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Sap-sucking insects, including whiteflies, are amongst the most devastating 

and widely distributed organisms on the planet. They are often highly invasive 

and endosymbiont communities within these insects help them adapt to 

new or changing environments. Bemisia tabaci (Gennadius; Hemiptera: 

Aleyrodidae) whitefly species are vectors of more than 500 known plant-

viruses and harbour highly diverse endosymbionts communities. To date, 

however, whitefly–endosymbiont interactions, community structure and 

their spatio-temporal changes are still poorly understood. In this study, 

we investigated the spatio-temporal changes in the composition and diversity 

of bacterial endosymbionts in the agricultural crop pest whitefly species, 

Bemisia tabaci sub-Saharan Africa 1-subgroup 1 and 2 (SSA1-SG1 and SSA1-

SG2). 16S rRNA amplicon sequencing analysis was carried out to characterise 

endosymbiont compositionsin field-collected SSA1 (SSA1-SG1 and SSA1-

SG2) populations infesting cassava in Uganda in 1997 and 2017. We detected 

Portiera, Arsenophonus, Wolbachia, Hamiltonella and Hemipteriphilus, with 

Arsenophonus and Wolbachia infections being predominant. Hemipteriphilus 

and Hamiltonella frequencies were very low and were detected in seven and 

two samples, respectively. Bacterial diversity based on three independent 

parameters including Simpson index, number of haplotypes and Bray–Curtis 

dissimilarity matrix was significantly higher in 1997 than in 2017. This period also 

coincided with the advent of super-abundant cassava-whitefly populations on 

cassava crops in Uganda. We discuss how endosymbionts may influence the 

biology and behaviour of whiteflies leading to population explosions.
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Introduction

Whiteflies belong to the Sternorrhyncha suborder, which 
also includes aphids, psyllids, and mealybugs, all of which feed 
on plant phloem-sap (Gullan and Martin, 2009). Plant sap is 
generally lacking amino acid elements required for balanced 
insect nutrition (Douglas, 2006). As a result, all of these 
insects have a symbiotic relationship with bacteria called 
“endosymbionts.” Bacterial endosymbionts are generally 
localised in vesicles within specialised insect cells 
(bacteriocytes; Baumann, 2005; Douglas, 2016). In these cells, 
endosymbionts aggregate into a bacteriome within the body 
cavity to help them synthesise missing dietary elements and 
create a balanced diet (Buchner, 1965; Baumann et al., 2006; 
Douglas, 2016). Early light microscopy studies revealed that 
each of these insect groups has a morphologically identical 
endosymbiont (referred to as the primary endosymbiont 
[P-endosymbiont]) that is found in all members of the group 
(Buchner, 1965). Despite morphological similarity, primary 
(and secondary) endosymbionts are comprised of multiple 
species (across host taxa; Bell-Roberts et al., 2019). Portiera 
aleyrodidarum, for instance, is the primary endosymbiont of 
Bemisia tabaci (Santos-Garcia et al., 2012) whilst Buchnera 
aphidicola is the primary endosymbiont of aphids (Munson 
et  al., 1991). Some members may contain secondary 
endosymbionts (S-endosymbionts), which are morphologically 
distinct from the primary endosymbionts (Buchner, 1965; 
Baumann et al., 2006; Luan et al., 2015). Both endosymbiont 
types are maternally transmitted to the next generations (Luan 
et al., 2018).

The whitefly B. tabaci is a highly invasive pest of 
economically important vegetable and ornamental crops 
worldwide (Liu et al., 2009). It causes serious damage to crops 
such as cassava by direct feeding and vectoring plant viruses 
that cause economically important diseases (Barro et al., 2011; 
Fiallo-Olivé et al., 2019). B. tabaci is a complex of at least 44 
morphologically indistinguishable biological species that are 
distributed in the tropical and subtropical parts of the world 
and the protected environments of temperate regions (Tay et al., 
2017). Amongst these, B. tabaci sub-Saharan Africa 1 (SSA1) is 
highly prevalent in sub-Saharan Africa. Based on the partial 
mitochondrial cytochrome oxidase I gene (mtCOI) marker, this 
species was divided into five subgroups (Ghosh et al., 2015). 
However, SSA1-SG3 has recently been considered a separate 
species based on mating incompatibility studies (Mugerwa 
et  al., 2021) and molecular genetic analysis using specific 
microsatellite markers (Ally et  al., 2019; Mugerwa et  al., 
2020, 2021).

