial host to resist the antibiotic (Khalifa et al., 2016). 
Dalmasso et  al. (2015) isolated phage, ɸAPCM01, successfully. 
ɸAPCM01 is a S. mutans bacteriophage that inhibits the growth of 
S. mutans and efficiently destroys its biofilms. SMHBZ8 is also a 
S. mutans bacteriophage that is isolated from salivary samples and 
it has similar antimicrobial properties as ɸAPCM01 (Ben-Zaken 
et al., 2021). Overall, by invading bacteria, bacteriophages offer a 
broad prospect to be used as a novel biotherapy.

Probiotics

Probiotics treat oral infections by developing a symbiotic or 
reciprocal relationship with the host (Roberts and Darveau, 2015). 
They can prolong the therapeutic efficacy by niche occupation and 
prevent recolonization of the pathogenic bacteria. An ecological 
approach to caries treatment is to modulate and maintain the 
beneficial properties of the indigenous oral microflora.

There are already various commercial mouthwash and lozenges 
that are supplemented with probiotic bacteria, such as PerioBalance®, 
KForce Breath Guard®, and ProBiora3® (Yao and Fine, 2014). 
Streptococcus salivarius (S. salivarius) K12 and Lactobacillus 
rhamnosus GG are probiotic formulations for oral health (Caglar 
et al., 2005). Aggregation of S. mutans can cover up their surficial 
sites, rendering them unavailable for drug binding (di Cologna et al., 
2021). Co-aggregation of Lactobacillus paracasei DSMZ16671 and 
S. mutans exposes these sites and removes S. mutans without 
disruption of other oral commensal species (Lang et  al., 2010). 
Besides, lactococcus such as Lactococcus lactis produces nisin and 
disrupts oral pathogenic biofilms (Radaic et al., 2020). Therefore, by 
maintaining a healthy balance, probiotic bacteria and their 
metabolite can inhibit the process of biofilm development and 
preserve the beneficial properties of the oral microflora.

Dispersion promotion with 
nanovehicles

Due to the particularity of tooth anatomical structure, 
improper treatment for biofilm removal may expose pulp tissue 
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or adjacent soft tissue (Schwendicke et  al., 2018). Potent 
antibiotics, such as CHX, are significantly cytotoxic with side 
effects, including discoloration or nerve damage due to pulp 
exposure (Nemezio et al., 2017). Furthermore, bacteria that may 
survive in the inner layer or the unintentional removal of tissues 
can weaken the tooth structure and even cause toothaches (Orhan 
et  al., 2010). However, we  can still take advantage of biofilm 
infiltration and intramembrane transport of drug delivery 
nanotechnology (Zhou et al., 2016). Polymer micelles (Zhao et al., 
2019b), vesicles (Xi et al., 2019), and liposomes (Benoit et al., 
2019) have been proven to have great potential for drug delivery. 
These nanocarriers are ideal materials with high surface area and 
specific catalytic and magnetic properties for use in nanomedicine 
(Ramos et al., 2017). Nanocarriers loaded with antimicrobials 
have displayed unique characteristics, including targeted bacterial 
enzyme decomposition of micellar carriers (Li et al., 2016) and 
enhanced infiltration or accumulation (Landis et al., 2017).

Common nanocarrier

Chitosan is a common nano-carrier, which can interact with 
both biofilm bacteria and enamel (Li et al., 2013). Chitosan, as a 
bio-adhesive polymer, can improve the adherence of its contents 
and interfere with the adhesion of biofilm bacteria (Aliasghari 
et  al., 2016). Covarrubias et  al. (2018) demonstrated that Cu 
coating inside chitosan (CuChNP) improves the adherence of Cu 
to S. mutans and the tooth surface. CuO-chitosan hybrid structure, 
silver nanoparticles containing lactose-modified chitosan 
(Chitlac-nAg) (Ionescu et al., 2015), poloxamer 407 formulations, 
capped lysozyme, and lactoferrin nanoparticles are known to 
reduce S. mutans biofilm burden (Tonguc-Altin et  al., 2015). 
Nanocarriers, such as chitosan, can increase adherence or 
aggregation of the active ingredient to improve biofilm dispersion.

Target nanocarriers

One of the most important features of cariogenic biofilm 
microenvironments is their acidic nature. Once inside a 
biofilm, pH-responsive nanocarriers would expedite the 
release of antimicrobials through degradation of their 
biodegradable linkages. Zhao et  al. (2019b) designed a 
pH-responsive detachable PEG shell that infiltrated the oral 
biofilms and embedded itself in the interlayer of the 
nanoplatforms through dynamic borate linkages. In the weakly 
acidic micro-ecological environments (pH 6.5), the linkages 
shed their PEG coating. The pH-responsive nanoparticles are 
capable of readily binding to EPS and reinforcing its 
penetration, which leads to enhanced drug anchorage followed 
by “on-site” drug release. Collectively, it can be  a feasible 
strategy for the treatment of dental caries.

