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Antimicrobial resistance has become one of the greatest threats to human

health, and new antibacterial treatments are urgently needed. As a tool

to develop novel therapies, animal models are essential to bridge the gap

between preclinical and clinical research. However, despite common usage

of in vivo models that mimic clinical infection, translational challenges

remain high. Standardization of in vivo models is deemed necessary to

improve the robustness and reproducibility of preclinical studies and thus

translational research. The European Innovative Medicines Initiative (IMI)-

funded “Collaboration for prevention and treatment of MDR bacterial

infections” (COMBINE) consortium, aims to develop a standardized, quality-

controlled murine pneumonia model for preclinical efficacy testing of novel

anti-infective candidates and to improve tools for the translation of preclinical

data to the clinic. In this review of murine pneumonia model data published

in the last 10 years, we present our findings of considerable variability in

the protocols employed for testing the efficacy of antimicrobial compounds

using this in vivo model. Based on specific inclusion criteria, fifty-three studies

focusing on antimicrobial assessment against Pseudomonas aeruginosa,

Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail.

The data revealed marked differences in the experimental design of the murine

pneumonia models employed in the literature. Notably, several differences

were observed in variables that are expected to impact the obtained results,

such as the immune status of the animals, the age, infection route and sample

processing, highlighting the necessity of a standardized model.
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Introduction

Antimicrobial resistance is recognized as one of the greatest
threats to human health (World Health Organization [WHO],
2017; Morehead and Scarbrough, 2018; Murray et al., 2022).
Thus, new antimicrobial therapies are urgently needed, although
few are currently being developed (Hughes and Karlén, 2014;
Bekeredjian-Ding, 2020; Theuretzbacher et al., 2020). Due to
numerous challenges, including long research timelines and
limited financial reward, most large pharmaceutical companies
are no longer investing in research and development of new
antibiotics. To ensure a sustainable pipeline of novel therapies,
improving the efficiency and attractiveness of antibiotic drug
development is crucial.

Animal models are essential to bridge the translational gap
between preclinical and clinical research (Denayer et al., 2014;
Friberg, 2021). They provide an infection environment and
anatomical barriers that are difficult to reproduce in vitro, and
they can be very useful in predicting potentially efficacious
dosing regimens (Bulitta et al., 2019; Tängdén et al., 2020).
Several different mammalian species have been used to model
human pneumonia including piglets (Li Bassi et al., 2014),
rodents (Mizgerd and Skerrett, 2008), non-human primates
(Kraft et al., 2014), sheep (Malachowa et al., 2019), and rabbits
(Nguyen et al., 2021). Although these models have proven
helpful in studies of disease mechanisms and in antibiotic
testing, murine models have been the preferred choice in
investigational new drug applications for the treatment of
bacterial pneumonia (Waack et al., 2020). Despite anatomical
and physiological differences, the immune system of mice
mimics that of humans and pathology of murine pneumonia
resemble features of human pneumonia (Mizgerd and Skerrett,
2008; Metersky and Waterer, 2020). However, the observed
pathology in mice strongly depends on pathogen-specific
features of virulence, route of infection, infectious dose and
other factors such as animal genetic background (Mizgerd
and Skerrett, 2008; Bielen et al., 2017; Dietert et al., 2017).
The features and measurements of experimental acute lung
injury in animals depend on the experimental question to
be addressed and it has been discussed elsewhere (Matute-
Bello et al., 2011). The advantages of using murine models
include ease of handling and cost effectiveness. Standardization
of the mouse pneumonia model is deemed necessary to
improve the robustness and reproducibility in preclinical
studies and therefore improve translational research (Peers
et al., 2012; Begley and Ioannidis, 2015). In order to improve
the reproducibility of results and to facilitate comparisons
between studies, it is important to report any data that could
potentially influence the outcome. Despite the development of
specific guidelines such as TOP (Transparency and Openness
Promotion; Nosek et al., 2015), ARRIVE (Animal Research:
Reporting of In Vivo Experiments; Kilkenny et al., 2010; Percie
du Sert et al., 2020) or PREPARE (Planning Research and

Experimental Procedures on Animals: Recommendations for
Excellence; Smith et al., 2018), there are still considerable gaps
and discrepancies in the experimental information reported
in the scientific literature. Establishing a standard method
that includes key information can help researchers to navigate
through essential variables and ensure that described study
protocols are both complete and adequately detailed as well as
reported in a consistent and standardized manner. The use of
standardized animal model avoids the time-consuming process
of developing in vivo protocols and reduces the variability of
the results. Therefore, it adheres to the 3R principle, reducing
the number of animals required in preclinical studies. In
addition, the development of a standardized murine pneumonia
model validated with at least one reference compound will
enable antibiotic benchmarking and serve as a quality control
mechanism of the results obtained between laboratories.