Endosymbiotic bacteria are also widespread in whiteflies 
(Gueguen et  al., 2010). They are present in the whitefly body 
cavity, haemolymph or intracellularly in special cells called 
bacteriocytes (Raina et  al., 2015). Portiera aleyrodidarum, a 
P-endosymbiont present in all whiteflies, supplements the amino 
acid-deficient diets (Thao and Baumann, 2004). The 

S-endosymbionts such as Rickettsia, Hamiltonella, Wolbachia, 
Arsenophonus, Cardinium, and Fritschea are not present in all 
whiteflies but have a wide variety of roles such as affecting fitness, 
reproduction (Thierry et  al., 2011), sex determination (Wang 
et  al., 2020), insecticide susceptibility or virus transmission 
capabilities (Ghanim and Kontsedalov, 2009; Himler et al., 2011; 
Barman et al., 2021).

The infection dynamics of S-endosymbionts in B. tabaci SSA1 
showed a high abundance of Arsenophonus and Wolbachia in 
Uganda (Legg et al., 2014; Ghosh et al., 2015). Ghosh et al. (2015) 
also found that about 62% of B. tabaci SSA1-SG1 individuals were 
infected with Wolbachia, Arsenophonus and/or Rickettsia in single 
or mixed infections in Uganda. Tajebe et  al. (2015), however, 
found Arsenophonus as a single infection or coinfected with 
Cardinium in Tanzania, indicating the huge differences in the 
results obtained between the studies. In Nigeria, Arsenophonus, 
Rickettsia, Wolbachia, Cardinium and Hamiltonella were detected 
in B. tabaci SSA1 (Akintola et al., 2020). Arsenophonus, Wolbachia, 
Rickettsia, and Cardinium have been detected in B. tabaci SSA1 
from Uganda and Tanzania on cassava (Sseruwagi et al., 2018). In 
addition, infection of Rickettsia increased in B. tabaci MEAM1 in 
the United States from 2000 to 2016, indicating a change in the 
interaction between S-endosymbiont and their host (Bockoven 
et al., 2019). Hamiltonella infection frequencies were significantly 
higher in MEAM1 and MED females compared to males, 
suggesting that the sex of the hosts could also influence 
S-endosymbionts infections (Pan et  al., 2012). In this study, 
we investigated how the spatio-temporal changes have influenced 
the endosymbiont composition and diversity in the African 
cassava whitefly species, B. tabaci SSA1, using samples collected 
two decades apart (1997 and 2017) and from various different 
locations in Uganda.

Materials and methods

Whitefly sampling

A total of 65 young cassava leaves having eggs, nymphs and 
pupae were collected from Uganda in 1997, and stored at −80°C 
at NRI, University of Greenwich, United Kingdom. Samples were 
collected in 14 locations (~ 5 Km apart) in three districts of 
Mityana, Kampala and Masaka. Another sampling was carried out 
in 2017 in 13 locations in a slightly larger area of seven districts 
(Mityana, Mpigi, Wakisa, Kalungu, Masaka, Rakai, and Gomba). 
A total of 48 B. tabaci adults on cassava were collected and 
preserved in ethanol for subsequent molecular analysis. GPS 
coordinates collected in 2017 were matched with the names of 
villages in the 1997 samples using QGIS v.2.18.17 online software1 
(Ally et al., 2019; Figure 1; Supplementary Table S1).

1 https://qgis.org
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DNA extraction and molecular typing of 
Bemisia tabaci

For this study, the DNA was extracted from 121 whiteflies 
(Supplementary Table S1). Of these, 65 DNA from single whitefly 
were extracted from 1997 samples from individual eggs and 
nymphs of whiteflies using the Chelex method (Walsh et al., 1991; 
Ghosh et al., 2015). Briefly, each whitefly was ground in a 100 μl 
TE solution (10 mM Tris–HCl and 1 mM EDTA, pH 8.0) 
containing 20% Chelex (BIO-RAD, United Kingdom) and 300 μg 
Proteinase K. Samples were incubated at 58°C for 1.5 h followed 
by protein denaturation at 96°C for 10 min (Ghosh et al., 2015). 
Samples were then centrifuged at 13,000 rpm and the supernatant 
was collected and stored at −20°C. A total of 56 DNA samples 
collected in 2017 were obtained from a non-destructive method 
by overnight incubation of whiteflies in buffer solution, as 
previously described (Delatte et al., 2011; Ally et al., 2019). A total 
of 121 SSA1 samples (Supplementary Table S1) were selected from 
the two locations. Their identities were confirmed from their 
partial mtCOI sequences (Ally et al., 2019). DNA isolated from 
insects were amplified using the PCR genus-specific primer pair: 

