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Cardiovascular diseases, mainly characterized by atherosclerosis (AS), and 

depression have a high comorbidity rate. However, previous studies have 

been conducted under a single disease, and there is a lack of studies in 

comorbid states to explore the commonalities in the pathogenesis of both 

diseases. Modern high-throughput technologies have made it clear that the 

gut microbiome can affect the development of the host’s own disorders and 

have shown that their metabolites are crucial to the pathophysiology of AS 

and depression. The aim of this review is to summarize the current important 

findings on the role of gut microbiome metabolites such as pathogen-

associated molecular patterns, bile acids, tryptophan metabolites, short-chain 

fatty acids, and trimethylamine N -oxide in depression and AS disease, with 

the aim of identifying potential biological targets for the early diagnosis and 

treatment of AS co-depression disorders.

KEYWORDS

microbiome metabolites, atherosclerosis, depression, gut microbiome, comorbid

Introduction

Cardiovascular disease, mainly characterized by atherosclerosis (AS), is the most 
common cause of death worldwide and is expected to be the top four causes of death 
worldwide by 2030 (WHO, 2008). There is growing evidence that depression, which is 
included among the top five causes of disability worldwide (Collaborators, G.D.a.I.I.a.P, 
2017), is an independent risk factor for the occurrence of cardiac events (Zellweger et al., 
2004; Hare et al., 2014; Vaccarino et al., 2020). Studies have shown that depression is 
associated with a higher risk ratio for cardiovascular mortality than hypercholesterolemia 
and obesity, and are intermediate between the “Big Five” classical cardiovascular risk factors 
(Ladwig et  al., 2017) and is a common complication in patients with atherosclerosis 
cardiovascular disease (ASCVD; Levine et al., 2021). Individuals with depression are at 
substantially increased risk of cardiovascular disease and death (O'Connor, 2018; Levine 
et al., 2021), and in particular, are strongly associated with one of the most common 
cardiovascular diseases–ASCVD (Jee et al., 2019; Sun et al., 2019). In a multiracial study in 
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the United States, depression was independently associated with 
atherosclerotic cardiovascular disease risk in all age groups 
(Dibato et al., 2021). In another large retrospective cohort analysis, 
it was found that patients with premature ASCVD had poor 
physical and mental health, with female patients more likely to 
report clinical depression and therefore require mental health 
interventions (Jain et al., 2022). Given that the two are so closely 
related clinically, we  refer to this state as atherosclerosis 
co-depression disease.

Most of the current research is aimed at a single disease, and 
now is the dilemma facing the patient usually with a variety of 
diseases, because the interaction between the disease is complex, 
and the use of multiple drugs may lead to poor efficacy, in addition 
to the study of comorbidity is less, so we  try to study the 
pathogenesis of common direction from both, identify common 
key targets for intervention. It is now believed that depression and 
atherosclerosis occur by similar mechanisms, including 
inflammation (Chrysohoou et al., 2018), hypothalamic–pituitary–
adrenal axis dysregulation (Gu et  al., 2012), endothelial 
dysfunction (van Dooren et al., 2016; Münzel and Daiber, 2020), 
and other major causes, while the development of modern high-
throughput technologies has provided technical support for the 
study of the gut microbiome, and an increasing number of studies 
have revealed that gut microbiome is key factors mediating the 
development of the host’s diseases, including depression and AS 
(Jonsson and Bäckhed, 2017; Durack and Lynch, 2019). The gut 
microbiome can interact with the host by influencing metabolites, 
which are intermediate or final products of microbial metabolism, 
either directly from the bacteria themselves or the diet or the 
transformation of host-derived substrates. In this review, we will 
focus on the critical role played by gut microbiome-derived 
metabolites in the pathogenesis of depression and AS, which may 
provide valuable information for future diagnostic and therapeutic 
options for AS co-depression disorders.

The change in the gut microbiome is 
closely related to the occurrence of 
depression and AS

Early studies first noted that microorganisms located in the 
gut have some connection to the host’s central nervous system, 
which is referred to as the brain-gut axis (Rieder et al., 2017), 
which expanded the horizon for uncovering the potential 
pathogenesis of psychiatric disorders. Studies have shown that 
germ-free mice exhibit an overall defect in microglia, i.e., altered 
cell ratios and an immature phenotype that leads to impaired 
innate immune responses (Erny et al., 2015), as well as deficits in 
social cognition and social perception (Sherwin et al., 2019), and 
Gareau tested germ-free (GF) mice cognitively using a new object 
recognition experiment and a T-maze experiment, which showed 
low rates of exploration and spontaneous exploration, without 
show signs of non-spatial or working memory (Gareau et  al., 
2011), and these results fully confirm the findings of Cryan et al. 

that gut flora can modulate the developmental and functional 
status of the brain (Cryan and Dinan, 2012), and is one of the 
important influencing factors in the occurrence of depression. In 
addition to exploring the relationship between gut microbiome 
and CNS disorders such as depression using GF animals, the 
relationship between gut microbiome and AS was also confirmed 
through it. As found by Stepankova: compared to ApoE−/− mice 
raised under conventional conditions, GF ApoE−/− mice 
consuming the same low-cholesterol standard diet instead 
developed atherosclerotic plaques, suggesting that gut microbiome 
can protect mice from atherosclerosis (Stepankova et al., 2010). 
Interestingly, Kiouptsi in another study confirmed by GF mice 
that gut microbiome lowered plasma cholesterol levels in Ldlr−/− 
mice fed a normal diet, but not in Ldlr−/− mice fed a high-fat diet. 
The reason for this was that the high-fat diet led to cholesterol 
spillage, which masked the bacterial effect. In addition, he found 
that gut microbiome increase low-grade inflammation in the 
vessel wall and can promote the development of atherosclerosis 
(Kiouptsi et al., 2019). This does not contradict the results of the 
previous ApoE−/− model article, as the gut microbiome consist of 
pathogenic and protective bacteria and which specific members 
of the microbiota are not well studied in terms of promoting 
cholesterol excretion or plaque formation, which is an interesting 
direction of research.

Relationship between the gut 
microbiome and depression

Several subsequent studies have found that the gut 
microbiome is closely associated with the development of 
depression, one of the common psychiatric disorders (Simpson 
et al., 2021). Cheng et al. used microbiome-associated gene set 
enrichment analysis to identify gut microbiome associated with 
psychiatric disorders and showed that major depressive disorder 
(MDD) was associated with genus Desulfovibrio (p = 0.003), order 
Clostridiales (p = 0.004), family Lachnospiraceae (p = 0.007) and 
genus Bacteroides (p = 0.007; Cheng et al., 2020). By analyzing 
stool samples from 46 depressed patients and 30 healthy controls, 
Jiang et  al. showed that MDD patients had increased levels  
of Enterobacteriaceae and Alistipes and decreased levels  
of Faecalibacterium, where Faecalibacterium was negatively 
correlated with the severity of depressive symptoms (Jiang et al., 
2015). On the other hand, Lai et al. used a more advanced shotgun 
metagenomic sequencing on stool specimens from 26 MDD 
patients and 29 healthy controls and showed a significant decrease 
in the abundance of Bacteroidetes and a significant increase in the 
abundance of Actinobacteria in MDD patients, where it is 
noteworthy that Bifidobacterium levels were increased in MDD 
patients (Lai et al., 2021). While Bifidobacterium is a commonly 
used probiotic, this certainly suggests that we should try to control 
for extraneous factors affecting heterogeneity (e.g., a sample size 
of participants, dietary habits, clinical medication, and their 
condition, sequencing methods, statistical methods, etc.) in 
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conducting microbiome studies. In another study, by testing the 
feces of depressed patients, a decrease in the abundance and 
diversity of gut microbiome was found, followed by gavage of fecal 
flora from depressed patients to microbiota-deficient rats, which 
revealed that rats subjected to flora transplantation showed 
behaviors characteristic of depression as well as physiological 
features of altered tryptophan metabolism (Kelly et  al., 2016). 
More cases are shown in Table 1. All of the above studies confirm 
that alterations in the gut microbiome are potentially important 
factors in the pathogenesis of depression.