The European Innovative Medicines Initiative (IMI)
Antimicrobial Resistance (AMR) Accelerator was created
with the main goal of advancing the development of new
medicines to treat or prevent resistant bacterial infections
worldwide. Within the AMR Accelerator, the “Collaboration
for prevention and treatment of MDR bacterial infections”
(COMBINE) consortium aims to develop a standardized,
quality-controlled murine pneumonia model for preclinical
efficacy testing of novel anti-infective candidates and to improve
tools for the translation of preclinical data to the clinic. Success
in translational medicine heavily depends on the selected
animal models and the experimental set up of the animal model
(Hooijmans and Ritskes-Hoitinga, 2013; Denayer et al., 2014).
In addition, the success of characterizing pharmacokinetics and
pharmacodynamic (PK/PD) targets in animal models relies
largely on host and microbial study design features and the
ability to control variance (Andes and Craig, 2002; Andes and
Lepak, 2017; Bulitta et al., 2019). Although recommendations
for in vivo PK/PD studies have been published (Andes and
Lepak, 2017; Bulitta et al., 2019), there is still a need for globally
harmonized preclinical models.

This focused literature review aims to describe the variability
in study methods and experimental protocols for the mouse
lung infection model used to test antimicrobial efficacy. This
is an essential preliminary step to advance the development
of standardized preclinical animal models. Our review focused
on murine lung infection models of the most relevant MDR
Gram-negative pathogens, Pseudomonas aeruginosa, Klebsiella
pneumoniae and Acinetobacter baumannii, used in proof-
of-concept and/or primary pharmacology studies for small
molecule antibiotics. The findings were further shared and
discussed by a panel of experts at an online workshop organized
by the COMBINE consortium. The resulting recommendations
for standard design parameters are presented in the following
joint article: “Expert Workshop Summary: Advancing toward

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.988728
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-988728 September 3, 2022 Time: 16:23 # 3

Arrazuria et al. 10.3389/fmicb.2022.988728

a standardized murine model to evaluate treatments for
AMR lung infections” and they will provide the basis for
the development of a harmonized and bench-marked murine
lung PK/PD model.

Literature search strategy, study
selection and publication
characteristics

Established protocols for murine pneumonia models
were collected from industrial, academic, and governmental
institutions. A total of sixteen protocols from ten different
institutions were reviewed and compared to create a list
of parameters that varied between protocols. Furthermore,
a scientific literature search was performed to investigate
the variability of mouse pneumonia model protocols in
published studies. Parameters from the established institutional
protocols were excluded from the data analysis of the
literature findings.

Study selection followed SYstematic Review Center for
Laboratory animal Experimentation (SYRCLE) guidelines
(Leenaars et al., 2012). The search strategy consisted of the
identification and definition of three search components: mouse
model, pneumonia caused by P. aeruginosa, K. pneumoniae
and/or A. baumannii, and drug therapy. A total of 25 Mesh
terms and 13 free text terms limited to the title and abstract
were used for a literature search in PubMed (Supplementary
Table 1). The studies selection process is summarized in
Figure 1. A total of 601 preliminary studies were retrieved,
of which 358 studies were published within the last decade in
the English language. Of these, 192 publications were excluded
following a title and abstract review due to not being primary
studies, the disease of interest (murine pneumonia model),
or not being focused on the desired intervention; thus, 166
publications were considered to be initially relevant. Following
the exclusion of additional studies that focused on interventions
or therapies other than small molecule antibiotics (monoclonal
antibodies, bacteriophages, metal chelators, plant extracts,
Lactobacillus, etc.), 53 studies remained (López-Rojas et al.,
2011; Pachón-Ibáñez et al., 2011; Docobo-Pérez et al., 2012;
Tang et al., 2012; Wang et al., 2012; Yamada et al., 2012, 2013a,b;
He et al., 2013; Hirsch et al., 2013; Jacqueline et al., 2013; Louie
et al., 2013, 2015; Harada et al., 2014; Hengzhuang et al., 2014;
Yokoyama et al., 2014; Bowers et al., 2015; Cheah et al., 2015;
Berkhout et al., 2016; Brunetti et al., 2016; Cigana et al., 2016;
Lepak and Andes, 2016; Mardirossian et al., 2016; McCaughey
et al., 2016; Parra Millán et al., 2016; Thabit et al., 2016; Yang
et al., 2016; Kaku et al., 2017a,b; Li Y. T. et al., 2017, Li Y. et al.,
2017; Lin et al., 2017a,b, 2018; Oshima et al., 2017; Sakoulas
et al., 2017; Zhou J. et al., 2017, Zhou Y. F. et al., 2017; Avery
et al., 2018; Chen et al., 2018; de Paula et al., 2018; Geller et al.,
2018; Lou et al., 2018; Monogue et al., 2018; Kirby et al., 2019;

Ku et al., 2019; Nakamura et al., 2019; Ren et al., 2019; Sanderink
et al., 2019; Zhao et al., 2019; Johnson et al., 2020; Tan et al.,
2020; Ma X. L. et al., 2020; Supplementary Table 2). Murine
model variables were extracted from these articles to generate
a data set for further analyses of experimental conditions. The
data set contained studies from 14 different countries published
from 2011 to 2020 (Supplementary Table 2).