2195Bt (5′-TGRTTTTTTGGTCATCCRGAAGT-3′) and C012/
Bt-sh2 (5′-TTTACTGCACTTTCTGCC-3′; Mugerwa et al., 2018). 
Amplification of mtCOI gene was carried out in 25 μl volumes 
consisting of 2 μl of DNA template, 0.4 μM of each primer, 
0.15 mM of dNTPs, 1 × DreamTaq Green buffer and 0.5-unit 
DreamTaq Green DNA polymerase (Thermo Scientific Ltd., 
Uniteed Kingdom). The PCR amplification began with a 
denaturation step at 94°C for 3 min, followed by an amplification 
consisting of 38 cycles at 94°C for 30 s, an annealing step for 54 s, 
72°C for 1.5 min and a final extension for 7 min at 72°C. PCR 
products were visualised on 1% agarose gels containing RedSafe 
nucleic acid staining solution (Intron Biotechnology, Korea). PCR 
products were then visualised under UV light (402 nm) and 
fragments of the expected size (~ 867 bp) were purified and sent 
for sequencing (Macrogen, Netherlands).

16S rRNA library preparation

The Hi-Seq Illumina platform with 466 bp paired-end reads 
was used for sequencing the V4–V5 region of the 16S rRNA 

FIGURE 1

Map showing the distribution of whitefly sampling sites used in this study.
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gene as previously described (El Hamss et al., 2021). A duplicate 
PCR strategy was adopted involving two PCR amplifications per 
sample to decrease PCR selection bias. In every single round of 
PCR, primers containing the index sequences were used to 
prepare the 16S rDNA sequencing libraries. Each reaction 
contained 2 μl of template DNA, 1 U of Dream Taq DNA 
polymerase, 1 mM dNTPs, and 0.2 μM of each primer in a 25 μl 
reaction mixture. The PCR conditions started with an initial 
denaturation step at 95°C for 2 min, followed by an amplification 
of 38 cycles at 94°C for 30 s, an annealing step for 54 s, 72°C for 
1.5 min and a final extension for 7 min at 72°C in a DNA Engine 
thermocycler (Applied Biosystems, United Kingdom). The dual-
index paired-end sequencing approach was adopted for 
sequencing the 16S rRNA products (Caporaso et  al., 2011, 
2012). Both the reverse and forward primers consisted of eight 
nucleotides as index sequences, 4–5 nucleotides as a linker, 
followed by the gene-specific primer. The index sequences and 
linkers together formed the barcodes. The barcodes were unique 
to each sample. Following the separation of products from 
primers and primer dimers by 1% agarose gel electrophoresis, 
PCR products of the correct size 400 bp were recovered using 
an electrophoresis Gel and PCR purification kit (NucleoSpin, 
Macherey-Nagel, Germany). Samples were pooled into two 
separate pools (121 amplicons per pool) by mixing duplicate 
whitefly PCR products with unique indices in equal quantities. 
Total DNA was quantified on a qPCR machine (Biorad, CFX 
manager, United  Kingdom) using PicoGreen dsDNA 
Quantification kit (Thermo Fischer Scientific, United Kingdom). 
A composite pooled sample, having 121 amplified DNA with 
positive control Echerichia coli to control bias from multiple 16S 
rRNA gene copies or other sequencing errors was then prepared. 
Single amplicons were combined in equimolar ratios was 
purified using the same Gel and PCR purification kit. 
Quantification of pooled DNA was performed using 
NanoDrop  2000 (Thermo Scientific, United  Kingdom). The 
pooled samples were sequenced by Fasteris Ltd., Switzerland by 
Illumina sequencing.

Sequence analysis

Paired-end reads were demultiplexed according to their 
barcode/primers using the software Metafast_BCsorting version 
(2.10; Ulyantsev et al., 2016), and the barcode sequences were 
subsequently removed from the output reads. Standard Illumina 
adapters and low-quality bases were trimmed using the 
Trimmomatic version 0.32 (Bolger et al., 2014). The Trimmomatic 
package was used to remove bases that were below the quality 
threshold and those that corresponded to the standard Illumina 
adapters. Trimmomatic parameters were selected so no 
mismatches were allowed in the barcode sequences, whereas in 
the primer sequences, the number of mismatches allowed was the 
number of degenerated bases + 2 mismatches.

