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Enteric viruses are common waterborne pathogens found in environmental 

water bodies contaminated with either raw or partially treated sewage 

discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, 

and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. 

They have been linked with gastroenteritis, while some enteric viruses 

have also been implicated in more severe infections such as encephalitis, 

meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and 

myocarditis (enteroviruses). Therefore, this review presents information 

on the occurrence of enteric viruses of public health importance, diseases 

associated with human exposure to enteric viruses, assessment of their 

presence in contaminated water, and their removal in water and wastewater 

sources. In order to prevent illnesses associated with human exposure to 

viral contaminated water, we suggest the regular viral monitoring of treated 

wastewater before discharging it into the environment. Furthermore, 

we  highlight the need for more research to focus on the development of 

more holistic disinfection methods that will inactivate waterborne viruses in 

municipal wastewater discharges, as this is highly needed to curtail the public 

health effects of human exposure to contaminated water. Moreover, such a 

method must be devoid of disinfection by-products that have mutagenic and 

carcinogenic potential.
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Introduction

The world is increasingly faced with daunting challenges in meeting the expanding 
requirements for clean water as the existing supplies of freshwater are in short supply owing 
to (i) prolonged droughts; (ii) population growth; (iii) strict health-based guidelines; and (iv) 
contending demands from diverse users (Mancosu et al., 2015). Due to these facts and many 
others, water protection against possible biological and chemical contaminants is becoming 
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critical in water resources management. Enteric viruses are one of 
the emerging biological contaminants responsible for the sporadic 
outbreak of waterborne illnesses worldwide (La Rosa et al., 2012; 
Upfold et al., 2021). Compared with bacteria and protozoa, viruses 
are smaller, measuring between 20 and 350 nm in diameter (Health 
Canada, 2019). Viruses are obligate intracellular parasites containing 
bundles of gene strands of either RNA or DNA as a core nucleic acid 
surrounded by a protective coat called protein capsid (Clemente 
et  al., 2012). Sometimes, the capsid protein is enclosed in an 
additional spikey envelope. In an enveloped virus, the nucleocapsid 
is bounded by a lipid bilayer which results from the modified host 
cell membrane with an outer layer of virus envelope glycoproteins 
(Zwart et al., 2009; Lázaro et al., 2018). Unlike bacterial cells, which 
are free-living entities, viruses employ the host cell environment to 
multiply. Studies have shown that viruses can latch onto host cells, 
as seen in several outbreaks including the current coronavirus 
(COVID-19) pandemic caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) (Shang et al., 2020).

According to Clemente et  al. (2012), patients suffering 
from gastroenteritis may defecate about 105–1011 virus particles 
per gram of stool which in turn gain entrance into 
environmental media through the discharge of contaminated 
wastewater (Wu et al., 2020; Yeo et al., 2020). Though enteric 
viruses are the smallest enteric pathogens with a low infective 
dose, they are robust and difficult to detect and inactivate 
(Gonzales-Gustavson et al., 2019; Farkas et al., 2020a) hence, 
they serve as a route of potential health risk at a low exposure 
dose (Zwart et  al., 2009; Zhu et  al., 2018). Thus, the 
transmission of human enteric viruses via the water route is 
becoming more widely recognized as a potential cause of 
human diseases such as gastroenteritis, encephalitis, 
meningitis, and hepatitis, among others (World Health 
Organization, 2014; Tang et al., 2020).

There are several cases where viruses are detected in water 
deemed compliant with bacterial indicators, and the consumption 
of such water has been reported to result in waterborne diseases 
(Umesha et al., 2008; Chen et al., 2021). Even when subjected to 
conventional wastewater treatments, only about 20–80% of the 
enteric viruses get inactivated due to their resistance to chemical 
disinfectants (Jiang et al., 2001; La Rosa et al., 2012), thus leading 
to the discharge of viruses into the aquatic environment. They can 
survive unfavorable conditions such as temperature and pH 
among others for an extended period in environmental waters 
owing to their small size (Bertrand et al., 2012; Meixell et  al., 
2013), inertness, and the presence of viral capsid.

Several studies have detected enteric viruses in seawater, 
surface and groundwater, municipal wastewater influent, and 
inadequately treated wastewater effluent (Saxena et al., 2015; Shih 
et al., 2017; Hendriksen et al., 2019; Pang et al., 2019; Verani et al., 
2019; Shaheen et al., 2020; Tang et al., 2020; Farkas et al., 2020a). 
However, their occurrence is not limited to those water matrices, 
but they have also been found in drinking water systems and 
recreational water (Umesha et  al., 2008; Upfold et  al., 2021). 
Another route of enteric virus transmission is food products 

contaminated with irrigation water (Benko et  al., 2002; 
Bouseettine et al., 2020). They could be transmitted via food, 
such as shellfish grown in contaminated water, wastewater 
irrigated farm produce, open defecation, untreated contaminated 
surface water, and exposure to inadequately treated wastewater 
due to poor infrastructure (Umesha et al., 2008; Haramoto et al., 
2018). Therefore, this review focuses on the occurrence of enteric 
viruses in water and wastewater sources, their public health 
implications, and associated diseases due to human exposure to 
waterborne enteric viruses. Finally, we  examined how the 
identified public health concerns can be minimized.

Enteric viruses of public health 
importance

Worldwide, more than 150 enteric viruses are associated 
with waterborne diseases. The prevalence of Hepatitis A Virus 
(HAV), Adenovirus (AdV), Rotaviruses (RV) and Enteroviruses 
(EVs), Astroviruses (AstVs), Noroviruses (NoVs), and 
bacteriophages in surface waters (Radin, 2014), dams and 
treated drinking water (Fernandez-Cassi et al., 2018; Opere, 
2019), treated effluent from wastewater treatment plants 
(WWTPs; Gonzales-Gustavson et al., 2019) and the detection 
in post chlorinated water is not exempted (La Rosa et al., 2012). 
Figure  1 shows both enveloped (e.g., coronaviruses) and 
non-enveloped viruses found in treated and untreated 
wastewater. In the recent SARS-CoV-2 outbreak, scientists 
discovered that the virus responsible for the pandemic; SARS-
CoV-2 is shed in feces, detected in the sewerage system, and 
treated effluent (Ahmed et al., 2020; Haramoto et al., 2020; 
Randazzo et al., 2020). Furthermore, NoV, AdV, AstV, EV, HAV, 
RV, and hepatitis E virus (HEV) are transmitted via water 
(Gibson, 2014; Bouseettine et al., 2020).

