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Gut microbiota plays important roles in mediating fat metabolic events in 

humans and animals. However, the differences of meat quality traits related 

to the lipid metabolism (MQT-LM) in association with gut microbiota involving 

in lipid metabolism have not been well explored between Angus cattle (AG) 

and Xinjiang brown cattle (BC). Ten heads of 18-month-old uncastrated 

male AG and BC (5 in each group) raised under the identical conditions were 

selected to test MQT-LM, i.e., the backfat thickness (BFT), the intramuscular 

fat (IMF) content, the intramuscular adipocyte areas (IAA), the eye muscle area 

(EMA), the muscle fiber sectional area (MFSA) and the muscle shear force after 

sacrifice. The gut microbiota composition and structure with its metabolic 

function were analyzed by means of metagenomics and metabolomics with 

rectal feces. The correlation of MQT-LM with the gut microbiota and its 

metabolites was analyzed. In comparison with AG, BC had significant lower 

EMA, IMF content and IAA but higher BFT and MFSA. Chao1 and ACE indexes 

of α-diversity were lower. β-diversity between AG and BC were significantly 

different. The relative abundance of Bacteroidetes, Prevotella and Blautia 

and Prevotella copri, Blautia wexlerae, and Ruminococcus gnavus was lower. 

The lipid metabolism related metabolites, i.e., succinate, oxoglutaric acid, 

L-aspartic acid and L-glutamic acid were lower, while GABA, L-asparagine and 

fumaric acid were higher. IMF was positively correlated with Prevotella copri, 

Blautia wexlerae and Ruminococcus gnavus, and the metabolites succinate, 

oxoglutaric acid, L-aspartic acid and L-glutamic acid, while negatively with 

GABA, L-asparagine and fumaric acid. BFT was negatively correlated with Blautia 

wexlerae and the metabolites succinate, L-aspartic acid and L-glutamic acid, 

while positively with GABA, L-asparagine and fumaric acid. Prevotella Copri, 

Blautia wexlerae, and Ruminococcus gnavus was all positively correlated with 

succinate, oxoglutaric acid, while negatively with L-asparagine and fumaric 

acid. In conclusion, Prevotella copri, Prevotella intermedia, Blautia wexlerae, 

and Ruminococcus gnavus may serve as the potential differentiated bacterial 

species in association with MQT-LM via their metabolites of oxoglutaric acid, 
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succinate, fumaric acid, L-aspartic acid, L-asparagine, L-glutamic acid and 

GABA between BC and AG.
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Introduction

Beef is a main source of animal protein in human food, and 
consumers are paying an increasing amount of attention to meat 
quality. Most of meat quality traits that are closely related to lipid 
metabolism (MQT-LM) include the backfat thickness (BFT), 
intramuscular fat (IMF) content, the intramuscular adipocyte 
areas (IAA), the eye muscle area (EMA) and the muscle fiber 
sectional area (MFSA), marbling and tenderness, they are mainly 
involved in the fat metabolism/deposition in the beef (Picard 
et al., 2018; Li et al., 2020). Although a large number of studies on 
MQT-LM have been performed in Angus cattle (AG), few studies 
have systematically compared MQT-LM in AG with Xinjiang 
brown cattle (BC), an indigenous dual- purpose of meat and milk 
cattle breed with excellent adaptability, strong disease resistance, 
good grazing and tolerance to extreme weather in China (Li et al., 
2020). Therefore, the comparison on the difference of meat quality 
between AG and BC is pivotal for assisting the improvement of 
meat quality of Xinjiang brown cattle.