Review of key variables in murine
bacterial pneumonia models used
to evaluate antimicrobial agents

Bacterial and intervention-related
variables

Pseudomonas aeruginosa, Klebsiella pneumoniae and
Acinetobacter baumannii are among the most common and
difficult to treat opportunistic pathogens in nosocomial
infections such as ventilator-associated pneumonia in
immunocompromised patients (Ma Y. et al., 2020). We
observed that antibiotic efficacy was most commonly evaluated
against P. aeruginosa with 22 of the 53 studies reviewed
including this pathogen. This pathogen is commonly involved
in pneumonia of cystic fibrosis patients (Oliver et al., 2000).
Although antimicrobial agents may be efficacious against
more than one of these Gram-negative pathogens (Paterson
et al., 2020), only a few of the published studies included
the in vivo efficacy against two or three of the pathogens
in separate experiments (termed “combination of bacteria,”
Table 1 and Figure 2). Evaluation of antibacterial monotherapy
was the most common study objective in the studies reviewed,
although studies with A. baumannii focused mostly on the
evaluation of a combination of therapies (18.9% of studies).
Despite the increased attention given to drug delivery methods
(Li et al., 2019), few studies have focused on the evaluation
of alternative routes of drug administration (Table 1). This
consisted mainly of aerosolization or liposomes for pulmonary
administration of colistin and polymyxin B (He et al., 2013; Li
Y. et al., 2017; Lin et al., 2017a,b, 2018). P. aeruginosa was the
pathogen of choice for these investigations (7.5% of all studies,
Table 1).

There are no firm requirements for the number of
bacterial strains to be included in preclinical studies for the
evaluation of novel antimicrobials in vivo. However, regulatory
guidance (European Medicines Agency, 2016) and scientific
recommendations (Bulik et al., 2017; Bulitta et al., 2019) suggest
to include at least four strains of each target pathogen species
for establishing PK/PD targets. Ideally, these should include a
reference strain and be representative of contemporary, relevant
resistance profiles and mechanisms (European Medicines
Agency, 2016; Bulik et al., 2017; Bulitta et al., 2019). We
observed that most of the studies included only one or two
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FIGURE 1

Flow diagram for the study selection process.

bacterial strains, especially those focusing on P. aeruginosa
(35.8% of all studies). Less than one third of the studies tested
three or more strains of the same species (Table 1). The value
of testing several strains is that it accounts for genetic and
biological variation within the target species which may affect
strain fitness and susceptibility and therefore the overall efficacy
assessment of the investigated drug (Andes and Lepak, 2017).

The source of the bacterial strain was reported in 67.9%
of reviewed studies (Table 1). Private clinical isolates were
the most common source of bacteria for A. baumannii
and P. aeruginosa. The lack of globally accessible reference
strains with corresponding in vivo benchmark data may
partially explain why some studies used a strain obtained
from another researcher (Table 1). Therefore, it would be
highly recommended to deposit in vivo pathogenic strains (and
associated data) in biorepositories to make them accessible to
other researchers.

Another variable expected to impact bacterial fitness and
infectivity is the preparation of the bacterial inoculum. However,
the details related to the inoculum preparation procedure
were rarely included. Only 28.3% of studies reported the
bacterial growth stage at the time of infection. Of these,
a fresh bacterial subculture in logarithmic phase of growth
was generally employed for the infection and the use of
frozen stocks was limited (Table 1). Some virulence factors
are differentially expressed between logarithmic and stationary
phase. Their expression often increases in stationary phase,
when the cell density is high and bacteria are subjected to higher
biological stress (Carter et al., 2007; Bravo et al., 2008; Choi
et al., 2011). P. aeruginosa quorum sensing signal increases
at late stationary phase (Choi et al., 2011). In Salmonella

and Shigella, the production of the lipopolysaccharide long-
chain O-antigen increases in the late exponential and stationary
growth phases, which affects serum resistance (Carter et al.,
2007; Bravo et al., 2008). Despite this, bacteria in logarithmic
phase are overwhelmingly employed for in vivo infection for
a number of reasons. First, the ability of logarithmic phase
bacteria to survive and establish a robust infection in the
lung is consistently reproducible. Second, logarithmic phase
bacteria can be more accurately quantified in the inoculum. It is
technically challenging if not impossible to produce a stationary
phase culture containing no dead cells. The effects, of employing
bacterial cultures in different growth stages or bacteria cultured
on liquid vs solid media is currently unknown. Bacterial growth
stage is rarely reported; and very few studies reported the specific
stage of the log phase (Table 1). However, to be able to increase
the reproducibility of the preclinical studies, it is recommended
to describe the culture conditions precisely and occasionally to
monitor the expression of virulence factors.

Animal-related variables

The selection of mouse strain is a choice that should be
carefully considered. Outbred mice were used more frequently
than inbred mice. Swiss Webster mice were the most common
outbred stock, followed by ICR mice. With regard to inbred
mice, C57BL/6 and BALB/c mice were used most frequently
(Table 2). The preference for inbred vs. outbred mice varied
depending on the bacterial species under investigation. Studies
performed with P. aeruginosa mainly used outbred mice,
while for A. baumannii inbred mice slightly predominated
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TABLE 1 Bacterial and intervention variables in the reviewed studies.