Sequences were subjected to a second filtering process using 
the DADA2 plugin (Callahan et al., 2016) which was implemented 
in QIIME2 software v2018.6 (Bolyen et al., 2018). DADA2 enables 
additional read quality filtering and trimming, chimera filtering, 
denoising, and joining paired reads using the “Denoise and 
dereplicate paired-end sequences” method of QIIME2. Parameters 
of forward and reverse read truncation or length filtering were set 
to 0 while the other parameters were kept as defaut.

DADA2 generated Amplicon Sequence Variants (ASVs) and 
reported their relative abundance within each sample. VSEARCH 
consensus taxonomy classifier (Rognes et al., 2016) was used to 
assign taxonomy to ASVs using the SILVA database. The generated 
taxonomic groups of sequences were re-analysed to look for 
unique haplotypes using DNAsp software v6.12.0.3. Unique 
haplotypes were then generated with a matrix of read abundance 
using the gplot library in R (Warnes et al., 2009). The tree with 
unique haplotypes was constructed using maximum-likelihood 
method in Geneious tree builder, bootstrap was the resampling 
method and the number of replicates was set at 1,000,000 while 
other parameters were kept as default.

Statistical analysis

Given the high prevalence of Portiera, it was excluded from 
the analysis to avoid skewing the results. Therefore, only 
S-endosymbionts were used in this analysis. Then, Vegan Library 
of R (Oksanen et al., 2014) and Capscale function (Oksanen et al., 
2013) were used to investigate the effect of time and diversity 
indices including alpha diversity measured by Simpson, the 
number of haplotypes and Beta diversity measured by Bray–Curtis 
matrix was calculated on binary matrix of ASV. The non-metric 
Multi-Dimensional Scaling analysis (NMDS) was used to 
condense and therefore simplify multidimensional data about the 
samples into a few important axes to facilitate visualisation and 
interpretation. As microbiome dataset is compositional by nature 
with an irrelevant total number of counts within a sample, the 
centred log-ratio (CLR) transformation on ASV matrix of total 
reads was also applied to correct for biases (Greenacre et al., 2021). 
Aitchison distance between transformed samples was 
subsequently calculated and visualised using Principal Coordinate 
Analysis (PCoA).

One-way analysis of variance (ANOVA) was used to 
investigate mean differences between Simpson index and the 
number of observed haplotypes based on the 2 years of collection.

Analysis of Compositions of Microbiomes with Bias 
Correction (ANCOM-BC), a robust methodology of differential 
abundance for microbial absolute abundances, was used to further 
confirm the date effect on S-endosymbionts composition (Gloor 
et  al., 2017). Permutational Multivariate Analysis of Variance 
(ADONIS) was used to analyse S-endosymbionts communities 
with environmental variables (date, space and life stage). Relative 
abundance of each haplotype in single whitefly sample was also 
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calculated and the ASV matrix of abundance was transformed 
into a binary matrix before calculating Bray–Curtis matrix.

Results

All individuals in this study were identified as B. tabaci 
SSA1-SG1 and SSA1-SG2 which are the same species (Mugerwa 
et al., 2021). Moreover, all of the whitefly individuals sampled in 
2017 were adults, while whiteflies sampled in 1997 were at various 
juvenile life stages. It was, in fact, not possible to standardise the 
life stages across the 2 years included in the study. Nevertheless, 
S-endosymbionts are maternally transmitted, and therefore, 
we  are not expecting them to be  influenced by life stage. The 
results of the statistical tests also confirm this hypothesis as the life 
stage was not influencing the S-endosymbionts at both alpha 
diversity level (Shannon index: p = 0.2, Haplotype: p = 0.19) and 
beta diversity level (ADONIS: p = 0.06). The results presented here 
are, therefore, solely from both the temporal and spatial changes.

The overall diversity of endosymbionts 
according to the time of the whitefly 
collection

The diversity of S-endosymbionts changed over time 
significantly both based on the Shannon index, p  = 0.0036 
(Figure  2A) and total haplotypes, p  =  0.00034 (Figure  2B). 
Shannon index average value changed from 0.71 in 1997 to 1.09 in 
2017 (Figure 2A). The S-endosymbiont diversity and composition 
did not change across sites based on Shannon index (p = 0.19; 
Figure 2C), total haplotypes (p = 0.13; Figure 2D) and Bray–Curtis 
matrix (p = 0.28). Haplotypes average changed from 3 in 1997 to 
7 in 2017, while the Bray-Curtis matrix measuring S-endosymbiont 
structure was significantly different (p = 0.001; Figure 2E). Based 
on the NMDS, old samples, represented in red dots, are clustered 
meaning that they have similar compositions (Figure  2E). 
Furthermore, results of the PCoA on CLR-transformed data 
showed significant differences in S-endosymbionts between 
whiteflies collected in 1997 and 2017 (Supplementary Figure S1). 
These results showed that S-endosymbiont diversity in the 
B. tabaci SSA1 population had changed over time.