Relationship between the gut 
microbiome and AS

The interaction between the gut microbiome and the central 
system has provided ideas for research in other disease areas and 
has attracted many researchers to work to uncover the link 
between the gut microbiome and atherosclerosis. Several studies 
have shown significant alterations in the structure and 
composition of the gut microbiome in patients with AS-related 
diseases. A study conducted in Sweden involving 12 patients and 
13 controls, using intestinal macrogenomics, confirmed that the 
genus Collinsella was enriched in patients with atherosclerosis, 
while Roseburia and Eubacterium were enriched in healthy 
controls (Karlsson et al., 2012). In another large clinical study, Jie 
performed a genome-wide association study of feces from 218 
patients with atherosclerotic cardiovascular disease and 187 
healthy individuals and showed that Enterobacteriaceae and 
Streptococcus spp. were enriched in the feces of patients with 
atherosclerotic cardiovascular disease (Jie et al., 2017). In addition, 
a multi-omics analysis based on 161 patients with Coronary artery 
disease (CAD) and 40 healthy individuals (sequence of the V3-V4 
region of the 16S rRNA gene and metabolomics) showed that the 
composition of both gut microbiome and metabolites changed 
significantly with the severity of CAD. The abundance of bacterial 

co-abundance group17 (e.g., several Gram-negative bacteria such 
as Veillonella, Haemophilus, and Klebsiella) increased with the 
increasing severity of CAD. Another study confirmed that the 
metabolic modules of taurine and hypotaurine were negatively 
correlated with CAD severity, which could suggest that certain 
bacteria may affect atherosclerosis by modulating host metabolic 
pathways (e.g., taurine, sphingolipids, and ceramides) as well as 
benzene metabolism (Liu et al., 2019). For example, Roseburia 
intestinalis, which stands out for its potential role in the treatment 
of numerous human diseases, including AS, through the 
production of SCFAs, has gained recognition (Nie et al., 2021). As 
Kasahara found in his experiments, the abundance of Roseburia 
intestinalis in genetically diverse mouse populations was negatively 
correlated with the development of atherosclerotic lesions, for 
which the atheroprotective effect was mediated, at least in part, by 
the production of butyrate (Kasahara et al., 2018). Studies on the 
role of the gut microbiome in regulating cholesterol metabolism, 
a risk factor closely associated with AS, have also received wide 
attention. The results of Le Roy’s experiments showed that the gut 
microbiome strongly regulates plasma cholesterol levels, hepatic 
cholesterol synthesis, and enterohepatic circulation, and screened 
bacterial species or taxa involved in regulating cholesterol 
homeostasis as Betaproteobacteria, Alistipes, Bacteroides, and 
Barnesiella (Le Roy et al., 2019). Interestingly, the mechanism 
behind the cholesterol-lowering properties of Pu-erh tea lies in the 
fact that the Theabrownin in Pu-erh tea can act by inhibiting 
microbes associated with bile-salt hydrolase activity (Huang et al., 
2019). In another animal experiment, the use of peptides reduced 
plasma total cholesterol levels and atherosclerotic plaque 
formation in Western diet-fed LDLr−/− mice, and this therapeutic 
effect was eliminated when the gut microbiome was depleted by 
antibiotics (Chen et al., 2020a). More details can be found in the 
review published by Vourakis (Vourakis et  al., 2021), which 
focuses on the current knowledge about the potential mechanisms 
by which microbial metabolites regulate cholesterol homeostasis, 
providing therapeutic strategies to reduce the risk of AS-related 

TABLE 1 Summary of the relationship between depression and gut microbiome.

Subject Interventions Results Reference

MDD patients — Actinobacteria↑, Bacteroidetes↓ Zheng et al. (2016)

Depressed patients Probiotic treatment; Ruminococcus gauvreauii↑, Coprococcus 3↑, beta-diversity↑ Reininghaus et al. (2020)

Human genotypes and fecal 

metagenomes

— Morganella↑, Klebsiella↑associated with MDD Qin et al. (2022)

MDD patients — Bacteroides is negatively associated with depression Strandwitz et al. (2019)

MDD patients — Bacteroides↑, Blautia↓, Eubacterium↓ Yang et al. (2020)

Mice chronic unpredictable mild stress(CUMS) Lactobacillus↓, Akkermansia↑ Li et al. (2019)

Rats Gavaging Escherichia coli induced depression Li et al. (2022a)

Macaca fascicularis — Veillonellaceae↑，Lachnospiraceae↑，Ruminococcaceae↓↑ Zheng et al. (2021)

Mice Transplantation microbiota alleviated depressive-like behaviors Zhang et al. (2019)

Mice Chronic restraint stress Enterorhabdus, Parabacteroides and Kyn levels in the brain 

are negatively correlated

Deng et al. (2021)
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diseases. In addition, more cases can be found in Table 2. These 
results also confirm that certain alterations in the gut microbiome 
are potentially important factors driving the development of AS.

Study of the gut microbiome in 
depression co-cardiovascular disease

Recent articles have systematically elaborated on the common 
underlying pathogenesis of depression and AS-related diseases, 
including gut microbes (Wu et al., 2021). Similarly, the key role of 
gut microbes has also been demonstrated in several studies of 
depression in combination with cardiovascular disease. Kemp 
used an exposure to early life stress model to investigate the 
relationship between altered gut microbiome and depression and 
cardiovascular disease, showing that the model reduced microbial 
alpha diversity and altered microbial composition (Kemp et al., 
2021). A recent study found that dysregulation of gut microbiome 
composition contributed to the development of depression-like 
behavior induced by chronic myocardial infarction, suggesting 
that exogenous modulation of gut microbiome composition may 
be a potentially important strategy for treating depression-like 
behavior caused by adverse cardiac events (Zhang et al., 2022). 
Our previous study similarly showed that mainly Desulfovibrio 
and Akkermansia were altered within the gut microbiome of the 
AS co-depression mouse model compared to the Control group 
of mice and confirmed that some lipid metabolites in the brain are 
strongly associated with some bacteria (Hu et  al., 2022). In 
addition to testing whether gut microbiome are altered in the 
context of AS co-depression disease, sun et al. used Bifidobacterium 
lactis Probio-M8 adjuvant therapy improved the clinical efficacy 
of coronary artery disease treatment as well as alleviated 

depression and anxiety in patients through targeted modulation 
of Gut-Heart/-Brain Axes (Sun et al., 2022) and the systematic 
description of the neuro- and cardioprotective effects of probiotics 
in clinical trials by Ciernikova in a recently published review 
(Ciernikova et al., 2021) further confirm the scientific validity of 
this hypothesis.