Number of
studies

Percentage
(%)

Bacteria

P. aeruginosa 22 41.5

K. pneumoniae 12 22.6

A. baumannii 15 28.3

Combination of bacteria 4 7.5

Main objective of the study

Evaluation of drug monotherapy 25 47.2

P. aeruginosa 12 22.6

K. pneumoniae 6 11.3

A. baumannii 4 7.5

Combination of bacteria 3 5.7

Evaluation of drug combination therapy 22 41.5

P. aeruginosa 6 11.3

K. pneumoniae 6 11.3

A. baumannii 10 18.9

Combination of bacteria 0 0.0

Evaluation of alternative drug delivery 6 11.3

P. aeruginosa 4 7.5

K. pneumoniae 0 0.0

A. baumannii 1 1.9

Combination of bacteria 1 1.9

Number of strains

1 or 2 strains 38 71.7

P. aeruginosa 19 35.8

K. pneumoniae 8 15.1

A. baumannii 11 20.8

Combination of bacteria 0 0.0

3 or 4 strains 11 20.8

P. aeruginosa 3 5.7

K. pneumoniae 3 5.7

A. baumannii 2 3.8

Combination of bacteria 3 5.7

More than 5 strains 4 7.5

P. aeruginosa 0 0.0

K. pneumoniae 1 1.9

A. baumannii 2 3.8

Combination of bacteria 1 1.9

Bacterial source

Own clinical isolate 25 47.2

P. aeruginosa 11 20.8

K. pneumoniae 4 7.5

A. baumannii 10 18.9

Collaborator 5 9.4

P. aeruginosa 3 5.7

K. pneumoniae 1 1.9

A. baumannii 1 1.9

Strains Bank 6 11.3

P. aeruginosa 1 1.9

(Continued)

TABLE 1 (Continued)

Number of
studies

Percentage
(%)

K. pneumoniae 4 7.5

A. baumannii 1 1.9

Not reported 17 32.1

Bacteria growth stage

Frozen log. phase stock 2 3.8

Subcultured to log. phase 13 24.5

Early log. phase 4 7.5

Mid-log. phase 1 1.9

Not reported 8 15.1

Not reported 38 71.7

Percentages over 53 total studies reviewed.

(Figure 2). When working with K. pneumoniae, inbred and
outbred mice were used to a similar extent (Figure 2).
Outbred mice are generally selected for PK/PD studies in
murine lung and thigh models (Andes and Lepak, 2017;
Bulitta et al., 2019). It has been described that Pseudomonas
infection led to higher mortality in BALB/c mice (classified
as a Th2 responder strain) compared to C3H/HeN mice
(Th1 responders; Moser et al., 1997) and C57BL/6 mice are
more susceptible to Klebsiella infection of the lung than are
129/Sv mice (Schurr et al., 2005). Inbred mice are presumed
to be more uniform (thus decreasing the number of animals
needed to detect a specific response) and more repeatable
(a result of being genetically defined and less prone to
genetic change; Festing, 2014). However, to date there is no
evidence of greater trait stability in inbred mice. This suggests
that the advantages of inbred mice may not be as great as
previously supposed and that the use of outbred mice in
biomedical research may provide an important advantage in
reaching conclusions that are generalizable across conditions
and populations (Tuttle et al., 2018).

The sex of experimental animals is known to impact host-
pathogen interactions (García-Gómez et al., 2013). We observed
that the vast majority of the studies were carried out in female
mice regardless of the bacteria used for infection (Table 2).
Interestingly, only one study used both female and male mice
in separate experiments with different readouts (Kirby et al.,
2019; Table 2). Female C57BL/6J mice have been shown to
be more susceptible to A. baumannii lung infection than their
male counterparts (Pires et al., 2020). However, an increased
susceptibility of male C3HeB/FeJ mice has been reported in the
oral aspiration pneumonia model (Luna et al., 2019). In humans,
women with cystic fibrosis and P. aeruginosa infection have
worse outcomes than men (Demko et al., 1995), which has been
partly attributed to estrogen effects (Vidaillac et al., 2020). In
the case of K. pneumoniae infection, female mice have showed
higher survival rates than males although exposure to ozone
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FIGURE 2

Circular dendrogram representing hierarchically structured variables. The area of the nodes represents the number of studies. Hierarchy from
inside to outside: bacteria, mouse strain (Inb.: Inbred, Out.: Outbred), mouse immune status (NT: neutropenic, IC: Immunocompetent), study
main readout (S: mice survival, B: bacterial load) and infection route (IT: intratracheal, IN: intranasal, ORP: oropharyngeal, IB: intrabronchial, AE:
aerosolization).

reversed the trend and resulted in female mice surviving less
than males (Mikerov et al., 2011). The sex of the test animal
can also have implications in drug PK/PD (Soldin and Mattison,
2009; Madla et al., 2021). Therefore, the selection of male or
female mice in an antimicrobial efficacy study is a variable that
should be carefully considered and taken into account when
interpreting the results.