The temporal prevalence of 
endosymbionts and their haplotypes

Total reads of 102,493,996 were generated from the 1997 
(60,318,306) and 2017 (42,175,690) samples 
(Supplementary Table S1). Of the 102,493,996 total recovered 
reads after quality filtering, 96% (92,355,604) were assigned to 
Portiera whilst the remaining 4% (10,138,3,924) reads were 
assigned to S-endosymbionts and non-endosymbiotic bacteria 
(Figure 3). Amongst Portiera sequences, 19 haplotypes were found 

in this study, with three of them; Por-Hap_3, and Por-Hap_1 
detected in one sample collected in 1997, and Por-Hap_2 detected 
in three SSA1 whiteflies, but with low frequencies (Figure  3), 
whereas the others with high frequency were prevalent on both 
dates of collection (Figure  2; Supplementary Table S1). Their 
accession numbers were deposited in the GENEBANK database 
(accession numbers from OP160987 to OP160997).

Four S-endosymbionts including Arsenophonus Wolbachia, 
Hemipteriphilus and Hamiltonella were detected in our samples 
with different prevalences (Figure 4). The analysis of bacterial 
composition with bias correction (ANCOM-BC) showed that the 
relative abundances of 23 haplotypes belonging to Arsenophonus 
and Wolbachia changed significantly between 1997 and 2017 in 
tested SSA whiteflies (Figure 4; Supplementary Table S2).

A total of 69 samples harboured 100% of the relative 
abundance of Arsenophonus (OP160971 to OP160986), 49 samples 
in 1997 and 20 in 2017 (Figure 4). In both years, Arsenophonus 
was the most abundant S-endosymbiont followed by Wolbachia 
(OP161006–OP161013) which was observed in 5 whitefly samples 
with relative abundance ranging between 25 to 91% in 1997 and 
28 samples in 2017 having a relative abundance ranging from 0.2 
to 100% (Figure 4). Hemipteriphilus (OP160998 to OP161005) was 
least abundant in both years present in four samples in 1997 with 
relative frequency ranging between 3 and 47% and only present in 
one sample from 2017 with relative frequency reaching 7% 
(Figures 4). Hamiltonella (OP160970) was present in one whitefly 
sample only from the 2017 collections (Figure 4).

Arsenophonus sequences showed the highest haplotype 
diversity, assigned to 18 haplotypes. Amongst them, only two were 
found in 1997 collections with both occurring in three samples 
(Figure 4). The top abundant haplotype was Ars_Hap_7 as the 
relative frequency assigned to this haplotype was between 0 and 
100% in the 1997 samples and 0–100% in the 2017 samples 
(Figure 4).

Wolbachia and Hemipteriphilus sequences were less 
diverse, as eight haplotypes were detected for each bacteria 
(Supplementary Table S1). Five Hemipteriphilus haplotypes were 
found only in 1997 but not in 2017. Hemi-Hap_39, Hemi-Hap_42 
(Hemi-Hap_43 Hemi-Hap_44, Hemi-Hap_45) occurred in less 
than three samples. Wolbachia prevalence was different between 
dates but the diversity did not change over time (Figure  2; 
Supplementary Table S1). Two haplotypes, Ham-Hap_46 (25) and 
Ham-Hap_47 belonging to Hamiltonella sequences were found 
only in two samples in 2017, but not in 1997 
(Supplementary Table S1). All the sequences generated were 
deposited in the Genebank database with their accession numbers.

Infection dynamics of S-endosymbionts 
and their phylogeny at haplotype level

The infection dynamics between the three endosymbionts 
Arsenophonus, Wolbachia and Hemipteriphilus changed over time 
(Table 1). Dual infections of Wolbachia and Arsenophonus changed 
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from 9 to 28% from 1997 to 2017 (Table 1). Wolbachia was not 
found in 1997 (0%) but represented 5% of reads in 2017 (Table 1). 
Single infection of Arsenophonus changed from 91 to 68% from 
1997 to 2017 (Table 1). S-endosymbiont-free whiteflies were found 
in both years with 12 and 17% in 1997 and 2017, respectively 
(Table 1).