Adenovirus

Human adenoviruses (HAdV) are icosahedral capsid structures, 
non-segmented, non-enveloped, and double-stranded DNA viruses 
with a diameter between 90 and 100 nm (Opere, 2019). The family 
Adenoviridae is divided into five genera: Genus Mastadenovirus, 
which infects mammals; Aviadenovirus, which infects birds; 
Siadenovirus, which infects birds and frogs and Atadenovirus, 
which infects a wide variety of hosts such as aves, reptiles, and 
marsupial hosts (Arnold and MacMahon, 2017) and lastly, the 
newly proposed genera, Ichtadenovirus (Benko et al., 2002). Human 
adenovirus (HAdV) is a nonlinear envelope single-stranded DNA 
in the Adenoviridae family and genus Mastadenoviruses (Crenshaw 
et al., 2019). Within the Mastadenovirus genus, there are presently 
103 HAdV serotypes, categorized into seven species (A–G) 
(Kosulin, 2019; Mennechet et al., 2019).

Many adenoviruses are shed in high amounts with more 
than 1011 particles per gram of faeces, urine, or respiratory 
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excretions (Hewitt et al., 2013). Across the world, these viruses 
have been found in wastewater, both influent and effluent 
(Mena and Gerba, 2008; Iaconelli et al., 2017a). Specifically, 
many HAdV species have been detected in surface water 
(Sibanda and Okoh, 2012; Opere, 2019) and wastewater 
(Osuolale and Okoh, 2015; Iaconelli et al., 2017b). Generally, 
they can survive as extra circular chromosomes or through 
integration into the DNA of the host (Fu et al., 2019).

In general, HAdVs are prevalent etiological agents of 
intestinal, respiratory, and ophthalmic diseases. Several clinical 
features are caused in the respiratory tract, eyes, gastrointestinal 
tract, and other organs due to the initial propagation, which 
may occur in the mucosa of the pharynx, conjunctiva, or 
intestinal mucosa (Howley and Lowy, 2007). Symptoms of 
infection include gastroenteritis, upper and lower respiratory 
tract infection, conjunctivitis, pneumonia, myocarditis, and 
encephalitis (Russell, 2009; Akello et  al., 2020). They are 
generally mild and self-limiting, but in immunocompromised 
individuals, they can evolve into severe infections with unique 
manifestations (Khanal et al., 2018). In both developed and 
developing nations, the occurrence of enteric HAdVs in 
childhood diarrhea range from 1 to 8% and 2 to 31%, 
respectively (Meqdam and Thwiny, 2007; Hassou et al., 2020). 
Between 2007 and 2019, HAdV was found in about 10.8% of all 
gastroenteritis incidents among children below five in 
Sub-Saharan Africa (Oppong et al., 2020).

Rotavirus

Rotavirus (RV), belonging to the Reoviridae family, is a 
relevant and significant waterborne pathogen (Atabakhsh et al., 
2021). The genus comprises five species (A–E), two tentative 
species (F and G) as well as an unassigned species (ADRV-N) 
which is referred to as RVH (Desselberger, 2014). The rotavirus 
genome has 11 segments of dsRNA with a size that ranges from 
0.6 to 33 kilobase pairs (Bouseettine et al., 2020). Segmentation in 
the RV genome allows the rearrangement mechanism and 
production of new strains with different combinations of genome 
segments resulting in genetic diversity, boosting the evolution, and 
emerging new strains of RVs each year (Esona et  al., 2010; 
Menezes et al., 2020).

In humans, serogroups A–C cause gastroenteritis, while group 
A causes severe diarrhea in young children (Bouseettine et al., 
2020). Group A is the most common cause of gastrointestinal 
disease in children below the age of 5, with severe outcomes such 
as hospitalization and death (Prez et al., 2015; Magana-Arachchi 
and Wanigatunge, 2020). The principal agents of infectious 
dehydrating diarrhea in infants are the rotavirus group A [RVA], 
which is linked to most human RV infections. RVA genotypes G1 
P[8], G2 P[4], G3 P[8], and G9 P[8] are associated  
with most human gastroenteritis and easily undergo genetic 
recombination (Leite et  al., 2008; Tate et  al., 2010). Wa-like 
(G1-P[8]-I1-R1-C1- M1-A1-N1- T1-E1-H1) and DS-1-like 

FIGURE 1

Structures of some of the viruses that have been detected in water sources (adapted from Altintas et al., 2015).
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(G2-P[4]-I2-R2-C2-M2-A2- N2-T2-E2-H2) are the two main 
genogroups identified from the analyses of the complete genome 
sequences of human rotavirus (HRV) strains to contain the 
majority of wild-type HRV strains (Tate et al., 2010). The G1P [8] 
strain is the most predominant in Europe, with about 69.4% of 
infections in America and some Asian countries (Fongaro et al., 
2015). However, there has been a wide level of reduction in the 
cases of severe childhood diarrhea in countries where routine 
childhood vaccination against rotavirus has been entrenched. In 
the same vein, there seems to be a reduction in the number of 
unvaccinated children due to the protection already offered to 
vaccinated children, thereby suggesting herd protection because of 
the vaccination (Fongaro et al., 2015).

Rotavirus infection has been linked to about 258 million cases 
of diarrhea in children under 5 years worldwide (Troeger et al., 
2018). Nevertheless, RV continues to be  the leading cause of 
annual childhood deaths associated with diarrhea worldwide 
despite the effective introduction of vaccines in more than 106 
countries (Kim et  al., 2021). The virus has been estimated to 
be responsible for 122,000–215,000 diarrheic child deaths between 
2013 and 2017 annually (Tate et al., 2016; Troeger et al., 2018). In 
a study conducted to investigate the link between the contaminated 
water source and rotaviral infection among 184 children under 
5 years with acute watery diarrhea, the highest rotaviral infection 
was observed in children that consume contaminated pond water 
(94.44%). It was followed by children that were not breastfed 
exclusively (83.87%) and 64.00% in children living in areas with 
lower socio-economic conditions (Habib et al., 2021).

Enterovirus

Enterovirus (EV) is a spherical non-enveloped virus 
containing a 7,500-nucleotide positive-sense single-stranded RNA 
genome. They are 7.3–7.4 kb in length and are protected by an 
icosahedral capsid (Opere, 2019). Enteroviruses belong to the 
family Picornaviridae and are extremely small, with diameters 
ranging from 22 to 30 nm (Magana-Arachchi and Wanigatunge, 
2020). The genus enterovirus has more than 300 known serotypes 
and 15 species (Chen et al., 2020). The different species include 
polioviruses, coxsackieviruses A and B, enteroviruses, and 
echoviruses and they have been linked with human infections 
(Table 1; Bouseettine et al., 2020).

Millions of people worldwide have been infected with 
enteroviruses, which have caused the irregular outbreak of 
illnesses in both advanced and evolving nations (Lugo and 
Krogstad, 2016; Cassidy et al., 2018; Smuts et al., 2018; Puenpa 
et al., 2019). Of the seven species to which human EVs belong, 
only four species (A–D) infect the gastrointestinal tract (Baggen 
et al., 2018). Enterovirus 71 (EV-A71) is a human enteric virus 
linked with hand-foot-and-mouth disease (HFMD), while 
EV-D68 is associated with acute flaccid paralysis (Lee and Chi, 
2014; Baggen et  al., 2018). A total of 2,967 cases of EV and 
Parechovirus infections were documented in the United States of 

America between 2014 and 2016. The most frequently reported 
enterovirus is the EV-D68 which is responsible for 68% of 
identified types in 2014 and accounted for 56% of all documented 
types between 2014 and 2016. Other enteroviruses that were also 
frequently reported include echovirus 30 (13.1%), coxsackievirus 
A6 (12.5%), echovirus 18 (9.5%), and coxsackievirus B3 (9%) 
(Abedi et al., 2018).