The age of mice used in the study could substantially
affect the immune response and thus the infection outcome
(Cai et al., 2016; Jackson et al., 2017). Older mice have a
more mature immune response. It has been shown in mice
that B-cells have an immature phenotype until 4 weeks of
age (Ghia et al., 1998) and T-cell responses mature around
8 weeks of age (Holladay and Smialowicz, 2000). In addition,
drug metabolism by the liver is affected by the age of mice and
has a critical impact on systemically administered compounds
(Pibiri et al., 2015). This variable is also related to the weight
of the animal and in some cases this parameter is reported
instead of the age. For data analysis, we transformed the
weight of the mice (if it was the only data provided) to age
in weeks according to the vendor’s growth data provided for
the mouse strain of interest. The age of mice ranged from

4 to 10 weeks and animals with an average age of 6 weeks
were most common. Outbred mice tended to be younger than
inbred mice, and no inbred mice younger than 6 weeks were
used (Table 2). Although outbred mice grow faster than inbred
mice, their immune system may not be fully developed at
the selected age (Ghia et al., 1998; Holladay and Smialowicz,
2000). This may be less of a problem for studies using outbred
animals, as they are often rendered neutropenic or used at
older ages in immunocompetent models. Several guidelines
such as ARRIVE have strongly encouraged reporting the age
of animals used in an experiment (Kilkenny et al., 2010;
Percie du Sert et al., 2020). However, it is not clear if the
age reported in the studies refers to the age of an animal
upon arrival at the facility (before the acclimatization period),
the age when the experimental infection is performed or the
age when the first intervention in the animals is executed
(i.e., cyclophosphamide treatment). This could lead to even
greater variation in age than immediately apparent. The host
microbiota correlates with animal age and affects host response
and lung infection resistance (McMahan et al., 2022). The mouse
microbiome varies based on a number of factors, including the
animal’s origin, nutrition, housing, bedding, and care during
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TABLE 2 Characteristics of mice in the reviewed studies.

Number of studies Percentage (%)

Mouse strain

Inbred 22 41.5

C3H/HeN 1 1.9

BALB/c 8 15.1

C57BL/6 12 22.6

DBA/2 1 1.9

Outbred 29 54.7

NMRI 2 3.8

Swiss Webster 12 22.6

CD-1 3 5.7

ddY 5 9.4

ICR 6 11.3

Kunming 1 1.9

Not reported 2 3.8

Sex

Female 34 64.2

Male 9 17.0

Female and male 1 1.9

Not reported 9 17.0

Age average

Inbred

4–5 weeks 0 0.0

6–7 weeks 11 21.6

≥8 weeks 10 19.6

Not reported 1 2.0

Outbred

4–5 weeks 6 11.8

6–7 weeks 15 29.4

≥8 weeks 6 11.8

Not reported 2 3.9

Number of animals per group

Bacterial load1

2–3 12 23.5

4–6 27 52.9

7–10 9 17.6

11–15 3 5.9

Survival2

2–3 0 0.0

4–6 5 20.8

7–10 12 50.0

11–15 7 29.2

1Number of animals per group employed when bacterial load was the main readout.
2Number of animals per group employed when survival was the main readout.

infancy (Ericsson and Franklin, 2021). Around 6 weeks of
age, the lung’s microbial diversity significantly increases and is
maintained throughout time (Singh et al., 2017). Researchers
should make an effort to minimize the effects of this factor on
the host’s susceptibility to infection in order to improve the
reproducibility of the studies.

The number of animals per group should be selected
based on a power analysis considering expected data dispersion
(Festing, 2018; Bulitta et al., 2019). We observed broad variation
in the number of animals included per group. In studies with
bacterial burden as the main endpoint, a range of two to fifteen
animals was used, with four to six animals per group in most
of the studies. In studies with survival as the study endpoint,
the most common group size was 7–10 animals per group,
reflecting that survival data typically present higher variability
than bacterial burden (Table 2).

Infection procedure-related variables

Induced neutropenia is a variable that can have a significant
impact on the study outcomes (Andes and Craig, 2002;
Andes and Lepak, 2017). In general, a higher PK/PD index
magnitude is required in neutropenic animals although it varies
among drug classes and bacterial species (Andes and Craig,
2002; Andes and Lepak, 2017). We observed that neutropenic
mice were used more often than immunocompetent mice
(Table 3). Immunocompetent mice were preferred when
working with inbred mouse strains, while the use of neutropenic
animals prevails when outbred mice were used. This confirms
the results of a previous literature review that evaluated
different animal models for antibiotic efficacy testing, which
found that neutropenic models slightly predominate over
immunocompetent ones (Waack et al., 2020). Our analysis
showed that the immune status of the mice varied by
the study outcome measured. Survival was most frequently
evaluated in immunocompetent animals. P. aeruginosa studies
employed mostly immunocompetent lung models whereas
A. baumannii and K. pneumoniae infections were mostly
conducted in neutropenic models (Figure 2). Neutropenic
animals were found to have increased bacterial growth
over the study period in untreated animals (Table 4).
Despite a common misconception, use of immunocompromised
mice is not generally intended to mimic any particular
patient population (Zhao et al., 2016; Andes and Lepak,
2017). Neutropenia promotes better growth of bacteria in
mice, thus minimizing spontaneous resolution of infection
(which complicates interpretation of treatment effects) and
enabling more strains to be studied in mice than otherwise
might be possible.