The gut microbiota is a highly complex and diverse 
microecosystem which is strongly associated with various host 
physiological functions, e.g., metabolism, immune regulation, 
growth and development and production performance, and to 
overall host health and disease in human and animals 
(Turnbaugh and Gordon, 2009; Petri et al., 2013; Lee and Hase, 
2014; Myer et al., 2015; Noel et al., 2019). Large body of studies 
have figured out the contribution of microbiota on host health 
and indicated marked shifts in the relative abundance of various 
phyla or species in various physiological statuses (Li et al., 2017; 
Franzosa et  al., 2019; Wu et  al., 2020). Regarding the gut 
microbiota in the interaction with host lipid metabolism and 
body fat deposition, most studies are human or experimental 
rodents orientated for human health. For example, the 
comparisons of the gut microbiota of lean and obese people 
indicated that the relative abundance of Bacteroidetes and 
Firmicutes are associated with obesity (Ley et al., 2005, 2006). 
Additionally, gut microbiota may directly regulate the expression 
of genes related to fatty acid synthesis and triglyceride storage in 
animals, thus altering energy balance to determine adipose tissue 
expansion, or fat deposition, in different parts of the body 
(Hooper et al., 2001). When gut microbiota obtained from obese 
mice are transplanted into non-obese, aseptic mice, the 
previously non-obese mice exhibit greater efficiency in energy 
absorption in the gut and significant increases in total body fat 

(Turnbaugh et  al., 2006). Bäckhed et  al. (2004) experiment 
showed that the gut microbiota acts through angiopoietin-like 
protein 4 as to coordinate increased hepatic lipogenesis with 
increased lipoprotein lipase activity in adipocytes, thereby 
promoting storage of calories harvested from the diet into fat. In 
terms of gut microbiota and its lipid metabolic regulating 
function on MQT-LM / fat deposition in food animals, there are 
already some studies in pigs (Khanal et al., 2020; Wu et al., 2021; 
Ma et al., 2022), chickens or broilers (Wen et al., 2019; Yang et al., 
2021), and ducks (Lyu et al., 2021). However, the association of 
MQT-LM with the gut microbiota and its lipid metabolic 
functions on beef cattle has been seldom elucidated. Zhang and 
colleagues did the comparison of the gut microbiota in Angus 
beef cattle reared under the grazing and feedlot conditions and 
then speculated that the significant differences in gut microbiota 
composition may have an impact on the meat quality (Zhang 
et al., 2021). Zheng et al. (2022) studied the association of gut 
microbiota with host intramuscular differentially expressed 
genes and metabolites in Angus and Chinese Simmental cattle, 
unveiled the different associations of gut microbiota and the 
meat quality between these two breeds. Therefore, 
we hypothesized that differentials MQT-LM between different 
AG and BC could be associated with the specific composition 
and structure in gut microbiota and its metabolic function. 
MQT-LM namely, the BFT, IMF, IAA, EMA, and MFSA were 
assessed using 18-month-old BC and AG. The structure, function 
and metabolic pathways of the gut microbiota were determined 
by metagenomics and metabolomics and their associations with 
meat quality traits were determined by correlation analysis so as 
to provide a potential novel biomarker for improving the meat 
quality of BC.

Materials and methods

Animals, housing, and feeding

Eighteen-month-old uncastrated male AG (n = 5) and BC 
(n = 5), which were collected at age of about 5-month-old with 
initial body weight between 170 and 180 kg from a beef cattle 
breeding farm in Xinjiang, raised under the identical feeding 
regime, management and condition (Table 1) were used for the 
study. The study protocol was approved by the Animal Ethics 
Committee of Xinjiang Agricultural University (2017015).
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Sample collection

Bulls were fasted for 24 h, but provided water ad libitum 
up  12 h prior to sacrifice. Following the 24 h fast, cattle were 
weighed. About 20 g of feces was collected from the rectum of 
cattle by samplers equipped with aseptic gloves 6 h prior to 
slaughter, and then placed in a sterile, frozen tube and quickly 
stored in liquid nitrogen for subsequent testing. All the bulls were 
slaughtered in the automatic cattle slaughter line of a 
slaughterhouse head by head in the same day. The bulls’ carcass 
was weighed after sacrifice, and the longissimus dorsi muscle was 
dissected, about 1 cm3 sample of it was collected and fixed in picric 
acid solution, the remaining muscle was stored at 4°C for shear 
force examination.