The mode of transmission of enterovirus is the faecal-oral 
route through different sources, such as contaminated water, food, 
or person-to-person contact. The faecal-oral route becomes 
problematic when there is exposure to aerosols that are 
transmitted from any surface or groundwater sources (Gao et al., 
2012). Enteroviruses are robust organisms as they can survive 
critical changes in both pH and temperature (Okoh et al., 2010). 
Therefore, they have been proposed as a criterion for assessing 
viral contamination of environmental waters because they are 
common and shed for an extended period in the environment (La 
Rosa et  al., 2010a). Studies that focused on their removal at 
WWTPs revealed that they are more resistant to treatment when 
compared to some other enteric viruses such as adenoviruses and 
noroviruses (La Rosa et al., 2010b). Several studies have identified 
them in both raw and treated sewage (La Rosa et  al., 2010b; 
Simmons et al., 2011).

Norovirus

Noroviruses, which were initially referred to as Norwalk or 
Norwalk-like viruses, are small non-enveloped single-stranded 
RNA viruses of 27–38 nm in diameter (Rani et al., 2021). They are 
members of the family Caliciviridae (Upfold et al., 2021). Norwalk 
virus is composed of a single strand of RNA and bounded by 

TABLE 1 Species of human enteroviruses and associated pathologies 
(adapted from Bouseettine et al., 2020).

Species Serotypes Associated 
pathologies

Enteroviruses 68–71 Encephalitis, 

conjunctivitis, meningitis, 

and paralysis

Echovirus 1–9, 11–21, 24–27, 

29–34

Encephalitis, 

conjunctivitis, meningitis, 

paralysis, and 

gastroenteritis

Coxsackievirus A 1–22, 24 Encephalitis, fever, 

meningitis, and paralysis

Coxsackievirus B 1–6 Encephalitis, 

gastroenteritis, myalgia, 

meningitis, paralysis, and 

pericarditis

Poliovirus 1–3 Encephalitis, 

gastroenteritis, and 

pericarditis
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many copies of a single protein organized into a protective capsid 
(Wang et al., 2018b). According to Thorne and Goodfellow (2014), 
it has been frequently revealed that Norovirus is widespread and 
that infections occur more in the human population. Noroviruses 
are classified into 10 different genogroups (GI–GX; Laconi et al., 
2020). Generally, NoVs GI, GII, and GIV infect man, while GI is 
less found in patients with acute gastroenteritis across the globe 
than in GII strains (Koopmans et al., 2002). The most common 
genogroup in man is the three distinct clusters in GII to which the 
porcine NoVs belong. This has raised public health concerns 
regarding the potential NoVs recombinant strains in causing 
zoonotic transmission (Shen et  al., 2012; Okada et  al., 2019; 
Laconi et al., 2020). Generally, gastroenteritis linked with NoVs is 
self-limiting, although young children, the elderly, and 
immunocompromised individuals could experience long-term 
symptoms (Trivedi et al., 2013; Petrignani et al., 2018). Norovirus 
GI and GII are majorly responsible for human infections; however, 
for about 10 years now, the genogroup GII.4 has been linked with 
most human NoVs diseases (Siebenga et al., 2009; Vinjé, 2015; 
Mans et  al., 2016). A novel strain of genotype GII.17 (GII.
P17-GII.17) was reported in Asia to be  responsible for 
gastroenteritis linked with NoV in the year 2014 and has 
subsequently been documented worldwide (Chan et al., 2015, 
2017; Lu et al., 2015; Hoa-Tran et al., 2017; Zhou et al., 2019).

The transmission of noroviruses is primarily via the faecal-
oral route. It transpires through the intake of contaminated water 
or by direct contact with persons already infected and on 
environmental surfaces (Zhou et al., 2016; Boonchan et al., 2017; 
Kittigul et  al., 2019). Drinking water and recreational water 
polluted from sewage are the sources of several outbreaks of NoVs 
(Kittigul et al., 2019; Prado et al., 2019; Tryfinopoulou et al., 2019). 
According to de Graaf et al. (2016), GI variants are more linked 
with transmission through the water route than variant GII.4, 
which relates to person–person contact. The GI strains of 
Norovirus are believed to be stable in water compared to the GII 
strains because they are more likely to be transmitted through 
water than other transmission routes. Across the globe, NoVs have 
been detected in different water bodies, including sewages, rivers, 
recreational waters, municipal water, and groundwater (La Rosa 
et al., 2007, 2008, 2010a; Miura et al., 2019).

Astrovirus

Human astroviruses (HAstVs) are the third most frequent 
cause of gastroenteritis, and they were first detected in 1975 (Vu 
et al., 2017). They are small with sizes ranging from 28 to 30 nm 
and are non-enveloped viruses having single-stranded RNA 
(+ssRNA) genomes with about 6,400–7,900 nucleotides. Genera 
Mamastrovirus (MAstV) and Avastrovirus (AAstV) make up the 
family Astroviridae (Appleton, 1975; De Benedictis et al., 2011; 
Donato and Vijaykrishna, 2017). Human astroviruses (HAstVs) 
are a vital cause of gastroenteritis in infants and young children 
(De Benedictis et  al., 2011). They are found in surface and 

groundwaters meant for drinking purposes, marine waters, and 
wastewater effluents (Magana-Arachchi and Wanigatunge, 2020). 
A study on the molecular detection of gastroenteritis viruses 
reported that HAstV had a lesser occurrence than EV, RV, NoV, 
and AdV (Chitambar et al., 2012). The aged and individuals with 
weak immune system are susceptible to gastroenteritis linked with 
HAstV (Vu et  al., 2017; Wohlgemuth et  al., 2019). This could 
be credited to the pathogenic role of the virus being performed in 
immunocompromised individuals. In addition, HAstVs have been 
linked to central nervous system (CNS) infections including 
encephalitis and acute flaccid paralysis in people with 
compromised immunity (Cordey et al., 2016; Vu et al., 2016). It 
could also be due to the inability of the individuals to mount an 
active inflammatory response to the virus hence a reflection of 
their highly immunocompromised state.