Neutropenia can be induced by different methods, including
the use of drugs such as cyclophosphamide or vinblastine
and neutrophil depleting antibodies (Stackowicz et al., 2020).
Cyclophosphamide has a relative low cost and produce
depletion of hematopoietic stem cells associated with an almost
complete disappearance of blood neutrophils as early as 3–
4 days after injection (Van’t Wout et al., 1989; Zuluaga et al.,
2006). Cyclophosphamide has the greatest effect on neutrophil
numbers, but also markedly reduces numbers of circulating
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TABLE 3 Inoculation and procedural parameters in the reviewed
studies.

Number of
studies

Percentage
(%)

Immune status

Inbred 22 43.1

Immnunocompetent 16 31.4

Neutropenic 5 9.8

Immnunocompetent and
neutropenic

1 2.0

Outbred 29 56.9

Immnunocompetent 5 9.8

Neutropenic 24 47.1

Infectious route

Immunocompetent 22 42.3

Aerosolization 1 1.9

Intrabronchial 2 3.8

Intranasal 5 9.6

Intratracheal 14 26.9

Neutropenic 30 57.7

Aerosolization 2 3.8

Intrabronchial 1 1.9

Intranasal 14 26.9

Intratracheal 11 21.2

Oropharyngeal 2 3.8

Infectious volume

10 µl 2 4.3

20 µl 4 8.5

25 µl 9 19.1

30 µl 4 8.5

40 µl 3 6.4

50 µl 23 48.9

70 µl 2 4.3

Infectious dose

<5 log10 CFU 4 8.3

P. aeruginosa 3 6.3

K. pneumoniae 1 2.1

A. baumannii 0 0.0

5–6 log10 CFU 8 16.7

P. aeruginosa 2 4.2

K. pneumoniae 2 4.2

A. baumannii 4 8.3

6–7 log10 CFU 16 33.3

P. aeruginosa 9 18.8

K. pneumoniae 4 8.3

A. baumannii 3 6.3

7–8 log10 CFU 19 39.6

P. aeruginosa 7 14.6

K. pneumoniae 5 10.4

A. baumannii 7 14.6

>8 log10 CFU 1 2.1

P. aeruginosa 0 0.0

K. pneumoniae 0 0.0

A. baumannii 1 2.1

monocytes, B and T cells (Van’t Wout et al., 1989; Zuluaga
et al., 2006). Cyclophosphamide was the only methodology
employed in the reviewed studies to render animals neutropenic.
More than half of the studies with immunocompromised mice
used a protocol of administering cyclophosphamide 4 days
(150 mg/kg) and one day (100 mg/kg) before infection. The
remaining studies used slight variations, such as increasing the
administered dose or varying the days of administration.

The route of infection has been shown to impact host-
pathogen interactions (Martins et al., 2013). In the reviewed
studies, intratracheal (IT) and intranasal (IN) routes of
infection were the most common, followed by aerosolization,
the intrabronchial route and oropharyngeal infection route.
Infections with A. baumannii and P. aeruginosa were mostly
achieved through IT bacterial inoculation, while K. pneumoniae
infection protocols mostly used IN bacterial administration
(Figure 2). Moreover, we observed that the selection of the
infection route was related to the immune status of the
animal. IN infection was mostly employed when working with
neutropenic animals, while for immunocompetent animals, IT
infection was most common (Table 3). The predominance of
the IN route when using neutropenic animals and the IT when
employing immunocompetent animals was also observed in a
previous report that summarized studies of antibiotic efficacy
against seven gram-negative and two gram-positive pneumonia-
causing bacterial species (Waack et al., 2020). This variation
may reflect the challenge of establishing lung infections in
immunocompetent mice, where a more direct inoculation
method such as IT route can lead to a greater success. In
our reviewed studies using three gram-negative bacteria, we
observed a higher percentage of immunocompetent animals
infected via IT route than previously reported using a higher
number of pneumonia-producing bacteria (17), suggesting that
the infection with these three selected gram-negative bacteria
may be more difficult to achieve.

The infection volume is closely related to both the employed
route of infection and the infectious dose. The administered
volume ranged from 10 to 70 µl and most of the studies used
a volume of 50 µl (Table 3). The lowest volume of 10 µl was
only used for IT bacterial delivery (He et al., 2013; Hirsch et al.,
2013).