The phylogenetic relationships between and within 
S-endosymbionts showed that, apart from Hemipteriphilus, each 
S-endosymbiont clustered separately and, as expected, with their 
given reference sequences (downloaded from the GENBANK; 
Figure 5). Two clusters of Arsenophonus were present in the tree, 
suggesting the high genetic diversity of this symbiont (Figure 3). 

Hemipteriphilus was clustered with one Rickettsia sequence, 
suggesting the need to further investigate other genes of 
Hemipteriphilus. A heat map of the relative abundance showed the 
temporal variations of all detected bacteria at the haplotype level 
(Figure 6).

Discussion

Despite their importance to whitefly, relatively little is known 
about the endosymbionts in African cassava whitefly populations. 
We present here, for the first time, the full endosymbiont diversity 

A B

C

E

D

FIGURE 2

One-way ANOVA of diversity analysis including Shannon index and total haplotype in relation to date (A,B) and site (C,D). Non-metric multi-
dimensional scaling analysis (NMDS) test on Bray–Curtis matrix (E) of S-endosymbionts only. Portiera was excluded from the statistical tests.
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and composition in B. tabaci SSA1 by deep sequencing of 16S 
rRNA gene, using samples collected at different time points in 
Uganda. We  found that the S-endosymbiont diversity in the 
B. tabaci SSA1 population has changed since 1997 and that this 
has happened in parallel with the increased whitefly populations 
attacking cassava crops.

Before discussing these findings, it is important to note that 
reads produced by Illumina sequencing create large amounts of 
data with errors that are difficult to differentiate from real 
biological variation. To overcome this challenge, DADA2 filtering 
was adopted to clean Illumina errors following the parametric 
error model (err). Reads with number of expected errors higher 
than 2 were discarded. Nevertheless, other errors or 
misinterpretations can still persist, notably, 16S rRNA gene copies 
that can occur in some bacteria species, such as polyploidy (Sun 
et al., 2013; Větrovský and Baldrian, 2013; Espejo and Plaza, 2018; 
Louca et al., 2018). In this study, we further used Echerichia coli as 
the mock community in all pools of our samples to further 
confirm the assignment of reads.

This work is also the first study to investigate intraspecies 
diversity of Portiera within B. tabaci SSA1. We discovered six 
prevalent Portiera haplotypes whose relative frequency was stable 
between the two dates of investigation. Portiera 16S rRNA was 
also found to contain a highly homologous sequence (Paredes-
Montero et al. (2020)). However, we found intraspecies diversity 

in their variable regions V4-V5 within the 16S rRNA gene sharing 
99% identity, which is similar to the 0–0.67% divergence reported 
by Paredes-Montero et al. (2020), suggesting Portiera evolution is 
ongoing (Santos-Garcia et al., 2020). The divergence between 
Portiera variants is concordant with the long period of coevolution 
between the host and endosymbiont.

The differences found between the study in Paredes-
Montero et  al., 2020 and our studies could be  due to the 
different methodologies adopted and the depth of sequences 
obtained. We used amplicon sequence variants (ASV) showing 
the differences of the V4-V5 region in 16S rRNA in Portiera 
sequences and obtained deeper sequencing than any previous 
studies. The differences in diversity metrics of 
S-endosymbionts observed between Ghosh et al. (2015) and 
Tajebe et al. (2015) in seemingly similar whitefly populations 
from East African cassava whitefly populations, highlighted 
the sensitivity of these types of analyses to the methodology 
used in detecting endosymbionts. Nevertheless, our approach 
detected all previously known endosymbionts associated with 
whiteflies. A standardised set of protocols is therefore needed 
to detect and identify reliably the various endosymbionts 
infecting insect species. This conclusion is further emphasised 
by Ghosh et  al. (2015), reporting three S-endosymbionts 
(Wolbachia, Arsenophonus and Rickettsia) in B. tabaci SSA1 
using a simple PCR and sequencing approach, while we found 

A

B

FIGURE 3

A stacked barplot of the three bacteria types that were detected in this study in each single whitefly showing their relative abundance in relation to 
date in 1997 (A) and 2017 (B).
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a new and different combination of S-endosymbionts 
(Arsenophonus Wolbachia, Hemipteriphilus and Hamiltonella). 
Hemipteriphilus was found for the first time in seven samples 
and Hamiltonella in a single sample in African whiteflies. This 
is the first study to detect Hemipteriphilus in African 
whiteflies. Fritschea and Cardinium, however, were not 
detected in this study. Previous studies did not find 
Hemipteriphilus in B. tabaci SSA1, whilst Rickettsia infection 
was less than 1% (Ghosh et al., 2015), further highlighting 

high endosymbiont diversity in African cassava whiteflies and 
differences in the methodologies used.