These findings confirm that the gut microbiome plays a key 
regulatory role in the pathological development of depression and 
AS disease (Figure 1), both in pure disease and in comorbid states, 
and can provide new insights into the potential pathogenesis of 
AS co-depression and its therapeutic targets through regulation of 
gut microbiome.

The available literature suggests that the interactions between 
the gut flora and the host are complex and not fully elucidated, but 
mainly include neural, the hypothalamic–pituitary–adrenal axis, 
immune and metabolic pathways (Grenham et al., 2011; Fung 
et al., 2017; Cryan et al., 2019). Next, we mainly elaborate on the 
important research results of several common and very important 
gut microbiome metabolites in the pathogenesis of AS and 
depression (Figure 2).

Pathogen-associated molecular 
patterns

Pathogen-associated molecular patterns (PAMP) mainly refer 
to certain highly conserved molecular structures (e.g., 
lipopolysaccharide (LPS) and peptidoglycan (PGN)) on the 
surface of pathogenic microorganisms that induce host immune 
activity by binding to pattern recognition receptors (PRR) 
(Fitzgerald and Kagan, 2020). External causes such as a high-fat 
diet (Paone and Cani, 2020) and aging (Tran and Greenwood-Van 

TABLE 2 Summary of the relationship between atherosclerosis and gut microbiome.

Subject Interventions Results Reference

CAD patients — Bacteroides vulgatus↓, Bacteroides dorei↓ Yoshida et al. (2018)

Atherosclerotic patients — Lachnoclostridium↑, Clostridium↑ Cai et al. (2022)

CAD patients — associated with Bacteroidetes↓ and Alistipes↓ Choroszy et al. (2022)

Carotid atherosclerosis patients — most abundant species: Bacteroides eggerthii, Escherichia 

coli, and Klebsiella pneumoniae

Chen et al. (2021)

Atherosclerotic patients — Bacteroides xylanisolvens, Odoribacter splanchnicus, 

Eubacterium eligens, Roseburia inulinivorans, and 

Roseburia intestinalis decreased

Liu et al. (2020)

Mice Transplantation microbiota accelerates atherosclerosis Brandsma et al. (2019)

Mice — Abundance of Roseburia sp. is inversely correlated with 

atherosclerotic lesion size

Kasahara et al. (2018)

Mice synthesizing self-assembling cyclic D,L-α-peptides inhibited AS Chen et al. (2020a)

Mice Antibiotics increase the extent of atherosclerosis, associated with 

Bacteroidetes and Clostridia

Kappel et al. (2020)

Mice Berberine Lachnospiraceae NK4A136 group↑, Bacteroidales S24-7 

group↑, Eubacterium↑, attenuates choline-induced 

atherosclerosis

Li et al. (2021)
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Meerveld, 2013) can affect intestinal permeability directly or 
indirectly (causing gut microbiome disorders) and are important 
influences that contribute to PAMP leakage. Among them, LPS 
can bind to TLR4  in enterocytes to trigger the inflammatory 
process, further downregulating the level of tight junction 
proteins, resulting in more LPS translocation into the systemic 
circulation (Violi et  al., 2022). LPS and PGN that enter the 
circulation can trigger a series of pro-inflammatory responses and 
are potential risk factors for inducing or/and promoting chronic 
inflammatory diseases such as depression and AS.

The gut microbiome promotes 
depression through PAMP

Current studies have shown that LPS is one of the classical 
modeling modalities for conducting depressive disease studies due 
to its pro-inflammatory effects by participating in numerous 
signaling pathways closely related to depression, such as the 
autophagic pathway (Ali et  al., 2020) or the activation of 
inflammatory vesicles (Arioz et  al., 2019) or tryptophan 
metabolism (Walker et  al., 2019) or Trkb/BDNF signaling  
(Li et  al., 2022b). For example, systemic lipopolysaccharide 
administration induces the expression of IL-1β and other 

pro-inflammatory cytokine mRNAs and proteins in the brain, 
while IL-1β and TNF-α achieve 5-hydroxytryptamine uptake by 
stimulating synaptosomes in the midbrain and striatum of mice 
(Dantzer et  al., 2008). Acute activation of TLR-4 (Toll-like 
receptors 4) by lipopolysaccharide or TLR-2 (Toll-like receptors 
2) by peptidoglycan increases circulating levels of IFN-γ in mice, 
which can effectively activate indoleamine 2,3 dioxygenase (IDo) 
in the periphery and brain, resulting in a decrease in tryptophan 
levels (Lestage et  al., 2002). And tryptophan levels are an 
important substrate for the synthesis of peripheral and central 
serotonin, which is one of the important guarantees for the normal 
functioning of the central nervous system and peripheral blood 
circulation system. On the other hand, peptidoglycan recognition 
proteins (PGRPs) are key sensing molecules in the innate immune 
system for the specific detection of bacterial peptidoglycan (PGN) 
and its derivatives and are considered potential key regulators of 
normal brain development and behavior. Bacterial peptidoglycans 
expressed on the cell walls of Gram-negative and Gram-positive 
bacteria can influence the development of social behavior by 
activating specific pathogen recognition receptors, such as 
PGLYRP2 expressed in the brain (Sherwin et al., 2019). Arentsen 
first discovered that peptidoglycan can affect the function  
of neutrophils derived from bone marrow, for which 
he experimentally found significantly lower levels of PGN in the 
cerebellum of GF male pups than in the SPF group, and detected 
the presence of PGN sensing molecules and PGN transporters in 
the brain, concluding that PGN can cross the blood–brain barrier 
under normal conditions (Arentsen et al., 2017). He next tested 
peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) 
mice to test the hypothesis that PGRPs play a role in motor control 
and anxiety-like behavior, and showed that both Pglyrp2 KO male 
and female mice exhibited anxiety-like behavior and that 
prefrontal cortex exhibited altered expression of genes related to 
synaptic plasticities, such as a significant increase in the expression 
of α-synaptic nuclear protein levels were significantly increased 
(Arentsen et al., 2018). It has been documented that it can inhibit 
tyrosine hydroxylase activity, which affects dopamine release 
(Somayaji et al., 2020), thus impeding normal brain functioning.

The gut microbiome promotes as 
through PAMP

It has become a consensus that atherosclerosis is a chronic 
inflammatory disease and that LPS with pro-inflammatory effects 
enters the bloodstream through the compromised intestinal 
barrier, thus influencing known risk factors for atherosclerosis, 
such as platelet invasiveness, thrombosis, foam cell formation, 
inflammatory response, and oxidative stress (Chen et al., 2020b). 
A 10-year follow-up study of 2,452 patients found that high levels 
of lipopolysaccharide were significantly associated with coronary 
events with a risk ratio of 1.88 (1.13–3.12, p = 0.013, Q2-4 vs. Q1; 
Kallio et al., 2015). Low-grade endotoxemia is defined when the 
concentration of circulating levels of LPS is greater than 20 ng/ml. 