Specifically-targeted antimicrobial peptides (STAMPs)  
ensure targeted delivery to specific species in a mixed-species 

environment. Eckert et al. (2006) designed a STAMP molecule by 
combining a species-specific targeting peptide and a non-specific 
killing peptide. This STAMP bound specifically to S. mutans and 
eliminated it effectively while maintaining a healthy biofilm. It also 
showed considerable protective effects with the competitiveness 
of healthy normal flora against S. mutans colonization (Li 
et al., 2010).

Dextranomer (DMs) has a similar targeted delivery function 
as STAMPs with different principles. DMs exhibit a specific 
affinity for pathogenic oral streptococci, while causing limited 
disturbance to healthy biofilms. The affinity between DMs and 
oral streptococci may increase depending on the presence of 
sucrose. DMs with antimicrobial cargo not only protect healthy 
bacteria, but also improve bacterial aggregation of selectively 
adhered bacteria (Mashburn-Warren et  al., 2017). Targeting a 
particular microbial species or a specific kind of pathogen can 
help maintain microbial homeostasis, and thus, and better 
eliminate pathogens significantly.

Multifunctional nanocarriers

Nanotechnology-based therapeutic modalities provide many 
versatile strategies to coordinate biofilm infiltration and bacterial 
anchoring functions.

To combine pH-adaptive nanocarriers and positive surface 
charge therapy, Benoit et  al., developed p(DMAEMA)-b-
p(DMAMEA-co-BMA-co-PAA) nanocarriers, which offer 
outstanding adhesion effect and can target negatively charged 
tooth matrix or biofilm components for drug accumulation in 
cariogenic biofilms (Horev et al., 2015). Furthermore, most of the 
cariogenic S. mutans are characterized by esterase activity, which 
degrades the ester-linkage of PAE (Hansel et al., 1998). Under 
acidic conditions, PAE is exposed, and can penetrate and 
accumulate in the biofilm. It also targets negatively charged 
bacterial cell surfaces with its positive charge (Liu et al., 2016). 
Combining the function of stealthy penetration with low pH and 
electrostatic attraction allows accumulation in biofilms. Therefore, 
PEG-PAE micelles significantly increase the efficacy of Triclosan 
(Wang et al., 2016). Such properties thwart dental caries by the 
enrichment of local drugs. The high drug bioavailability impacts 
overall biofilm dispersion, allowing bacterial retention at the 
infection site, which is a highly promising strategy for efficient 
bacteria killing.

Conclusion

In this review, we  summarized the applications and 
mechanisms of the strategies for dispersion of cariogenic biofilms. 
Most of the studies that we have discussed focus on mono species. 
However, the real cariogenic biofilms comprise various acidogenic 
and aciduric microorganisms, including S. mutans, S. sobrinus, 
Lactobacillus reuteri, and even fungi (Pires et al., 2019). In addition, 
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the interaction between pathogenic species and salivary 
components can help bacterial species adapt to environmental 
stress, while aiding in the bacterial evolution of cariogenic biofilms. 
This phenomenon is referred to as horizontal gene transfer (HGT) 
(Kim et al., 2017). HGT is the main means for species to exchange 
metabolites and generate resistance (Lobo et al., 2019). Therefore, 
it is necessary to expand research on dual-species biofilms and 
biofilms with mixed pathogens.

Although much research has addressed bacterial biofilms, 
experimental conditions vary from one study to another. The oral 
hygiene of patients is also dependent on individual cleaning 
habits and orthodontic appliances used. There are novel research 
models that mimic the oral environment. To close the knowledge 
gap between ideal experimental conditions and the actual oral 
environment, more suitable experimental models and in vivo, 
mechanistic models are needed. Such research will play an 
important role in facilitating practical clinical applications. 
Furthermore, such therapeutic strategies can potentially 
be  extended to other pathological conditions, such as 
periodontitis (Natan and Banin, 2017; Sun et  al., 2021), and 
microbial communities. Useful strategies are by no means limited 
to one condition. Further research that aims to improve available 
strategies can shift their time, the proportion of medication 
applied, and dependence on auxiliary medical equipment, such 
as irradiation.

Many Chinese medicine ingredients comprise natural 
products that can contribute to overcoming the problem of 
chemical agents, including narrow specificity, slow action, 
expensive manufacturing, and drug purification for biomedical 
applications (Hannig et al., 2010). Focusing on strategies that can 
achieve biofilm dispersion to a certain degree can help preserve a 
balanced oral microbiome, and thus, can aid in preventing drug-
resistant bacteria. It is worth noting that some of the strategies 
should be used together with antimicrobials to maximize biofilm 

dispersion. Based on the review of numerous relevant studies, 
we can improve therapeutic approaches by combining strategies 
instead of monotherapies (Xiao et al., 2018).
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