The high depth of sequences obtained here also allowed us to 
investigate intraspecies diversity within each S-endosymbiont. 
This is to show that if there are multiple genetic variants within the 
population, we  might predict that the presence/absence and 
relative abundance of different haplotypes would show variation 
among whitefly samples harbouring a particular species of the 
endosymbiont. Similarly, three strains of Hemipteriphilus were 
detected in one study on MED Q1 and MED Q3 and ASL 
whiteflies using three genes including 16S rRNA gene (483 bp), 
GroEL (269 bp) and GltA (190 bp; Mouton et al., 2022).

The two most prevalent Arsenophonus haplotypes (amongst 
18) were present on both tested dates. While the two least prevalent 
Arsenophonus haplotypes were present only in 1997, they were not 
detected in 2017 specimens. Three Wolbachia haplotypes were 
highly prevalent among the eight detected, but they did not change 
between the two dates. In this study, three Hemipteriphilus 
haplotypes were also found in only 1997. Little is known about the 
intraspecies diversity of Hemipteriphilus in African whiteflies, 
which was first characterised as Candidatus Hamiltonella defensa 
(Bing et al., 2013) in China 1 whiteflies and subsequently found 
only in Asian B. tabaci. In that study using both 16S rRNA and gltA 
genes suggested that Hemipteriphilus is clustered within the 

A

B

FIGURE 4

A stacked barplot of S-endosymbiont haplotypes detected in this study in each single whitefly which exhibit significantly different relative 
abundance in relation to date, as indicated by ANCOM-BC (Supplementary Table S5), in 1997 (A) and 2017 (B).

TABLE 1 Temporal change of S-endosymbiont coinfections.

Infection 
status

S-endosymbionts 
collected from 

Whiteflies in 1997 
(%)

S-endosymbionts 
collected from 

Whiteflies in 2017 
(%)

Arsenophonus 91 68

Wolbachia 0 5

Arsenophonus and 

Wolbachia 

Wolbachia

9 28

N 12 17

N: no infection showing symbiont free whiteflies.
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Alphaproteobacteria subdivision of Proteobacteria. Here, we found 
that Hemipteriphilus sequences were clustered with one strain of 
Rickettsia. Another study in Burkina  Faso also identified 
Hemipteriphilus similar to Rickettsia using 16S rRNA gene in 
Illumina sequencing technology in MED-Q1, MED-Q3 and ASL 
genetic groups (Mouton et  al., 2022). The sequences of 
Hemipteriphilus and Rickettsia are so similar that they are difficult 
to differentiate especially using 16S rRNA primers. This issue could 
be  due to the specificity of the primers used to detect 
Hemipteriphilus. When a mismatch within V4-V5 sequences 
occurs, it reduces the thermal stability of the primer-template 
duplex, thus affecting PCR specificity. Nevertheless in this study, 

some Hemipteriphilus sequences were not differentiated from 
Rickettsia, the use of other housekeeping genes (Christensen et al., 
2004; Farré et al., 2007) is therefore needed to further study the 
inter- and intra-species diversity of Hemipteriphilus in African 
whiteflies. These observed similarities and differences between 
Hemipteriphilus and Rickettsia imply that the group is not well 
defined and probably in need of a taxonomic update.

In this study, we found that S-endosymbionts diversity and 
composition were not significantly different across sites in SSA1 
whiteflies. In previous work, it was reported that site-to-site 
variations subsequently influence the prevalence of endosymbionts 
in a given whitefly population (Zchori-Fein et  al., 2014). 
Endosymbionts composition of over 2000 studied whiteflies 
derived from several independent screenings was positively 
correlated with the distance from the equator (Zchori-Fein et al., 
2014). Similarly in China, Wolbachia and Rickettsia were 
influenced by geography and host plants (Pan et al., 2012). These 
differences between studies could be  linked to the adopted 
sampling. In our work, the sampling was carried out in Uganda 
with sites only 5 km apart from each other, compared to other 
studies where samplings were done at the country level. Rickettsia 
was also shown to boost its invasive ability within B. tabaci by the 
increase of infection frequency from 1% in 2000 to 97% in 2006 in 
Arizona (Himler et al., 2011).