Meat quality traits detection

The BFT and the EMA were measured in vivo by veterinary 
B-ultrasound (Pyle Co. LTD, Aquila Vet, Netherlands) via detector 
located on the back of longissimus dorsi muscle between intercostal 
space of 12th and 13th ribs. The muscle shear force was measured 
using a computer-coupled muscle tenderness instrument (Brad 
Technology Development Co. Ltd., c-lm4, Beijing, China) as 
described elsewhere (Wen et al., 2020; Bai et al., 2022). The muscle 
moisture content was measured by the oven drying method, the 
samples were dried at 101–105°C for 24 h under the constant 
temperature and pressure condition. The moisture (%) was 
calculated by calculation formula: (sample weight before drying 
– weight after drying) / weight before drying × 100 (Mamani-
Linares and Gallo, 2013; Wen et al., 2020). The ash content was 
measured by high temperature burning method, the samples were 

burned in furnace at ca 500°C. The ash (%) was calculated by 
calculation formula: (sample weight before burning – weight after 
burning) / weight before burning × 100 (Latimer, 2012; Luo et al., 
2019). IMF was determined by Soxhlet extraction, in which 2.5 g 
of freeze-dried longissimus dorsi muscle was extracted in 85 ml of 
hexane for 60 min and then placed in a forced draft oven for 
30 min at 105°C. The variation in sample weight before and after 
extraction was used to calculate fat content (Holman et al., 2019; 
Chen G. et al., 2021). Fixed muscle tissue was dehydrated and 
paraffin-embedded, paraffin sections were prepared, stained with 
oil red O, and observed under an optical microscope (Nikon 
Instruments Co. Ltd., 55I-1,000, Shanghai, China). Adipocyte 
diameter was measured using a microscopic imaging system 
(Motic Advanced 3.5). Three non-consecutive muscle sections 
from each muscle sample were used to measure adipocyte 
diameter. Within each section, adipocyte diameter was measured 
in three separate field of vision. All measurements for each bull 
were averaged and used for statistical analyses. The IAA and the 
MFSA were measured and calculated (Pertl et  al., 2013; Ding 
et al., 2021).

Metagenomics of gut microbiota

Total DNA was extracted from cattles’ feces with OMEGA Soil 
DNA Kit (D5625-01), as previously described by Huang et al. 
(2019). DNA concentration and quality were determined by 
NanoDropND-1,000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, United  States) and agarose gel 
electrophoresis, respectively. The extracted microbial DNA was 
processed to construct metagenome shotgun sequencing libraries 
with insert sizes of 400 bp by using the Illumina TruSeq Nano 
DNA LT Library Preparation Kit. Each library was sequenced by 
the Illumina HiSeq X-ten platform (Illumina, United States) with 
PE150 strategy.

Raw sequencing reads were processed to obtain quality-
filtered reads for further analysis. Adapter sequences were 
removed by Cutadapt (v1.2.1; Marcel, 2011). The sequencing 
reads were aligned to the host genome using BWA to remove host 
contamination. Quality-filtered reads were de novo assembled to 
construct the metagenome for each sample by IDBA-UD 
(Iterative De Bruijn graph Assembler for sequencing data with 
highly Uneven Depth). The coding sequences (CDS, > 300 bp) 
were predicted by MetaGeneMark (v3.25; Zhu et al., 2010). CDSs 
were clustered by CD-HIT (v4.8.1) at 90% amino acid sequence 
identity to obtain a non-redundant gene catalogue. The alpha 
diversity index (Chao1 index, Ace index, Simpson index, and 
Shannon index) was based on Mothur (version 1.30.1). The beta-
diversity of both bacterial and fungal communities was assessed 
by computing weighted UniFrac distance matrices and then 
ordinated using non-metric multi-dimensional scaling (NMDS). 
The relative contribution of different biotic and abiotic factors on 
community dissimilarity was tested with PERMANOVA using 
the Adonis function. Linear discriminant analysis Effect Size 

TABLE 1 Diet composition and nutrient levels (based on dry matter).