It has previously been shown in a murine model of tularemia
that intranasal instillation of a volume of 10 µl routinely resulted
in infection of the upper airways but failed to initiate infection
of the pulmonary compartment. For efficient delivery of the
bacteria into the lungs, a dose volume of 50 µl or more was
required (Miller et al., 2012). Similarly, studies with the azo
dye Evans blue have revealed that intranasal administration of
a dye volume of 40–50 µl, in comparison to 10–20 µl, led
to increased dye retention in the lungs (Visweswaraiah et al.,
2002; Smith et al., 2019). These data suggest that infecting
volumes of at least 50 µl IN are preferred for establishing robust
pulmonary infection.
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Before selecting bacterial strains and infectious dose to
perform antimicrobial efficacy studies, bacterial pathogenicity
studies in mice are required. The infectious inoculum varied
greatly between the reviewed studies. Most indicated that 7–8
log10 CFU were administered to initiate the infection (Table 3).
Studies working with P. aeruginosa and K. pneumoniae
used lower infectious dose than the studies working with
A. baumannii (Table 3). Considering that the neutropenic
model already prevails when working with this pathogen
(Figure 2), these data may suggest greater difficulty in
establishing a robust A. baumannii lung infection, requiring
higher infectious dose.

Treatment and readout-related
variables

In antibacterial research, the length of the study varies
between animal species. Murine pneumonia models are mostly
used for short term studies, while larger animals usually employ
later endpoints (Waack et al., 2020). The vast majority of
the studies reviewed here initiated antibiotic therapy at 2 h
post infection (h.p.i.). However, the timing of the experimental
endpoint varied according to the main study readout. Studies
to determine bacterial burden were mostly terminated at 24 or
26 h.p.i., or at multiple time points between 2 and 72 h.p.i.
Survival studies were most commonly terminated after 3–4 days
(Table 4). A previous review of new drug application dossiers
found that an endpoint of 24–29 h.p.i. was most commonly
employed when antibacterial activity against P. aeruginosa,
K. pneumoniae and A. baumannii was investigated. Notably,
these studies followed a bimodal distribution, having 24- or
48-h endpoints (Waack et al., 2020). The endpoint used for
measuring antimicrobial activity could influence the results
(Andes and Craig, 2002; Cigana et al., 2020); however, the
evaluation of antimicrobial treatments for chronic infection
requires longer experimental time points (Cigana et al., 2020).
Additionally, there might be variations in how researchers
analyze animal care and humane endpoints in survival studies.
Clinical disease severity scoring can be subjective, with various
researchers scoring severity differently.

Unfortunately, the lung bacterial burden at the start of
therapy was only reported in 28.3% of the reviewed studies.
Baseline burdens fluctuated from 4.7 to 8 log10 CFU per lung,
with the majority falling into a range of 6–7 log10 CFU per lung
(Table 4). A lower burden at the start of therapy may reduce
the PK/PD index magnitude, thus reducing the dose required
for treatment effect, although the degree of influence can vary
depending on the bacterial species and the drug class (Andes
and Lepak, 2017). Importantly, the majority of results from
PK/PD animal models that have been correlated with clinical
outcomes reached 6–7 log10 CFU in the target tissue at the
time therapy was initiated (Andes and Lepak, 2017). Baseline

TABLE 4 Treatment and procedural parameters in the reviewed
studies.

Number of
studies

Percentage (%)

Treatment start point (p.i.)

≤1 h 8 15.1

2 h 22 41.5

3–4 h 12 22.6

5–6 h 3 5.7

>6 h 8 15.1

Experimental endpoint (p.i.)

Bacterial load1

12–18 h 2 3.8

24–26 h 25 48.1

27–30 h 5 9.6

>36 h 7 13.5

Several time points (between 2 and 72 h) 13 25.0

Survival2

≤2 d 3 10.7

3–4 d 12 42.9

5–6 d 5 17.9

7–9 d 6 21.4

10–11 d 2 7.1

Baseline bacterial burden (CFU per lung)

4.7–6 1 1.89

6–7 9 16.98

7–8 5 9.4

Not reported 38 71.7

Average bacterial growth in lung (CFU per lung)

Neutropenic mice

≤1 2 5.9

1–2 7 20.6

2–3 9 26.5

>3 5 14.7

Immunocompetent mice

≤1 6 17.6

1–2 2 5.9

2–3 3 8.8

>3 0 0.0

Study readouts

Survival 26 49.1

Bacterial load 50 94.3

Blood or spleen or liver CFU 11 20.8

Histopathology 16 30.2

Immune response 11 20.8

Others3 5 9.4

1Experimental endpoint in hours (h) when bacterial load was the main readout.
2Experimental endpoint in days (d) when survival was the main readout.
3Other readouts measured: clinical score, body temperature, protein expression and lung
endothelial permeability.

burdens further affect the bacterial growth over the study
period. Bacterial growth was reported in 34 of the 53 studies
reviewed, and an increase of at least 1 log10 CFU/lung over
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the experimental period (ranged from 2 and 72 h.p.i, median
26 h.p.i) was achieved in most of the studies. There were no
marked differences among the three different bacterial species.
However, bacterial growth over the study period was indeed
related to immune status, with neutropenic mice showing
higher bacterial growth than immunocompetent mice (Table 4).
Robust infections are a prerequisite to adequately assess the
antimicrobial effect of drugs. Therefore, bacterial burdens in
untreated animals should not decline over the course of the
study, or it becomes difficult to separate treatment effect
from spontaneous resolution of infection. Depending on the
selected efficacy endpoint, the effect of treatment may also be
overestimated if bacterial growth is poor. The recommended
specific efficacy endpoints range from 0 (stasis) to 2 log10