FIGURE 1

Dysbiosis of the gut microbiome can lead to depression and 
atherosclerosis.
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Endotoxin is involved in the thrombogenic process through 
several mechanisms, including upregulation of macrophage 
tissue factor expression (Violi et al., 2016) and amplification of 
platelet responses to common agonists in interaction with Toll-
like receptors, stimulation of platelet secretion, and enhancement 
of platelet aggregation (Zhang et al., 2009; Tunjungputri et al., 
2015), representing a novel pathway to amplify thrombus growth 
at the site of arterial lesions (Carnevale et al., 2020). For example, 
Jäckel et  al. first experimentally demonstrated that the gut 
microbiome regulates hepatic von Willebrand factor (VWF) 
expression and plasma VWF levels through the PAMP-triggered 
TLR2 signaling pathway, thereby promoting VWF-integrin 
interactions on platelets and inducing arterial thrombus 
formation (Jäckel et al., 2017). In a subsequent in-depth study, 
they demonstrated for the first time that ADP-triggered activation 

of integrin αIIbβ3 is regulated by commensal microbiota, and that 
integrin αIIbβ3 synergizes with other platelet adhesion receptors 
and contributes to the deposition of type I collagen matrix under 
various conditions, playing an important role in thrombus 
formation (Kiouptsi et al., 2020). On the other hand, Zhou et al. 
conducted a clinical trial in 100 patients with ST-segment 
elevation myocardial infarction and confirmed that gut 
microbiome translocation leads to the accumulation of LPS in the 
circulatory system, and hypothesized that elevated LPS triggers 
monocyte recruitment, which activates systemic inflammation 
and ultimately leads to cardiac injury (Zhou et  al., 2018). 
Similarly, Ramana also suggested that LPS-induced endotoxemia 
can produce myocardial depression (Ramana et al., 2006). In 
addition to confirming the association of LPS from gut 
microbiome with the development of AS, its pro-AS effect was 

FIGURE 2

Gut microbiome disorders contribute to the pathologic development of depression and atherosclerosis by influencing metabolites. The gut 
microbiome can affect the pathological development of depression and atherosclerosis by participating in or mediating the production of 
metabolites (e.g., Pathogen-associated molecular patterns, Bile acids, Tryptophan metabolites, Short-chain fatty acids, Trimethylamine N-oxide). 
LPS, lipopolysaccharide; PGN, peptidoglycan; TLR-4, Toll-like receptors 4; TLR-2, Toll-like receptors 2; PGRPs, peptidoglycan recognition proteins; 
SCFAs, short-chain fatty acids; MCTs, monocarboxylic acid transport proteins; LDL, low-density lipoprotein cholesterol; TG, triglyceride; TC, total 
cholesterol; VCAM-1, vascular cell adhesion molecule-1; Trp, tryptophan; 5-HT, 5-hydroxytryptamine; KYN, kynurenine; AhR, aromatic 
hydrocarbon receptor; ECs, enterochromaffin cells; IDO1, indoleamine-2,3-dioxygenase 1; Tph1, tryptophan hydroxylase 1; 5-HTP, 
5-hydroxytryptophan; KYNA, kynurenic acid; QUIN, quinolinic acid; 3-HAA, 3-hydroxyanthranilic acid; EEC, enteroendocrine cell; FXR, farnesoid X 
receptor; TGR5, Takeda G protein-coupled receptor 5; CYP7A1, cholesterol 7a-hydroxylase; CYP27A1, sterol-27-hydroxylase; CYP7B1, oxysterol 
7α-hydroxylase; VDR, vitamin D receptor; TMA, trimethylamine; FMO3, flavin-containing monooxygenase isoform 3; TMAO, trimethylamine 
N-oxide; PERK, RNA-dependent protein kinase (PKR)-like ER kinase;
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similarly confirmed by direct injection of external LPS. In animal 
experiments, direct injection of LPS into rabbits accelerated the 
pathological process of cholesterol-induced atherosclerosis (Lehr 
et  al., 2001), and by subcutaneously injecting mice with 
lipopolysaccharide for 1 month, it was shown that their fasting 
blood glucose, as well as the increase in systemic adipose tissue, 
were similar to those of high-fat-fed mice (Cani et al., 2007). 
Furthermore, as another common microbiome cell wall 
component peptidoglycan, its recognition is mediated by several 
families of pattern recognition molecules, including toll-like 
receptors, nucleotide-binding oligomerization domain-
containing proteins, and PGRPs (Guan and Mariuzza, 2007). 
Peptidoglycan recognition protein-1 (PGLYRP-1) is part of the 
innate immune system that binds peptidoglycan and has attracted 
the attention of a wide range of researchers. Rohatgi measured 
PGLYRP-1 in 3222 subjects and reported for the first time that its 
circulating levels were associated with widespread subclinical 
atherosclerosis in humans; Among 2,443 patients without 
cardiovascular disease at baseline, elevated levels of circulating 
PGLYRP-1 at baseline were independently associated with an 
increased risk of a first ASCVD event (Rohatgi et  al., 2009; 
Brownell et al., 2016), suggesting that the biological processes 
reflected by elevated PGLYRP-1 may be strongly associated with 
the development of clinical ASCVD.

Bile acids

Bile acids, an important component of bile, are produced by 
the metabolism of host cholesterol in the liver and play an 
important role in fat digestion and energy metabolism. 
Circulating bile acids consist of primary bile acids produced by 
hepatic cholesterol and secondary bile acids formed by specific 
intestinal bacteria, which regulate their own and other 
substances’ metabolism by activating specific nuclear receptors 
(NRs) and G protein-coupled receptors (GPCRs), both as 
detergent molecules that facilitate nutrient absorption and as 
hormones that regulate nutrient metabolism (Ridlon et  al., 
2016). The biosynthesis of bile acids involves modification of 
the ring structure of cholesterol, oxidation and shortening of 
the side chain, and finally the coupling of bile acids to amino 
acids (Russell, 2003). The synthesis of bile acids relies on two 
main pathways: one is initiated by the cholesterol 
7α-hydroxylation reaction catalyzed by the rate-limiting 
enzyme cholesterol 7a-hydroxylase (CYP7A1), which accounts 
for 75% of the total synthesis (Thomas et al., 2008); and the 
other is initiated by the catalysis of sterol-27-hydroxylase 
(CYP27A1; Russell, 2003), the formed 27-hydroxycholesterol is 
further hydroxylated by 7α-hydroxylase (CYP7B1; Thomas 
et  al., 2008). Sayin et  al. demonstrated that gut microbiome  
can regulate the expression of the enzymes cholesterol 
7α-hydroxylase (CYP7A1), oxysterol 7α-hydroxylase (CYP7B1) 
and sterol-27-hydroxylase (CYP27A1; Sayin et  al., 2013)
，which subsequently mediate the synthesis of bile acids. 

Interestingly, gut microbiome are also extensively involved in 
bile acid conversion and metabolic pathways. One of the most 
studied microbially driven biotransformations is the bile salt 
hydrolase (BSH) activity of bacteria that undergo bile acid 
deconjugation. BSH is widely distributed in the major bacterial 
divisions and archaea species in the human gut, including 
Clostridium, bifidobacterium, enterococcus, Lactobacillus, 
Bacteroides, Methanobacterium Smith, Methanococcus and many 
other species, and is more abundant in the gut microbiome than 
in other microbial ecosystems. Besides deconjugation, intestinal 
microorganisms are the only source of 7α and 7β dehydroxylase 
activity, which produces “secondary” bile acids such as 
deoxycholic acid (DCA), lithic cholic acid (LCA), 
Hyodeoxycholic acid (HDCA) and ursodeoxycholic acid 
(UDCA; Wahlström et  al., 2016). Overall, gut microbiome 
chemically diversify the bile acid pool through deconjugation, 
oxidation, exo-isomerization, 7α/7β dehydroxylation, 
esterification and desulfation, thereby allowing secondary bile 
acids to enter the portal circulation and function as endocrine-
like signaling molecules with effective effects on host physiology 
and disease (Brown and Hazen, 2018).