Feed 
ingredient

Weight 
(kg)

Content 
(%)

Nutritional 
ingredient

Content

Straws 1.3 5.78 Metabolic energy 

(MJ/kg)

5.82

Alfalfas 0.5 2.22 Crude protein 

(%)

16.2

Cossettes 2 8.89 Crude fat (%) 2.32

Wheat straws 1.5 6.67 Calcium (%) 0.54

Ensilings 10 44.46 Phosphorus (%) 0.49

Molasses 0.7 3.11 Acid detergent 

fiber (%)

5.9

Concentrates* 6.49 28.86 Neutral detergent 

fiber (%)

12.98

Total 22.49 100 Total digestible 

nutrient (%)

61.57

*Concentrate: corn (53.16%), cotton meal (11.56%), bran (7.40%), magnesium oxide 
(3.08%), protein feed (23.42) and premix (1.38%) containing (vitamin A, vitamin B1, 
vitamin B2, vitamin B6, vitamin D, vitamin E, pantothenic acid, nicotinamide, Cu, Fe, 
Mn, Zn, Se, and Co).
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(LEfSe) was measured the consistency of differences in relative 
abundance between taxa in the groups analyzed (BC vs. AG), 
taxa with LDA score > 2 and p value <0.05 set as the significant 
level. Gene abundance in each sample was estimated by 
SOAPdenovo2 (v1.0). The taxonomy was annotated by searching 
against the NCBI-NT database by BLASTN (e value <0.001) and 
annotated by MEGAN with the lowest common ancestor 
approach. The functional gene was annotated by searching the 
sequence of the non-redundant genes against the KEGG 
databases (release 90.0) by DIAMOND protein aligner (v2.0.4; 
Cantalapiedra et al., 2021). Gene abundances were derived from 
mapping the all reads back to the predicted ORF via bowtie2 
(v2.2.6) and calculated transcripts per kilobase million (TPM) 
via SamTools (v1.5; Rausch et al., 2019). Metagenomic sequencing 
were analyzed at Personal Biotechnology Co., Ltd. 
(Shanghai, China).

Metabolomics analysis

LC–MS was performed as previously described (Fan et al., 
2021). For each fecal sample, 100 mg was transferred into a 2 ml 
centrifuge tube and 500 μl of ddH2O at 4°C added. The 
supernatant was collected by centrifugation. Chromatographic 
separation was accomplished in an Thermo Ultimate 3,000 system 
equipped with an ACQUITY UPLC® HSS T3 (150 × 2.1 mm, 
1.8 μm, Waters) column maintained at 40°C. The temperature of 
the autosampler was 8°C. Gradient elution of analytes was carried 
out with 0.1% formic acid in water (C) and 0.1% formic acid in 
acetonitrile (D) or 5 mM ammonium formate in water (A) and 
acetonitrile (B) at a flow rate of 0.25 ml/min. Injection of 2 μl of 
each sample was done after equilibration. Analytes from fecal 
samples were obtained via chromatographic separation and 
subjected to electrospray ionization multistage mass spectrometry 
(ESI-MSn) on the Thermo Q Exactive mass spectrometer. LC–MS 
was performed by Personal Biotechnology Co., Ltd. 
(Shanghai, China).

Statistical analysis

Inter-group variables were analyzed by Mann–Whitney test 
using GraphPad Prism 9.0.0 (GraphPad Software, San Diego, CA, 
United  States). Data are reported as mean ± SEM. * denotes 
p < 0.05, meaning significant difference, ** denotes p < 0.01, 
meaning extremely significant difference. The differential species 
in the gut microbiota between BC and AG screened by 
metagenomics analysis were correlated with the differential 
MQT-LM and metabolites, separately, and then the correlation of 
MQT-LM with metabolites was analyzed by Spearman correlation 
method. Based on R (Version 3.6.2), ggplot2 and corrplot packages 
were used for correlation analysis and mapping. Spearman 
correlation coefficient was calculated, and significance test 
was conducted.

Results

Meat quality detection

The body and carcass weight of BC was extremely lower than 
that of AG (p < 0.01). The EMA, IMF content, muscle ash content 
and IAA were significantly lower in BC (p < 0.05), however, the 
BFT and MFSA were significantly higher in BC (p < 0.05; Figure 1; 
Table 2).