Hepatitis A virus

Hepatitis A virus (HAV), which is a member of the 
Hepatovirus genus belonging to the family Picornaviridae, is 
non-enveloped with an icosahedral structure of an average of 
30 nm in diameter and a naked RNA genome (Smith and 
Simmonds, 2018; Bouseettine et al., 2020). The capsid contains a 
densely packed icosahedral configuration of 60 protomers, each 
of which includes three polypeptides VP1, VP2, and VP3 
(McKnight and Lemon, 2018). Studies have reported that about 
1.5  million people are infected with HAV annually, which is 
underestimated due to the asymptomatic presentation of the virus 
and limited epidemiologic information on the virus (World 
Health Organization, 2017b; Lemon et al., 2018).

As the major causative agent of non-parenteral hepatitis in 
developing nations as well as endemic infections in developing 
countries, the primary mechanism of transmission of the HAV is 
the faecal-oral route and direct contact with an infected person 
(Mehta and Reddivari, 2021). The outbreaks of HAV infection are 
mostly associated with water supplies (Jothikumar et al., 2005). 
The consumption of raw or improperly cooked oysters and clams 
from sewage-contaminated water has led to many outbreaks of 
HAV infection (Elbashir et al., 2018). Fever, anorexia, malaise, 
abdominal discomfort, nausea, and jaundice are some of the 
numerous symptoms that equally result from HAV infection and 
could to liver damage (La Rosa et al., 2012).

Hepatitis A virus is found in the feces and urine of diseased 
individuals through which it contaminates the soil and water. The 
virus is detected in water and wastewater globally; however, an 
area’s sanitary conditions determine the virus’s prevalence (World 
Health Organization, 2012c). People living in areas with poor 
sanitation infrastructure are more prone to contracting the virus, 
especially among children (World Health Organization, 2012b). 
According to Rodriguez-Lazaro et al. (2012), HAV can subsist for 
about 60 days in tap water, while it can stay alive for more than 
6 weeks in river water, can stay above 8 weeks in groundwater, and 
for about 30 weeks in seawater. The virus has been found in 
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different water environments such as raw wastewaters (Osuolale 
and Okoh, 2015), treated effluents (Van Zyl et al., 2019), surface 
waters (Marie and Lin, 2017; Shaheen et al., 2019), and drinking 
waters (Moreno et al., 2009).

Hepatitis E virus

Hepatitis E virus (HEV) is a member of the family Hepeviridae 
and belongs to the Orthohepevirus genus and the Orthohepevirus 
A species. HEV is a non-enveloped, positive sense, ssRNA virus 
(Denner, 2019) that causes significant acute hepatitis worldwide 
thereby resulting in sporadic infections and epidemics (Raji et al., 
2021). The infection is usually asymptomatic in the general 
population (Khuroo and Kamili, 2003). The virus is regarded as 
zoonotic with swine and other animals such as rabbits serving as 
the reservoir for human infections (Ruggeri et al., 2013; Syed et al., 
2018). Hepatitis E virus is another waterborne pathogen 
threatening global health in developing and developed countries 
(Raji et  al., 2021). Currently, eight HEV genotypes have been 
identified (Upfold et  al., 2021), and genotypes 1–4 and 7 are 
known to be the main threats to humans. They are transmitted 
through the ingestion of contaminated water, causing acute 
hepatitis (Purdy et al., 2017).

Ruggeri et al. (2013), posited that HEV strains that belong to 
genotypes 1 and 2 are the cause of the most sporadic outbreak of 
hepatitis in developing countries of Africa, Asia, and Mexico (Smith 
and Simmonds, 2018). Genotypes 3, 4, and 7 are basically associated 
with zoonotic transmission (Marek et al., 2010) and are generally 
connected with irregular and grouped infections in advanced 
countries (Nimgaonkar et al., 2018). It is transmitted via the faecal-
oral pathway and spreads readily through water bodies polluted 
with human faeces. Globally, the virus has been detected in different 
water bodies including rivers (Iaconelli et  al., 2015), and raw 
wastewater (Iaconelli et al., 2017a; Wang et al., 2018a), among others.

Aichivirus

Aichivirus (AiV) belongs to the Kobuvirus genus and the 
family Picornaviridae (Rivadulla and Romalde, 2020). It is one 
of the significant causative organisms of gastroenteritis in 
humans and is transmitted via the faecal-oral route from 
contaminated food or water (Yamashita et al., 2000; Adams et al., 
2013; Kebe et  al., 2021). Aichivirus consists of Human AiV 
(HAiV) 1, Murine Kobuvirus (MuKV) 1, and Canine Kobuvirus 
(CaKV) 1. Human AiV is composed of three genotypes (A–C; 
Yamashita et al., 2000; Shaheen et al., 2020; Kebe et al., 2021), 
and the infection rate of AiV in gastroenteritis cases worldwide 
is low between 0.4 and 6.5% (Rivadulla and Romalde, 2020; 
Taghinejad et al., 2020; Upfold et al., 2021). However, specific 
antibodies produced against the virus are found in about 80–90% 
of adults (Kitajima and Gerba, 2015; Rivadulla and Romalde, 
2020), which is a pointer to the asymptomatic condition of most 

infections (Bergallo et al., 2017). Furthermore, this virus is often 
detected in connection with other enteric pathogens (Oh et al., 
2006; Ambert-Balay et al., 2008; Kaikkonen et al., 2010; Japhet 
et al., 2019). Diarrhea, abdominal pain, vomiting, and fever are 
some clinical signs and symptoms of human AiV virus infection 
(Yamashita et al., 2000). Aichivirus has been reported in Africa, 
Asia, South America, and Europe (Oh et al., 2006; Lodder et al., 
2013). The virus is normally passed out in the faeces of humans 
directly or after discharge of treated or untreated sewage (Lodder 
et al., 2013; Kebe et al., 2021), and can be adopted as a potential 
indicator of wastewater reclamation system (Kitajima et  al., 
2014; Farkas et al., 2020b).

Coronaviruses

Coronaviruses (CoVs) are positive-sense single-stranded 
RNA viruses (Qu et al., 2020; Yeo et al., 2020) with more than 30 
different species and have the biggest genome of RNA viruses of 
30 kb (Amirian, 2020; Amoah et al., 2020). Coronaviruses are 
classified into four types: Alphacoronavirus (Alpha-CoV), 
Betacoronavirus (Beta-CoV), Gammacoronavirus 
(Gamma-CoV), and Deltacoronavirus (Delta-CoV; Delta-CoV; 
Qu et al., 2020). The coronavirus virion is typically spherical, 
with a diameter of 60–140 nm, and is enclosed by an outer viral 
envelope covered by projections (9–12 nm; Zhu et al., 2020). 
CoVs were thought to be insignificant human pathogens until 
the beginning of this century. The latest outbreak in Wuhan, 
China toward the end of 2019 was the emergence of a novel 
coronavirus (Lu et  al., 2020). It was initially referred to as 
HCoV-19 but later officially named Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2); because the novel 
virus is most closely linked to the SARS-CoV virus that was 
implicated in the 2003 SARS outbreak (Lu et al., 2020; World 
Health Organization, 2020).