Bile acids are closely associated with 
depression

Conjugated and non-conjugated bile acids, as well as taurine 
or glycine, are potential neuroactive ligands (Mahmoudian 
Dehkordi et al., 2019; Spichak et al., 2021), such as ursodeoxycholic 
acid that can exert beneficial effects (MahmoudianDehkordi et al., 
2019). The signaling of bile acids to the central nervous system 
includes direct and indirect pathways. The direct way is 
demonstrated by the fact that unconjugated and conjugated bile 
acids can cross the blood–brain barrier to reach the brain (Keene 
et al., 2001), where there are bile acid signaling mechanisms, i.e., 
receptors and transporter proteins capable of binding bile acids to 
transport them to neurons (Mertens et al., 2017). The indirect 
pathway is mainly triggered by the activation of the nuclear 
hormone receptor farnesoid X receptor (FXR) and Takeda G 
protein-coupled receptor 5 (TGR5). In line with this, both 
receptors, FXR (Huang et al., 2016; McMillin et al., 2016) and 
TGR5 (Keitel et al., 2010; Yanguas-Casás et al., 2017), in addition 
to being abundantly expressed in the enterohepatic circulation, 
have been detected in the brain. Interestingly, FXR knockout mice 
exhibited less depression-like and anxiety-related behaviors and 
altered neurotransmitter concentrations in different brain regions, 
such as an increased ratio of γ-aminobutyric acid to glutamate 
concentrations in the hippocampus, in addition to similar changes 
in serum and brain levels of various bile acids (Huang et al., 2015). 
Chen et al. similarly found that chronic unpredictable mild stress 
(CUMS) completely enhanced the expression of FXR protein and 
mRNA in the hippocampus, and overexpression of FXR in the 
hippocampus caused significant depression-like behavior and 
decreased expression of brain-derived neurotrophic factor 

https://doi.org/10.3389/fmicb.2022.988643
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liao et al. 10.3389/fmicb.2022.988643

Frontiers in Microbiology 08 frontiersin.org

(BDNF), while knockdown of FXR in the hippocampus completely 
inhibited the effects of CUMS on rat behavior and hippocampal 
BDNF expression (Chen et al., 2018). In addition, altered bile acid 
levels are closely associated with the development of central 
nervous system disorders. A study on Autism spectrum disorder 
found that reduced relative abundance of specific bacterial taxa 
(e.g., bile-metabolizing Bifidobacterium and Blautia species) was 
associated with deficient intestinal bile acid and tryptophan 
metabolism, significant gastrointestinal dysfunction, and social 
interaction impairment (Golubeva et al., 2017). By metabolomic 
analysis of the liver of depression model mice, Jia et al. found that 
initial bile acids play a key role in CUMS-induced depression in 
mice (Jia et al., 2016). In another study it was confirmed that 
abnormal activation of the secondary bile acid biosynthetic 
pathway thereby increasing the hydrophobicity of the bile acid 
pool, which in turn may contribute to the progression of metabolic 
disorders and depression-like behavior in CUMS mice (Qu et al., 
2022). A recent review outlined the therapeutic potential of 
ursodeoxycholic acid and its conjugated species in neurological, 
neurodegenerative and neuropsychiatric disorders, affirming their 
positive anti-apoptotic, antioxidant and anti-inflammatory effects 
(Huang et al., 2022). These aforementioned findings provide new 
insights into the therapeutic options for depression.

Bile acids play an important role in the 
pathogenesis of AS

In addition to acting on the central nervous system, there is 
evidence that bile acids act by binding to different receptors, 
including but not limited to facilitating lipid digestion, 
maintaining glucose, lipid and energy homeostasis, and 
inflammation (Witkowski et al., 2020; Brown et al., 2021). One 
host bile acid receptor that has received attention in recent years 
is the G protein-coupled receptor TGR5 (Watanabe et al., 2006; 
Pols et al., 2011), and TGR5 knockout mice are protected from the 
effects of atherosclerosis (Watanabe et al., 2006). Interestingly, 
certain bacterially modified bile acids (3-oxo-staphylococcal acid 
and staphylococcal acid) can also activate the vitamin D receptor 
(VDR), and genetic studies in both humans and mice have shown 
that VDR activation is associated with cardiovascular disease 
(Makishima et al., 2002). Notably, the hormone FGF19, which is 
secreted due to the activation of FXR by bile acid-binding, and its 
overexpression in the mouse brain leads to increased energy 
expenditure, and animals on a high-fat diet do not become 
diabetic or obese (Tomlinson et al., 2002), whereas the beneficial 
effect of systemic FGF19 on glucose metabolism is reduced by 
50% when FGFR antagonists are injected into the brain (Morton 
et al., 2013), and the disruption of glucose metabolism is one of 
the factors contributing to the development of AS. In addition to 
binding to receptors, alterations in specific bile acid levels in 
cardiometabolic phenotypes and disease susceptibly have received 
a lot of attention. For example, alterations in plasma bile acid 
levels are associated with insulin resistance in type 2 diabetes, 

specifically referring to higher 12α-hydroxy/non-12α-hydroxy BA 
ratios were associated with lower insulin sensitivity and higher 
plasma triglyceride (Haeusler et al., 2013), in line with this, Gu 
et al. found that the treatment of diabetes was achieved by altering 
the relative abundance of microorganisms involved in bile acid 
metabolism, which in turn increased the ratio between primary 
and secondary bile acids and the level of unconjugated bile acids 
in plasma (Gu et al., 2017). Given the important regulatory role of 
bile acids in the development of AS, Xu et  al. used activated 
transcription factor 3 to prevent atherosclerosis by inducing 
intrahepatic scavenger receptor group B type 1 and repressing 
cholesterol 12α-hydroxylase to interact with p53 and hepatocyte 
nuclear factor 4α, respectively, to regulate HDL and bile acid 
metabolism (Xu et al., 2021). Similarly, another study confirmed 
that by administering Resveratrol, the levels of genera Lactobacillus 
and Bifidobacterium could be  increased, thus increasing the 
activity of bile salt hydrolases, which enhanced bile acid 
deconjugation and excretion to attenuate the formation of AS in 
mice (Chen et al., 2016). Overall, the above findings suggest that 
the gut microbiome can influence the development of AS 
co-depression pathology by affecting the synthesis and metabolism 
of bile acids.