reductions in CFU calculated relative to the bacterial density
at the start of treatment (Drusano, 2004; European Medicines
Agency, 2016; Bulitta et al., 2019) and there remains some debate
over which should be used. Stasis may be adequate for less severe
infections or those involving concomitant non-drug treatments
(e.g., surgical intervention such as debridement of infected
tissue). For infections involving skin, soft tissue or the urinary
tract, a 1 log10 reduction has been recommended, whereas 2
log10 reductions have been recommended for severe and/or high
bacterial burden infections such as pneumonia (Drusano et al.,
2018; Bulitta et al., 2019). In the control group (untreated or
vehicle-treated), an increase in bacterial burden of 2–3 log10

CFU over the course of the study has been recommended
(Bulitta et al., 2019). While this may be a feasible target for the
standard neutropenic thigh infection model, studies reviewed
suggest that it may be more difficult to achieve in the lung
model especially with some pathogens (e.g., A. baumannii) or
bacterial strains.

In the studies reviewed, specific information on sample
processing was scarce. The method of lung homogenization was
only reported in 15% of the studies. Stomacher, mini bead beater
and ultra-turrax were the most common methodologies for
processing samples. The media used for lung tissue culture and
CFU count varied widely, with Mueller-Hinton (I and II) as the
preferred media (47.6% of the studies) followed by Luria-Bertani
(LB) agar (14.3%). Agar plates were usually cultured at 37◦C,
although several studies reported an incubation temperature of
35◦C for P. aeruginosa. It is important to optimize the culture
conditions for inoculation and bacterial recovery from the lung.
Different sample processing techniques and media may have an
impact on the study results, and it is recommended that all study
samples are processed using the same methodology. Working
with blinded samples is strongly encouraged, as it may reduce
the potential for bias and increase the robustness of the study
(Ioannidis, 2012; Bespalov et al., 2020).

Monoparametric models employing a single indicator
of antibiotic efficacy represented 39.6% of the studies
reviewed. Lung bacterial burden was the most common
study readout (Table 4). While some studies reported the
data as CFU/lung, others reported the data as CFU/ml of

homogenized lung. CFU/ml requires additional data (lung
weight) for normalization and comparison of results between
studies, but lung weight was not generally reported. Regardless
of the reporting units, the reduction of bacterial burden at the
site of infection provides a relatively reproducible measure of
antibiotic action that has been shown to forecast drug efficacy
in patients (Zak and O’Reilly, 1991; Andes and Lepak, 2017).
Bacterial burden is generally the preferred endpoint because
it is a direct measurement of the drug’s ability to kill or halt
growth of the infecting pathogen. However, mortality can also
be a useful endpoint and, in our review, survival of the mice was
the second most common readout. The relationship between
bacterial burden and survival has been previously noted, and the
magnitude of drug exposure required for bacteriological cure
and survival has been shown in some studies to be similar (Craig
and Dalhoff, 1998; Andes and Craig, 2002). However, it should
be noted that survival studies which monitor the animal’s health
for prolonged periods of time after the end of therapy may
allow organisms that have not been eradicated to regrow and
cause mortality, especially in neutropenic animals. This could
substantially impact the relationship between bacterial counts
and survival (Andes and Craig, 2002). In addition to survival
and bacterial burden in the lungs, other outcomes in the studies
reviewed included lung histopathology, bacterial load in other
tissues (e.g., blood, liver or spleen), assessment of immune
responses (e.g., cytokines) in BAL, serum, or lung homogenate,
clinical scoring based on animal observation, body temperature,
protein expression, and pulmonary endothelial permeability.

Conclusion

Standardization of the murine pneumonia model would
allow better translation to the clinic and reduce animal use
by providing more useful and relevant data. This literature
review revealed marked differences in methodology for the
murine pneumonia model used to test efficacy of small molecule
antibiotics. Several parameters were relatively consistent across
most of the models reviewed. These included animal sex, stage
of bacterial growth for the inoculum, the starting point for
treatment and the primary study outcome. Other variables
differed widely, such as the immune status and age of the
mice, the infection route and sample processing methodologies.
Some variables, such as immune status and infectious dose,
are expected to impact the study outcome more than others
and can affect the PK/PD magnitude measured for a given
endpoint. Although there is little direct evidence to indicate
what effect, if any, a particular variable has on the outcome of a
study, the myriad combinations of variables that any particular
investigator uses is likely to impact the observed results.
This can complicate preclinical-to-clinical translation, makes
it difficult to compare drugs and/or bacterial isolates tested in
different laboratories, and highlights the need for development
of a standardized murine pneumonia model that has been
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benchmarked appropriately. Overall, standardization of animal
infection models is expected to strengthen the reproducibility
and comparability of data generated during the evaluation of
novel antibiotics. Furthermore, the combination of standardized
protocols with quality controls, such as bacterial reference
strains and benchmark control compounds with specified
potency, should increase the robustness of preclinical data and
improve our ability to translate from animals to humans.
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