The SARS-CoV-2 is responsible for a variety of common cold-
like and acute respiratory diseases (Qu et al., 2020; Yeo et al., 2020). 
COVID-19 is the respiratory disease induced by SARS-CoV-2 
(World Health Organization, 2020), with clinical symptoms 
including diarrhea, nausea, fever, cough, rhinorrhea, dyspnea, or 
severe pneumonia and myalgia (Guan et al., 2020; Liu et al., 2020; 
Yeo et  al., 2020). Nevertheless, a considerable proportion of 
individuals remain symptomless despite testing positive for SARS-
CoV-2 (Bai et al., 2020; Lai et al., 2020; Liu et al., 2020; Rothe et al., 
2020). Evidence from the present COVID-19 outbreak proposes 
that about 2–35% of patients develop gastrointestinal (GI) 
symptoms such as diarrhea, abdominal discomfort, and vomiting; 
however, this is less common than respiratory symptoms (Yeo et al., 
2020; Wang et al., 2020a), and this has resulted in the presence of 
the virus in feces and sewage (Amirian, 2020; Pan et al., 2020). 
Therefore, this virus has been detected in untreated wastewater and 
rivers (La Rosa et al., 2020; Medema et al., 2020; Rimoldi et al., 
2020; Sherchan et al., 2020; Pillay et al., 2021), as well as in treated 
wastewaters (Haramoto et al., 2020; Randazzo et al., 2020).
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Prevalence of enteric viruses in 
freshwater and wastewater 
sources

Critical tools for detection and prevention of the further 
spread of diseases and outbreaks include clinical surveillance and 
monitoring of waterborne pathogens. However, disease prevalence 
is under-reported through clinical testing because it is typically 
restricted to those who are ill to the extent of seeking treatment 
and testing (Cacciò and Chalmers, 2016). Hence, there is a lag 
indicator for predicting an outbreak in a community. Therefore, 
there is a desperate need for cost-effective and improved 
monitoring methods to detect numerous waterborne diseases in 
a community, preferably in real-time. To this end, wastewater-
based epidemiology (WBE) has recently garnered much attention 
as an early warning technique for a range of waterborne infectious 
diseases (Zahedi et al., 2021).

Wastewater-based epidemiology (WBE) has been employed 
before now to monitor drug abuse within a community 
(Castiglioni et al., 2006) and other chemical pollutants (Choi et al., 
2018), as well as the prevalence of poliovirus (Pöyry et al., 1988; 
Berchenko et al., 2017). Broadly, it entails the detection of nucleic 
acids or other biomarkers excreted in feces and urine in 
wastewater to offer detailed health information about a 
community (Mao et al., 2020). The approaches encompass the 
detection of pathogens released in saliva, sputum, mucus, vomitus, 
and phlegm that are frequently trapped in wastewater (Zahedi 
et al., 2021). Accordingly, WBE is thus equal to the collection and 
analysis of a large community-based combined sample of faeces, 
saliva, vomitus, sputum, urine, shed skin, and other substances 
released during personal cleansing, washing, bathing, and 
excretion. Hence, it provides a sensitive technique for tracking 
temporal alterations and variety in pathogen concentrations 
within a community (Xagoraraki and O’Brien, 2020). Another 
benefit of the direct analysis of wastewater samples is the presence 
of higher populations of pathogens in wastewater compared to 
environments where inadequately treated wastewater is discharged 
(Zahedi et al., 2021).

Wastewater passes through a series of treatment processes, 
including oxidation ponds, coagulation, activated sludge, 
chlorination, and ozonation until good effluent quality is achieved. 
However, about 50–90% of the waterborne viruses can only 
be removed via different treatment processes, thereby releasing a 
significantly high viral load into the environment that humans 
become exposed to with accompanying public health diseases 
(Gersberg et al., 1988; Zhu et al., 2005; Charles et al., 2008; Okoh 
et  al., 2010; La Rosa et  al., 2012; Sano et  al., 2016). 
Supplementary Table  1 shows the prevalence of selected 
waterborne enteric viruses across different countries in various 
water environments, which portends the potential risk of the 
transmission of the virus. The employment of bacterial indicator 
species to assess the quantity of the virus load in wastewater 
effluents is one of such limitations. This has been faulted as an 
inefficient technique for monitoring the quality of wastewater 

(Gersberg et al., 1988; Hunter, 1997; Zhu et al., 2005; Bofill-Mas 
et al., 2006; Charles et al., 2008; Karmakar et al., 2008; Okoh et al., 
2010; Farkas et al., 2020b).

The prevalence of HAdV in both 60 stool samples from 
children with acute gastroenteritis and 96 sewage samples 
collected from the Zenin wastewater treatment plant was 
investigated within a community in Egypt from January to 
December 2017 (Elmahdy et al., 2019). The virus was detected in 
17 (28.3%) of stool, 27 (84.4%) of raw sewage, 16 (50%) of treated 
sewage, and 25 (78%) of sludge samples throughout a whole year 
of sample collection. According to Elmahdy et  al. (2019), the 
occurrence of HAdV in the treated effluent of the WWTP 
portends a serious public health problem. Similarly, the prevalence 
of AdVs in treated wastewater in Brazil was reported by Quintão 
et al. (2021). The study reported the occurrence of AdVs in 27.2% 
(61/224) of the investigated samples. It was observed that the 
occurrence of the virus was higher in downstream samples than 
that in upstream samples. In another study, F species HAdVs 
serotype 41 (79.2%) and C species PAdVs serotype 5 (18.1%) were 
higher than other serotypes in the water samples collected from 
Puzi River, Taiwan. On the other hand, the prevalence of NoV GII 
was more than GI in the same river. Specifically, GII.4 (21.2%) and 
GII.17 (18.2%) were reported as the predominant genotypes. The 
occurrence of both AdVs and NoVs was higher in the winter 
compared to the spring, summer, and autumn seasons.

Furthermore, Iaconelli et al. (2017a), reported the prevalence 
of EV, AdV, HAV, HEV, and NoV in raw and treated wastewater. 
Adenovirus was the most frequently detected virus in raw 
wastewater (81%) compared to 33% in treated effluents, followed 
by EV, with 13 samples detected in raw sewage and 3 samples in 
treated effluents. Norovirus GI or GII were detected in 10 raw 
wastewater and 4 treated effluents. Likewise, HEV was detected in 
one sewage sample, while HAV was 33% in raw sewage and 19% 
in treated effluents (Iaconelli et al., 2017a). Conversely, Hepatitis 
A and E virus outbreaks were linked to contaminated drinking 
water in 72% (109/151) and 49 (38%) of the 128 outbreaks (Kumar 
et al., 2015). Also, Miao et al. (2018), assessed the prevalence of 
EV, RV, AstV, NoV GII, and AdV in Jinhe River, China. The 
detection frequency differs as follows; 91.7% for AdV, 81.3% for 
NoV GII, 79.2% for EV and AstV, and 70.8% for RV. In addition, 
the authors reported a seasonal pattern concerning the prevalence 
of the detected viruses in which there was an abundance of EVs in 
summer whereas RVs, AstVs, NoV GII, and AdVs showed 
opposite seasonal trends.