Tryptophan and derivatives

Tryptophan (Trp) is mainly ingested through food, and 
modern studies have found that the gut microbiome plays an 
important regulatory role in all three major pathways of Trp 
metabolism, including the 5-hydroxytryptamine (5-HT) pathway, 
the kynurenine (KYN) pathway, and the production of ligand-
indole derivatives of the aromatic hydrocarbon receptor (AhR; 
Agus et al., 2018). However, it is not clear how the gut microbiome 
mediates the tryptophan metabolic pathway, but there is 
experimental evidence that microbiome metabolites such as 
secondary bile acids (Peregrin et al., 1999; Bunnett, 2014; Yano 
et al., 2015) and short-chain fatty acids (Fukumoto et al., 2003; 
Atarashi et al., 2013; Reigstad et al., 2015; Barbara et al., 2016) can 
act on Enterochromaffin cells (ECs) to promote the synthesis and 
release of serotonin. On the other hand, many microorganisms 
can synthesize serotonin directly from tryptophan (O'Mahony 
et  al., 2015), which may be  related to their ability to express 
tryptophan synthase. That gut microbiome is an important factor 
in 5-HT production is well documented in GF animal models. In 
one experiment, Sjogren found lower 5-HT concentrations in the 
blood of GF mice than in the normal group of mice (Sjögren et al., 
2012), and another experiment similarly confirmed reduced 5-HT 
levels in the hippocampus of GF rats (Crumeyrolle-Arias et al., 
2014). It is estimated that about 90% of Trp is used to produce 
KYN, which is mainly regulated by indoleamine-2,3-dioxygenase 
(IDO) or tryptophan 2,3-dioxygenase (TDO) in the KYN pathway 
(Gao et al., 2020). Furthermore, KYN and its metabolites, mainly 
kynurenic acid (KYNA) and quinolinic acid (QUIN), of which 
KYNA is considered to be a neuroprotective N-methyl-D-aspartic 
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acid receptor (NMDA) receptor antagonist and QUIN is 
considered to be a neurotoxic NMDA receptor agonist (Pierozan 
et al., 2016), are closely associated with mental health (Cervenka 
et  al., 2017). Some metabolites produced by intestinal 
microorganisms, such as SCFAs, particularly butyrate, are also 
known to regulate the KYN pathway (Kennedy et al., 2017), and 
Martin-Gallausiaux found that butyrate downregulates IDO-1 
expression through a dual mechanism of reduced STAT1 levels 
and histone deacetylases (HDACs) inhibitor properties of SCFAs 
(Martin-Gallausiaux et  al., 2018). In addition, Trp can 
be converted into several indole derivatives such as IAld and ILA 
by some Lactobacilli (Cervantes-Barragan et  al., 2017). Many 
Gram-positive and Gram-negative bacteria encode a copy of the 
tryptophanase gene in their chromosomes and produce indoles, 
85 species according to the count at that time (Lee and Lee, 2010).

Studies of tryptophan and metabolites 
for depression

It has been shown that Trp can cross the blood–brain barrier 
and that circulating Trp from the periphery can affect Trp levels 
in the brain (Schwarcz et al., 2012). Messaoud found through 
clinical studies that low plasma Trp levels may be a biomarker of 
suicide in MDD and MDD patients and he suggested that reduced 
effectiveness of Trp for 5-HT synthesis and increased activation of 
the KYN pathway for associated with depression and suicide 
(Messaoud et al., 2019). As one of the tryptophan metabolites, 
5-HT, is an important neurotransmitter involved in the control of 
adaptive responses in the central nervous system and associated 
with changes in mood, anxiety, or cognition (Canli and Lesch, 
2007; Gonçalves et  al., 2022), and plays an important role in 
neuronal differentiation and migration, as well as in axon growth, 
myelin and synapse formation (Gao et al., 2020), and the reduced 
availability of 5-HT in the brain is a depression a key feature of the 
pathogenesis of depression (Agus et al., 2018), consistent with the 
classic monoamine hypothesis in the etiological content of 
depression. One study found that male GF mice exhibited anxious 
behavior and significantly higher concentrations of 5-HT and its 
major metabolite 5-hydroxyindoleacetic acid in the hippocampus 
compared to conventional mice, suggesting that microbes can 
affect 5-HT neurotransmission in the central nervous system 
through humoral pathways (Clarke et al., 2013).

Many current studies confirm that depression is likewise a 
chronic inflammatory state. The Th1-type cytokine interferon-γ 
can lead to increased Trp catabolism and increased KYN/TRP 
ratio through activation of IDO activity (Yoshida et  al., 1981; 
Taylor and Feng, 1991; Hwu et  al., 2000). Increased levels of 
QUIN, one of the products of the KYN metabolic pathway, are 
closely associated with several distinguishing features of 
depression: reduced reaction time, cognitive deficits, and learning 
ability (Müller and Schwarz, 2007). QUIN can activate the NMDA 
receptor signaling pathway, leading to excitotoxicity and 
amplifying the inflammatory response, while KYNA is an 

antagonist of all ionotropic glutamate receptors and therefore 
could potentially block some of the effects of QUIN and other 
excitotoxins (Lim et  al., 2017). In addition, KYNA is also a 
noncompetitive antagonist of low concentrations of alpha-7 
nicotinic acetylcholine receptor (α7 nAChR), which is associated 
with learning and memory (Banerjee et al., 2012), and reduced 
KYNA levels may be  involved in the pathophysiological 
mechanisms of depression by inhibiting α7 nAChR. When there 
is a relative imbalance between KYNA, which has neuroprotective 
effects, and QUIN, which has neurotoxic effects, it could explain 
the result that Meier et  al. observed a reduction in medial 
prefrontal cortex thickness in MDD (Meier et al., 2016). Notably, 
Ogyu et al. showed reduced levels of KYNA and KYN in depressed 
patients by performing a meta-analysis of KYN pathway 
metabolite levels in depressed patients versus controls (Ogyu 
et al., 2018). The limitation of this study is that most of the reports 
included examined peripheral blood, but it is unclear to what 
extent peripheral KYN metabolites reflect the amount contained 
in the brain; after all, it is controversial whether each metabolite 
can cross the blood–brain barrier, or the amount that can enter 
the brain is inconsistent.

Studies of tryptophan and metabolites in 
the development of AS pathology

5-HT was first identified from serum, also called serotonin. 
Very early studies have confirmed that platelets secrete serotonin, 
which promotes thrombogenesis, mitotic and proliferative 
processes in smooth muscle cells and is closely associated with 
AS development (Vikenes et al., 1999). Interestingly, Rami et al. 
found a pro-AS effect of SSRIs, confirming experimentally that 
SSRIs deplete major peripheral 5-HT stores mainly by inhibiting 
5-HT reuptake transporter-mediated uptake in platelets (Rami 
et al., 2018), suggesting that peripheral serotonin levels are not 
the only key factor contributing to AS, which led us to focus more 
attention on related receptors. It has been noted that all 5-HT 
receptors, except the 5-HT6 type, are involved in cardiovascular 
regulation (Ramage and Villalón, 2008). Furthermore, it has been 
demonstrated that upregulation and/or increased sensitivity of 
peripheral 5-HT2A/1B receptors and downregulation of 5-HT 
transporter receptors may contribute to an increased risk of 
thromboembolic events in patients with depression and 
cardiovascular disease (Schins et  al., 2003). Activation of the 
KYN pathway also plays an important role in atherogenesis. Song 
noted in his article that IDO activity in the blood positively 
correlates significantly with the progression of atherosclerosis 
(Song et al., 2017), and inhibiting IDO1 leads to more significant 
atherosclerotic lesions in ApoE−/− mice fed a high-fat diet 
(Polyzos et al., 2015), while treatment of Ldlr−/− mice with the 
tryptophan metabolite 3-hydroxycyanuric acid inhibits 
atherosclerosis by modulating lipid metabolism and inflammation 
(Zhang et al., 2012) is more evidence that activation of the KYN 
pathway can influence the pathological development of AS. On 
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the other hand, a large fraction of Trp enters the indole pathway 
and is metabolized to Tryptamine and indole metabolites with 
signaling activity, which are subsequently involved in the 
pathogenesis of AS. For example, one of the products, indoxyl 
sulfate, is harmful to various cell types, including vascular 
endothelial cells (Hung et  al., 2016), and has been shown to 
promote a procoagulant state in vitro and endothelial dysfunction 
in vivo (Dou et al., 2004) as well as aortic calcification (Adijiang 
et al., 2008), while indole-3-propionic acid and indole-3-aldehyde 
have anti-inflammatory protective effects (Paeslack et al., 2022). 
Direct injection of indole-3-propionic acid elevates blood 
pressure and increases cardiac contractility and cardiomyocyte 
metabolic activity (Konopelski et al., 2021). Indole derivatives act 
mainly through activation of AHR (Zelante et al., 2013), and 
AHR signaling is recognized to contribute to the development of 
AS-related diseases through inducing of IL-1β, IL-8 expression 
(Dahlem et al., 2020) and effects on different cell types closely 
related to atherogenesis (Wang et al., 2020), while treatment with 
AhR antagonists reduces the progression of atherosclerotic 
lesions (Wu et  al., 2011) further confirms this important  
conclusion.