Our results demonstrate the dynamic nature of bacterial 
endosymbionts. Both single and dual infections of Wolbachia 
changed in SSA1 over time. Dual infection of Arsenophonus and 
Wolbachia also changed from 9 to 28%. In contrast, single 
infections of Arsenophonus changed from 91 to 68%. Wolbachia 
and Arsenophonus are reported to coexist in other insect species 
such as brown planthopper (Nilaparvata lugens; Guo et al., 2021) 
and ants (Wang et al., 2016). Portiera genome is highly reduced 
and lacks genes involved in the synthesis of certain vitamins, 
cofactors, and some essential amino-acids, suggesting that there 
is a metabolic niche that could be  filled by secondary 
endosymbionts (Rao et al., 2015). Similarly, the co-occurrence of 
both Arsenophonus and Wolbachia has been found in different 
whitefly species from China MEAM1 and MED (Chu et al., 2011) 
and East Africa in SSA1-SG2, but their role is not well understood. 
At the metabolic pathway level, both Arsenophonus and Wolbachia 
influence whiteflies nutritionally by synthesising vitamin B 
(Santos-Garcia et  al., 2018; Zhu et  al., 2022). Their effect on 
B. tabaci SSA1 should further be investigated.

In this study, a single infection of Wolbachia changed from 0 
to 5%. This change may be an indication of the emerging role of 
Wolbachia in B. tabaci SSA1 or the beginning of a new invasion by 
these Wolbachia species. Wolbachia is well known to influence the 
reproduction of their host by reproductive incompatibility within 
and between insect species including B. tabaci SSA1 and B. tabaci 
SSA1-SG2. The latter harboured Wolbachia (Mugerwa et  al., 
2020), suggesting that the incompatibility is species dependent. 
Nevertheless, the change in Wolbachia infections over time in 
field-collected whiteflies can have implications on their 
reproduction that should be investigated further.

FIGURE 5

Phylogenetic analysis of the endosymbionts haplotypes based on 
the region V4–V5 in 16S rRNA sequences using the neighbour-
joining method with 1,000,000 bootstraps in Geneious. The 
coloured names showed the reference sequences with their 
accession numbers all the black names were generated from this 
study.
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A total of 12 and 17% of the samples were S-endosymbionts 
free in 1997 and 2017, respectively. Similarly, Ghosh et al. (2015) 
also showed about 38.0% of SSA1 was free from S-endosymbionts. 
Whiteflies without any S-endosymbionts in them can be found 
in both field and laboratory whiteflies (El Hamss et al., 2021). 
Some S-endosymbiont have a negative effect on whitefly 
development and their removal from whiteflies increased the 
number of eggs and nymphs laid as well as decreased adult 
emergence time (Ghosh et al., 2017). Generally, S-endosymbiont’s 
role is species-specific and therefore may or may not be present 
depending on the whitefly species. Spatio-temporal change of 
endosymbionts can be linked to their facultative or vital presence 
in whiteflies. In this study, S-endosymbionts diversity and 
composition in B. tabaci SSA1 individuals changed over time, 
coinciding with the advent of whitefly outbreaks in Uganda. This 
whitefly upsurge was estimated at more than 1,000 adults per top 
five leaves (Legg and Raya, 1998; Colvin et al., 2004; Legg et al., 
2006). The reasons behind whitefly outbreaks have not been fully 
understood and one explanation for this high whitefly infestation 
was related to synergistic interactions between S-endosymbionts 
providing a high fitness advantage to their whitefly hosts. In one 
study, infection of B. tabaci MEAM1 by Rickettsia produced 
more eggs and females with higher survival to adulthood which 
led to its invasion across the southwestern United States (Himler 
et  al., 2011). The presence of Arsenophonus or other hidden 
S-endosymbiont in B. tabaci SSA1 whiteflies may be responsible 

for improved fecundity and survival as suggested in previous 
studies (Ghosh et  al., 2015; Tajebe et  al., 2015). Both a high 
frequency of Arsenophonus and high haplotype diversity were 
detected from SSA1  in this study, suggesting that this 
S-endosymbiont can potentially affect whitely behaviour and 
abundance. In one reciprocal crossing experiment, 
Arsenophonus, the most prevalent S-endosymbiont in Ugandan 
B. tabaci SSA1, influenced whitefly reproduction (El Hamss 
et al., 2021).

Using a population dynamics technique, we  looked at 
endosymbiont diversity and composition. We demonstrated how 
these discoveries are helping us get closer to our aim to better 
understand factors changing endosymbiont communities in 
whiteflies. This research, therefore, adds to our understanding of 
how S-endosymbiotic communities change over time. Further 
research is now needed to understand in more depth the role 
played by the diverse endosymbiont communities in African 
cassava whitefly outbreaks.
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