The prevalence of different astrovirus strains in different water 
matrices such as wastewater in the US, groundwater, and river in 
Nepal has also been reported (Hata et al., 2018). The identified 
strains include types 6 and 7 classical human astroviruses, 
emerging type 5 VA-astroviruses, and putative recombinants. The 
prevalence of classical and VA-astroviruses was reported during 
the cooler months while it was during the warmer months that 
MLB-astroviruses were detected (Hata et al., 2018). Aichivirus was 
found in Nepal in different water sources such as sewage pipes, 
rivers, groundwater, and a house that received its water from a 
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tanker (Haramoto and Kitajima, 2017). Variations in AiV 
detection with a significant prevalence of AiV B were reported in 
the study. When compared to shallow tube wells, where AiV was 
detected in 1 out of 15 samples (7%), the frequency of AiV 
detection was substantially higher in shallow dug wells, where it 
was discovered in 10 out of 22 samples (45%). This variation could 
be attributed to the fragile structure of dug wells often composed 
of stone or brick compared to that of tube wells. Conversely, AiV 
was detected in 50% of river water samples examined in a study 
conducted in Iran (Azhdar et al., 2019). According to a survey 
carried out by Moreira and Bondelind (2017), Cryptosporidium, 
norovirus, Giardia, Campylobacter, and rotavirus were the 
waterborne pathogens responsible for drinking waterborne 
outbreaks during 2000–2014. Authors further reported that 
contamination of surface water sources affected most consumers 
which led to gastrointestinal diseases, while the distribution 
network was responsible for most individual incidents (Moreira 
and Bondelind, 2017).

Also, rotaviruses in surface water and wastewater have been 
reported in different parts of the world, especially in developing 
countries (Taylor et al., 2001; Verheyen et al., 2009; Rezaeinejad 
et  al., 2014). Nevertheless, they are less often detected in 
environmental samples compared to AdVs (Spilki et al., 2013). 
The distribution of RV infection is seasonal, with the incidence 
reaching the peak during winter (Suzuki et al., 2005). However, it 
has been reported all year round worldwide (Osuolale and Okoh, 
2016). The RV strains are linked with diseases like acute diarrhea 
in humans and animals (Almeida et  al., 2018; Menezes et  al., 
2020). The transmission of rotavirus is majorly via the ingestion 
of food and water that has been contaminated with human wastes. 
In most cases, newborns or young children with gastroenteritis are 
infected with subclinical illness from an older sibling or mother. 
The shedding of the virus from the intestinal tract occurs before 
diarrhea sets in or even after it has been reported (Mukhopadhya 
et al., 2013).

During the global COVID-19 outbreak in Japan, Hata et al. 
(2021) investigated the presence of SARS-CoV-2 RNA in 
wastewater samples and the number of confirmed COVID-19 
cases in the study area was compared. During the study period, a 
total of 45 influent samples were collected from five wastewater 
treatment plants in Ishikawa and Toyama regions in Japan. The 
virus was detected in 21 out of the 45 influent samples. There was 
an increase in the frequency of detection as the total number of 
confirmed cases in 100,000 people surpassed 10 in each region; 
however, SARS-CoV-2 RNA could still be detected even when 
there was a reduction in the number of confirmed cases. This 
could be attributed to the continuous shedding of the virus from 
discharged asymptomatic individuals. Hata et al. (2021), opined 
that the viral monitoring of wastewater could be adopted as an 
early warning signal of COVID-19 outbreaks in Japan.

Considering the occurrence of these viruses in water bodies, 
there is a need to carefully monitor treated wastewater before 
discharge; however, the employed methods have some drawbacks. 
The number of viruses contained in environmental media can 

vary significantly; however, it is a function of the type of sample 
being examined. High viral concentration could be detected and 
quantified in wastewater or sludge from treatment plants using a 
very small sample volume (Haramoto et al., 2018). Nevertheless, 
a significantly small volume which could be less than 1 ml that will 
be concentrated from the wastewater sample is required for the 
downstream detection experiments. Ultrafiltration, adsorption/
elution, flocculation, and ultracentrifugation, among other 
techniques, have been utilized to concentrate viruses from 
wastewater (Prata et  al., 2012; Haramoto et  al., 2018). A 
dependable and appropriate method of concentration should have 
a capacity for high viral recovery, repeatable results, be suitable for 
detecting a wide array of viruses, create a minimal volume of viral 
concentrate, be rapid and cost-effective to operate (Bosch, 1998).

Unfortunately, all these criteria have not been found in any 
single technique for the concentration of viruses in water. This has 
made the concentration of viruses in water considerably more 
difficult. Hence, rapid action is necessary to track viruses in fresh 
and wastewater sources. Even though no strict standards have 
been set in addressing the concentration of viruses in treated 
wastewater effluents before disposal. Their elimination before 
discharge into environmental media is critical to minimize 
potential outbreaks and accompanying diseases due to exposure 
to humans (Haramoto et al., 2018). It is crucial to optimize and 
evaluate the available concentration techniques to improve virus 
recovery and build a highly effective process that will go a long 
way in combating virus outbreaks in the future hence, research 
should be geared toward achieving this goal (Ibrahim et al., 2021).

Public health implications of 
waterborne enteric viral diseases

The genomic content and capsid proteins of enteric viruses 
differ, nevertheless, they share some similar attributes making 
them more of public health threat regarding the risk of drinking 
contaminated water. The non-enveloped virus can remain active 
in water bodies for extended periods (Reynolds et  al., 2008). 
Considering those attributes, drinking inadequately disinfected 
water contaminated with faeces could lead to waterborne disease 
outbreaks (Gall et al., 2015a; Sano et al., 2016; Adelodun et al., 
2021). It is also noteworthy that viruses could be  transmitted 
through three major routes; ingestion, inhalation, and direct 
contact via interaction with skin and eyes (swimming) leading to 
respiratory and ocular infections (Gall et al., 2015a).

Usually, waterborne enteric viruses are associated with 
gastrointestinal diseases, epidemics, and acute hepatitis. 
Adenovirus, AstVs, HAV, HEV, RVs, NoVs, and other 
caliciviruses, and enteroviruses, including coxsackieviruses and 
polioviruses are classified by WHO as waterborne viral pathogens 
with modest to high health importance (WHO, 2017c). These 
viruses are linked with gastroenteritis and diarrhea coupled with 
the severity of other symptoms such as fever and abdominal 
cramps among others. Table 2 shows the different waterborne 
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enteric viruses and related diseases. Gastroenteritis is the most 
frequent pathology connected with enteric virus’ infections 
(Bányai et al., 2018). Various gastroenteritis outbreaks have been 
associated with drinking sewage-contaminated water containing 
some of these enteric viruses which include AdVs, EVs, NoVs, 
RVs, AstVs, AiVs among others (Maunula et al., 2009; Räsänen 
et al., 2010; Kauppinen et al., 2019). For instance, a minimum of 
33 outbreaks were connected to drinking contaminated water 
between 2009 and 2014 in the United States of America (Control 
and Prevention, 2013). The most important cause of 
gastrointestinal illness across the world is human noroviruses. 
Due to increased environmental robustness, human noroviruses 
genogroup I is usually involved in waterborne cases (Matthews 
et al., 2012), while genogroup II with the large majority of cases is 
transmitted from person to person and presumed to be connected 
with food (Ahmed et al., 2014).