On the other hand, melatonin, located in the pineal gland, is 
similarly derived from the synthesis of L-Trp. There is growing 
evidence that melatonin has anti-inflammatory, antioxidant, 
hypotensive, and possibly anti-lipidemic properties (Dominguez-
Rodriguez et al., 2010). It has been found that disorders of Trp 
metabolism resulting in melatonin deficiency may lead to 
abnormal hormone levels (e.g., aldosterone retention of water 
leading to increased blood pressure), which can lead to 
cardiovascular disease (Doi et al., 2010). In addition, melatonin 
has been shown to significantly improve antioxidant defense 
(increased catalase activity and reduced levels of thiobarbituric 
acid reactive substrates) and lipid-lowering (reduced LDL-C) and 
to lower blood pressure and inhibit plasma cholesterol levels in 
hypercholesterolemic rats (Koziróg et al., 2011). In line with this, 
Dominguez-Rodriguez et al. reported elevated levels of oxidized 
LDL and impaired nocturnal melatonin synthesis in patients with 
myocardial infarction, and this study was the first to confirm an 
independent correlation between oxidized LDL levels and 
melatonin levels at night in patients with myocardial infarction 
(Dominguez-Rodriguez et  al., 2005). Overall, melatonin 
effectively interacts with various reactive oxygen species and 
reactive nitrogen species, and it also upregulates antioxidant 
enzymes and downregulates pro-oxidant enzymes, attenuating 
the molecular and cellular damage caused by free radicals 
involved in cardiac ischemia/reperfusion. These anti-
inflammatory and antioxidant properties contribute to the 
prevention of atherosclerosis (Tengattini et al., 2008).

Short-chain fatty acids

Short-chain fatty acids (SCFAs) are saturated fatty acids 
with carbon atoms ranging from one to six in length and are 

the main products of dietary fiber fermentation in the colon 
(Dalile et al., 2019). In the intestine, the conversion of dietary 
fiber to SCFAs involves a series of major reactions that are 
mediated by enzymes of specific members of the gut 
microbiome, and the end products are mainly acetic, 
propionic, and butyric acids (Koh et  al., 2016). SCFAs are 
rapidly absorbed by colon cells mainly through active 
transport mediated by monocarboxylic acid transport proteins 
(MCTs), and the absorbed SCFAs pass through the blood 
circulation, reaching all parts of the body, including the brain 
(Dalile et  al., 2019), which may be  related to the high 
expression of MCTs on endothelial cells (Vijay and Morris, 
2014). In addition, it has been found that propionic acid has a 
beneficial protective effect on the blood–brain barrier by 
inhibiting pathways associated with nonspecific microbial 
infections through a CD14-dependent mechanism and 
inhibiting LRP-1 expression to reducing harmful inflammation 
and oxidative stimulation (Hoyles et al., 2018), in line with 
this, treatment with SCFAs reversed the pathology of increased 
permeability of the blood–brain barrier in GF mice (Braniste 
et al., 2014).

Studies related to SCFAs in depression

It has been found that butyric acid (Braniste et al., 2014) 
and acetate (Soliman and Rosenberger, 2011), inhibit the 
activity of HDACs and promote the hyperacetylation of 
histones, which are associated with neuropsychiatric disorders 
such as depression (Covington 3rd et al., 2009; Sarkar et al., 
2014). Li et  al. demonstrated by static and dynamic 
metabolomic analysis that propionic acid is a differential 
metabolite in CUMS rats, based on these findings, subsequent 
intrarectal administration of sodium propionate (the salt form 
of propionic acid) was used to confirm that propionic acid 
improved depression-like behavior in CUMS rats, which was 
linked to reduced catabolism of norepinephrine, tryptophan, 
and dopamine in the prefrontal cortex (Li et al., 2018b). In line 
with this, Marcel van de Wouw et al. found that short-chain 
fatty acids counteracted the lasting effects of chronic 
psychosocial stress and acted as antidepressants and 
anxiolytics by orally administering a mixture of three major 
short-chain fatty acids (acetic acid, propionic acid, and butyric 
acid) to mice (van de Wouw et al., 2018). The aforementioned 
studies have explored the direct therapeutic effects of SCFAs, 
and exploring the indirect therapeutic effects of SCFAs by 
focusing on the gut microbiome has also attracted widespread 
interest. For example, prebiotic administration increased 
cecum acetate and propionate concentrations and decreased 
isobutyrate concentrations, and these changes were 
significantly correlated with improvements in depressive 
behavior (Burokas et  al., 2017). Another study found that 
treatment with electroacupuncture increased the relative 
abundance of SCFAs-producing bacteria, including 
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Ruminococcaceae, Phascolarctobacterium, Akkermansiaceae, 
Romboutsia, and Blautia, which may be  a result of 
electroacupuncture mediating SCFAs through the microbiota-
gut-brain to improve evidence of anxiety and depression-like 
behaviors (Zhou et  al., 2022). In addition to validation in 
animal experiments, the correlation between the concentration 
of SCFAs and the severity of depressive symptoms was even 
more revealed in a clinical trial, which found that the vast 
majority of SCFAs concentrations were higher in 
non-depressed women, with significantly lower levels of acetic 
acid, decreasing levels of propionic acid, and significantly 
higher concentrations of isocaproic acid compared to 
non-depressed women; Spearman correlation analysis showed 
that the concentrations of acetic acid and propionic acid were 
negatively correlated with BDI score (Skonieczna-Żydecka 
et al., 2018). As described by Oleskin, short-chain fatty acids 
act within intestinal endocrine cells, thereby stimulating the 
production of histamine, serotonin, 5-aminovaleric acid, and 
γ-aminobutyric acid, all of which are neuroactive compounds 
that are strongly associated with depressive-like behavior 
(Oleskin and Shenderov, 2016). Based on the analysis of the 
above findings, not all SCFAs have antidepressant effects, and 
there are contradictory results in some of the animal and 
human experiments; excluding the reasons for the differences 
between species, more experiments are still needed to 
investigate the specific substances that exert therapeutic  
effects.

SCFAs as a potential strategy for the 
treatment of AS

Available evidence suggests that reliance on short-chain fatty 
acids produced by fermentation of dietary fiber by the gut 
microbiome may likewise be an effective preventive strategy for 
ameliorating atherosclerosis. Bartolomaeus et  al. found a 
significant reduction in aortic atherosclerotic lesion area in 
propionic acid-treated ApoE−/− mice (Bartolomaeus et al., 2019), 
and administration of Lactobacillus fermentum caused cecum 
microbiota alterations, increased colonic short-chain fatty acid 
levels, and reduced AS-related risk factors such as serum LDL, 
total cholesterol, and triglyceride levels (Yang et  al., 2021). In 
addition to the hypolipidemic effect, Li et al. found that short-
chain fatty acids could inhibit LPS or TNFα-induced endothelial 
inflammatory response and excessive vascular cell adhesion 
molecule-1 (VCAM-1) expression, which are two important steps 
in the development of atherosclerosis (Li et al., 2018d), and further 
studies found that SCFA could activate G-protein coupled receptor 
41/43 and inhibit HDACs, playing a beneficial role in the 
treatment of AS-related diseases (Li et al., 2018c). Similarly, Shi 
et al. experimentally confirmed that the mechanism of Pae anti-AS 
is related to the improvement of Treg/Th17 balance in the spleen 
by increasing the production of microbiome-derived short-chain 
fatty acids (Shi et al., 2021).

Trimethylamine N-oxide

In rodents and humans, gut microbiome enzymes convert 
choline and L-carnitine from food into a volatile gas called 
trimethylamine (TMA; Baker and Chaykin, 1962). TMA enters 
the liver through the portal circulation where it is converted to 
trimethylamine N-oxide (TMAO; Komaroff, 2018).

TMAO is a strong predictor of AS-related 
diseases

TMAO production from phosphatidylcholine in feed has 
long been found to be associated with an increased risk of 
major adverse cardiovascular events, which is dependent on 
the metabolism of the gut microbiome (Wang et  al., 2011; 
Koeth et  al., 2013; Tang et  al., 2013). Using non-targeted 
metabolomics as a platform for discovery, we further believe 
that TMAO is a strong predictor of AS-related disease by 
showing a causal relationship between TMAO and 
atherosclerosis (Wang et  al., 2011). Interestingly, Lindskog 
Jonsson et  al. later found experimentally that TMAO 
concentrations were not associated with atherosclerotic lesion 
size, and he  attributed the contradictory findings of his 
experiments with those of previous investigators to a different 
experimental setup probably: previous studies used antibiotics 
to deplete the gut microbiome and started choline 
supplementation at weaning, whereas his experiments 
supplemented choline at 8 weeks of age when the 
atherosclerotic disease had already begun to develop. In 
addition, he suggested the interesting conjecture that dietary 
choline may be  an important factor influencing the 
development of early atherosclerosis (Lindskog Jonsson et al., 
2018). The mechanisms by which TMAO is thought to 
increase the risk of cardiovascular disease are diverse and 
include altered tissue sterol metabolism, enhanced endothelial 
cell activation and vascular inflammation, and pro-fibrotic 
signaling pathway stimulation (Roberts et al., 2018). Notably, 
the gut microbiome can directly promote platelet 
hyperresponsiveness and enhance thrombogenic potential 
through the production of TMAO (Zhu et al., 2016), and in 
subsequent human feeding studies, TMAO levels were 
significantly increased by 10-fold in healthy volunteers 
following oral choline administration, platelet reactivity and 
aggregation were enhanced, and a significant dose-dependent 
association was observed between plasma TMAO levels and 
platelet function (Zhu et al., 2017). These results suggest the 
possibility of using the TMAO pathway of the gut microbiome 
as a therapeutic strategy, such as inhibiting atherosclerotic 
plaque formation through dietary control, improving the 
microbial community with probiotics, or inhibiting key 
enzymes that produce TMAO and-moderating the platelet 
hyperreactivity associated with elevated TMAO, is worthy of 
further investigation.

https://doi.org/10.3389/fmicb.2022.988643
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liao et al. 10.3389/fmicb.2022.988643

Frontiers in Microbiology 12 frontiersin.org

Advances in the study of TMAO in 
depression

TMAO promotes brain aging and cognitive impairment in 
addition to being an influential factor in cardiovascular disease 
(Li et al., 2018a). One study found that participants with PTSD 
symptoms had significantly higher TMAO levels immediately 
after acute myocardial infarction than patients without acute 
myocardial infarction symptoms and that TMAO could be  a 
significant predictor of PTSD symptoms (Baranyi et al., 2021). In 
addition, a clinical trial based on 251 individuals found a positive 
correlation between serum TMAO levels and the severity of 
depressive symptoms (Meinitzer et al., 2020). Consistent with 
this, TMAO levels were significantly higher in depressed patients 
than in healthy controls (Liu et al., 2015). Although the above 
study only found peripheral TMAO levels to be associated with 
depressive symptoms, this suggests to us that TMAO is capable 
of contributing in some way to the development of central 
disorders. Coincidentally, Chen et al. experimentally identified 
the endoplasmic reticulum stress kinase PERK [RNA-dependent 
protein kinase (PKR)-like ER kinase] as a receptor for TMAO, 
which induces the endoplasmic reticulum stress signaling 
pathway by binding to the endoplasmic reticulum stress protein 
PERK (Chen et  al., 2019), More importantly, endoplasmic 
reticulum stress has been shown in many studies to mediate one 
of the pathogenic mechanisms of psychiatric disorders such as 
depression (Gold et al., 2013; Xiang et al., 2017). In addition to 
the detection of TMAO levels alone, Zheng et  al. similarly 
demonstrated that depression patients had altered concentrations 
of gut microbiome metabolites, including TMAO (Zheng et al., 
2013). Overall, these studies support the association of TMAO 
with the development of depression and provide new treatment 
options for the treatment of depression.

Conclusion

The time has come to study microbiome metabolites, mainly 
PAMP, bile acid, tryptophan and derivatives, SCFAs, and TMAO, 
which play a central role in the pathophysiology of depression and 
AS. There is reason to believe that this is potential pathogenesis 
common to both diseases, depression and AS, and that some of 
these factors may serve as potential biological targets for early 
diagnosis and treatment of AS co-depression disorders. We can 
expect that soon, patients with AS co-depression can get rid of the 
physical and mental burden caused by multiple drug use, which is 
an important and valuable research direction that needs to 
be explored deeply.

Limitations

In this review, due to the limited existing research results 
related to AS co-depression, we only elaborated on the important 

research results of each microbiome metabolite in depression and 
AS disease, respectively. Due to the interaction between two kinds 
of the disease being complex and has not yet been studied clearly, 
the studies in a separate state of disease are flawed, and more 
researchers are required to conduct more in-depth follow-up 
experiments in the state of AS co-depression. In addition, the gut 
microbiome can communicate with its hosts in both directions 
and can influence each other, and the ways of communication 
include neurological, immunological, and metabolic pathways. 
This review simply describes how gut microbes affect the host’s 
disease by mediating metabolites in a unidirectional manner, and 
only a few common metabolites are described to provide the 
reader with a preliminary overview of the critical role of gut 
microbiome metabolites in AS co-depression diseases and to 
provide ideas for researchers interested in this field. Finally, it is 
still unclear which specific bacteria and the metabolites mediated 
by them are most conducive to improving the state of AS 
co-depression, which needs to be  further verified in larger 
preclinical and clinical studies.
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