Likewise, diarrhea has also emerged as the world’s second-
biggest cause of death in children under 5 years (Murray and 
Newby, 2012). It is one of the major recurrent waterborne 
infections, with 1.7 billion cases recorded each year (WHO, 
2017a), and 525,000 children’s deaths (Pooi and Ng, 2018). 
According to the global burden of disease investigated in 2015, 
1.2 million deaths and 71.7 million disability-adjusted life years 
(DALYs) coupled with 1.1  million deaths and 61.1  million 
DALYs from diarrheal diseases all resulted from contaminated 

water sources (Forouzanfar et al., 2016). The primary cause of 
diarrhea contracted by drinking contaminated water is bacteria; 
however, little or no attention is being paid to viral pathogens 
in water sources as well as their impact on public health. Gibney 
et al. (2017), conducted a study in 2010 on the disease burden 
of cryptosporidiosis, campylobacteriosis, giardiasis, 
nontyphoidal salmonellosis, and norovirus ascribed to the 
waterborne transmission of selected enteric pathogens in 
Australia. Most waterborne disease cases were linked to 
norovirus, a waterborne enteric virus (479,632; 95% confidence 
interval [UI]: 0–1,111,874), followed by giardiasis and 
campylobacteriosis. Based on a global study of groundwater-
related enteric illness outbreaks survey, an alarming rise in 
groundwater-related acute gastrointestinal infections (AGI) was 
reported between 1948 and 2015, with 649 incidents identified 
(Murphy et al., 2017).

Recently, Carol et al. (2021) investigated the causative agent 
responsible for an outbreak of acute gastroenteritis (AGE) among 
174 pupils that were involved in a school trip between 30 January 
and 3 February 2017 at a holiday camp in Catalonia. The authors 
discovered about 41 episodes of AGE with symptoms ranging 
from abdominal pain (73.8%), nausea (64.3%), vomiting (54.8%), 
diarrhea (45.2%), and headache (42.9%). The outbreak also was 
linked to the consumption of NoV GII contaminated water 
samples (crude RR: 1.72, 95% CI: 1.01–2.92; adjusted RR: 1.88, 
95% CI 1.03–3.56). According to the World Health Organization/
United Nations Children Emergency Fund, (2015) reports, 
untreated water is used by 663  million people worldwide. 
Although, individuals living in poverty-stricken or rural areas and 
developing regions are affected by a lack of access to safe drinking 
water. Notwithstanding, even people living in developed countries 
with advanced water and wastewater treatment facilities are not 
spared from waterborne diseases (Adelodun et  al., 2021). 
Furthermore, it has been estimated that by the year 2030, 
approximately 1.6 billion people (19% of the global population) 
will lack clean water, leading to more waterborne outbreaks and 
illnesses (World Health Organization/United Nations Children 
Emergency Fund, 2021).

The Integrated Disease Surveillance Programme (IDSP) 
reported 804,782 hepatitis cases and 291 outbreaks in India between 
2011 and 2013. Hepatitis A testing revealed 44,663 (7.4%) positive 
cases out of 599,605 total cases, and HEV testing revealed 19,508 
(10.4%) positive cases out of 187,040 total cases. Hepatitis E virus 
accounted for 78 (48%) out of 163 (56%) outbreaks with known 
etiologies as hepatitis A accounted for 54 (33%), while hepatitis A 
and E accounted for 19 (12%), (Kumar et al., 2015). In a hepatitis A 
and E surveillance carried out between 2015 and 2017 in India, 23 
disease outbreaks were reported of which 4 outbreaks occurred in 
2015, 12 in 2016, and 7 in 2017 (Kadri et al., 2018). Twelve of the 
total outbreaks were related to hepatitis A infection, 10 to hepatitis 
E infection, while 1–8 cases of jaundice with no hepatitis A or 
hepatitis E virus were identified. During the study period, a total of 
393 cases of hepatitis A or E were detected. Of the 50 water samples 
that were examined, 38 were unsuitable for human consumption 

TABLE 2 Enteric viruses and related diseases.

Enteric viruses Related diseases References

Adenoviruses Gastroenteritis, 

respiratory disease, and 

conjunctivitis

Gibson, 2014; Kumar 

et al., 2014; La Rosa et al., 

2012

Enteroviruses Gastroenteritis, 

meningitis, myocarditis, 

respiratory disease, 

encephalitis, and 

conjunctivitis

Bouseettine et al., 2020; 

Gibson, 2014; Kumar 

et al., 2014; La Rosa et al., 

2012

Poliovirus Poliomyelitis, meningitis, 

and encephalitis

Bouseettine et al., 2020; 

Kumar et al., 2014

Coxsackievirus Meningitis, encephalitis, 

paralysis, and myocarditis

Bouseettine et al., 2020; 

Kumar et al., 2014

Astroviruses Gastroenteritis Gibson, 2014; Kumar 

et al., 2014

Hepatitis viruses A, E Hepatitis Gibson, 2014; Kumar 

et al., 2014

Noroviruses Gastroenteritis Gibson, 2014; Kumar 

et al., 2014

Sapoviruses Gastroenteritis Kumar et al., 2014

Rotavirus Gastroenteritis Gibson, 2014; Kumar 

et al., 2014

Aichivirus Gastroenteritis Bouseettine et al., 2020

Coronavirus Gastroenteritis and 

respiratory disease

Dongdem et al., 2009;  

La Rosa et al., 2012
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hence the authors opined that both HAV and HEV outbreaks were 
due to human exposure to contaminated water (Kadri et al., 2018).

In addition, there was an increase in diarrhea cases reported in 
Mgcawu District, Northern Cape province, and eThekwini 
Metropolitan Municipality, KwaZulu-Natal province, South Africa 
(Shonhiwa et  al., 2020). The reported diarrhea outbreaks that 
affected children under age 5 coincided with the yearly South Africa 
rotavirus season in 2013 (Shonhiwa et al., 2020). In the same vein, 
a gastroenteritis outbreak linked to swimming in the lagoon in 
KwaZulu-Natal Coast, South Africa, resulted in more than 600 
cases within 3 weeks in December 2016/January 2017 (Sekwadi 
et al., 2018). Also, RVs, AstVs, NoVs GI.6, GII.3, and GII.6, were 
the waterborne viruses identified in the lagoon water samples. The 
prevalence of the viruses is due to the discharge from WWTPs 
effluent into the river that feeds the lagoon (Sekwadi et al., 2018). 
Similarly, in 2017, there was a rotavirus outbreak in India, with a 
22.8% attack rate due to drinking water from contaminated wells 
(Joshi et al., 2019). The Hepatitis E virus was also linked with the 
largest viral waterborne outbreak in India in which about 80,000 
people were affected (Naik et al., 1992; Farkas et al., 2020b).

With above 6  million deaths worldwide as of March 2022, 
COVID-19, the highly contagious infectious disease caused by 
SARS-CoV-2, had a devastating impact on the world’s demographics 
and is emerging as the most significant global health crisis since the 
period of the influenza pandemic of 1918 (Cascella et al., 2022). The 
COVID-19 pandemic has resulted in the emergence of significant 
health challenges owing to its contagious nature and the absence of 
efficient medical treatment (Coccia, 2021). Respiratory symptoms 
are the most common in COVID-19 individuals. However, research 
suggests that gastrointestinal (GI) symptoms such as diarrhea, 
nausea/vomiting, and abdominal discomfort are common in 
COVID-19 patients, with a frequency of up to 31.9% (Cholankeril 
et  al., 2020; Remes-Troche et  al., 2020). The possibility of the 
waterborne transmission of SARS-CoV-2 began to draw increasing 
attention due to the detection of its genetic marker in different 
water matrices as highlighted earlier. However, there is currently no 
scientific evidence that the viral RNA is infectious in water and 
wastewater and can be contacted in water. This gives room for more 
future studies to look comprehensively into this.

Apart from the loss of lives associated with the unavailability of 
safe drinking water and poor sanitation, the World Bank estimated 
an annual economic loss of US$260 billion globally (World Health 
Organization, 2012a). The infections associated with contaminated 
water and enteric viral outbreaks are considered under-reported 
irrespective of the country’s socio-economic condition because the 
symptoms are generally mild, and people rarely seek medical 
treatment for self-limiting illnesses (Control and Prevention, 2013). 
Generally, in healthy individuals, viral infections are self-limiting; 
however, in children under the age of five, the aged, pregnant 
women, and immunocompromised patients, greater morbidity 
could result. Hence, it makes the surveillance of diseases associated 
with enteric viruses challenging (Cortez et al., 2017; Li et al., 2017). 
Unfortunately, few broad-spectrum antiviral drugs exist for the 
treatment of those diseases (Gall et al., 2015a).

Strategies for the removal of 
waterborne viruses

Detecting and quantifying the various types of viruses in 
wastewater are critical for preventing diseases and creating 
strategic responses to outbreaks. Nevertheless, removing 
enteric viruses from wastewater is equally essential to avert 
their spread through food, water, or other pathways. However, 
the transmission of waterborne viruses is common in 
developing countries due to their poor sanitation. For instance, 
there has been a threat to global polio eradication. This is due 
to the possible movement of indigenous wild poliovirus (WPV) 
into polio-free countries. Also, it could be  through the 
importation of WPV from polio-endemic countries as well as 
the release of WPV into the environment from laboratory 
stocks (Sharma et al., 2015). Hence, every country must detect 
WPV circulation and other waterborne viruses via a sensitive 
surveillance system.

Although, physical removal of pathogens via conventional 
methods, ultraviolet light or chemical oxidants like chlorine, 
chloramines, and ozone have been employed, unfortunately, the 
capacity to resist disinfection due to viral particle size (Ibrahim 
et al., 2021), and the presence of viral capsid make virus removal 
a challenging task for most available technologies as well as 
wastewater epidemiologist. Till date, chlorine disinfectant is being 
used for water treatment to enhance the deactivation of pathogens 
and maintain a residual concentration in the distribution line 
(Crittenden et al., 2012). The availability of chlorine made it a 
common disinfectant in water purification (Rosario-Ortiz et al., 
2016); however, it raises the risk of creating possibly mutagenic 
and carcinogenic disinfection by-products like bromate and 
chlorite (Sharma et al., 2014; Gall et al., 2015b) that could pose 
major health risks to humans (Agency, 2006; Richardson and 
Postigo, 2011).

Generally, the side effects and limitations associated with the 
use of conventional techniques for the disinfection of water 
made it inappropriate in the long run. As highlighted, harmful 
disinfection by-products are formed when chlorine reacts with 
natural organic matter found in water sources (Hrudey and 
Charrois, 2012). The by-products released from the use of those 
conventional oxidants as disinfectants have been reported to 
be harmful to human health. Another danger for humans that is 
associated with the use of conventional disinfectants is their 
non-specificity as higher doses are needed for disinfection 
(Kumar et al., 2020). Specifically, studies have shown that the 
reoviruses may be more sensitive to chlorine disinfection than 
enteroviruses (Betancourt and Gerba, 2016). Unfortunately, 
attaining complete sterilization and disinfection has not been 
confirmed to be  achieved by any conventional wastewater 
treatment procedures (Sano et  al., 2016). Hence, finding 
solutions to reduce this problem has become an issue of keen 
interest. Therefore, research should be  geared toward the 
development of an effective method of disinfection for the 
removal of waterborne enteric viruses. In addition, such 
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methods must be  devoid of the formation of disinfection 
by-products which characterizes the chemical methods of 
disinfection owing to the reaction of residual chlorine with 
organic matter to form possible mutagenic and carcinogenic 
by-products.

Conclusion

This article reviews the public health implications of human 
exposure to viral contaminated water. The presence of enteric 
viruses in water comes with accompanying public health 
implications that cannot be ignored. Although the presence of 
other microbes in wastewater has been the focus of research 
before now, the risk of diseases associated with the presence of 
viruses in water is by far greater than that of other microbes as just 
an insignificant quantity of viruses is adequate to cause diseases 
when compared to other microorganisms.

The detection and quantification of the various human 
viruses in environmental water are critical for public health 
concerning the prevention of diseases as well as response to 
outbreaks. Hence, conducting regular viral monitoring of treated 
wastewater discharged into the environment is important for the 
prevention of diseases associated with exposure to viral 
contaminated water. Meanwhile, the presence of viral particles 
in water and wastewater does not mean that the particles are 
infectious but are pointers to potential infections and health risk 
burdens that could emanate from the matrices. Hence, there is 
an urgent need for further studies to highlight infectious 
fractions of viral particles disseminated via wastewater and 
water resources for effective risk assessment and epidemiologic 
purposes. Nevertheless, removing viruses from wastewater using 
other alternative treatment methods in a bid to stop their 
transmission via the ingestion of contaminated water should 
be considered. Therefore, a search for a more holistic and cost-
effective disinfection method that will inactivate waterborne 
viruses in water is highly needed to curtail the public health 
effects of human exposure to contaminated water.
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