Metagenomics of gut microbiota

Composition analysis of gut microbiota
The α-diversity indices of gut microbiota (Simpson, 

Chao1, ACE, Shannon) and β-diversity were compared in BC 
and AG shown in Figures 2, 3, respectively. Chao1 and ACE in 
BC were significantly lower than those in AG (p < 0.05). The 
β-diversity of gut microbiota showed extremely significant 
independent distribution between AG and BC (Anosim 
p < 0.01).

Results of linear discriminant analysis effect size (LEfSe) 
showed the gut microbiota was significantly different between AG 
and BC (Figure  4). At the class level, the Coriobacteriia was 
enriched in BC and Negativicutes enriched in AG. At the order 
level, the Coriobacteriales was enriched in BC and 
Acidaminococcales enriched in AG. At the family level, there were 
7 bacteria in gut microbiota significantly different between BC 
and AG, in which 2 families were enriched in BC and 5 families 
enriched in AG. At the genus level, there were 21 bacteria 
significantly different in gut microbiota between BC and AG, in 
which 5 genera were enriched in BC and 16 genera enriched in 
AG. At the species level, there were 68 bacteria significantly 
different in gut microbiota between BC and AG, in which 13 
species were enriched in BC and 55 species enriched in AG 
(Figure  4). As shown in Figure  5A, in both BC and AG gut 
microbiota were mainly comprised of bacteria within phyla of 
Firmicutes, Bacteroidetes, Actinobacteria, and Spirochaetes with 
the relative abundance of Firmicutes and Bacteroidetes being 
highest. The relative abundance of Bacteroidetes in BC was 
significantly lower than that in AG (p < 0.05; Figure  5B) thus 
resulting in the ratio of Firmicutes/Bacteroidetes in the relative 
abundance had a tendency of increase in BC (p = 0.08; Figure 5C). 
Bifidobacterium, Prevotella, Bacteroides and Eubacterium were the 
most abundant genera in both BC and AG (Figure  6A). The 
relative abundance of Prevotella and Blautia were significantly 
lower in BC if compared to AG (p < 0.05; Figures 6B,C). The top 20 
species in the gut microbiota between breeds were listed in 
Figure 7A with the highest relative abundance of Prevotella copri 
in AG and Bifidobacterium pseudolongum in BC (Figure 7A). The 
relative abundance of Prevotella copri and Blautia wexlerae in BC 
were significantly lower than that in AG (p < 0.05; Figures 7B,C). 
The relative abundance of Ruminococcus gnavus was extremely 
lower in BC than that in AG (p < 0.01; Figures 7B,C).
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Functional analysis of gut microbiota
Protein sequences were annotated using the KEGG database, 

and the number of KEGG metabolic pathways annotated to 
different grades and categories was determined according to their 
KEGG Orthology (KO) classification. As shown in 
Supplementary Figure  1, enriched KEGG pathways within 
metabolism function included: carbohydrate metabolism, amino 
acid metabolism, nucleotide metabolism and lipid metabolism. 
Protein sequences and KO data were obtained from the gene 
coding regions of gut microbiota (Table 3). Sixteen functional 
genes related to lipid metabolism were identified within the KEGG 
differential lipid metabolism pathway (Pathway ID: ko00564) and 
enriched in 10 bacterial species: Methanobrevibacter millerae, 
Methanosphaera stadtmanae, Fermentimonas caenicola, Prevotella 
intermedia, Paenibacillus terrae, Clostridium bornimense, 
Butyrivibrio fibrisolvens, Flavonifractor plautii, Escherichia coli, 

and Spirochaeta africana. TPM values of lipid metabolism related 
functional gene pgpB derived from Escherichia coli and GPCPD1 
from Prevotella intermedia were significantly higher in the gut 
microbiota of BC than those in the gut microbiota of AG (p < 0.05; 
Figure 8; Table 3).

Metabolomics of gut microbiota

Metabolomic analysis identified 450 microbiota-derived 
metabolites that differed between Xinjiang brown and AG 
(Supplementary Figure 2). These included mainly carboxylic acids 
and derivatives (15.66%), fatty acyls (14.46%), benzene and 
substituted derivatives (11.65%), organooxygen compounds 
(6.43%) and steroids and steroid derivatives (5.02%; 
Supplementary Figure 2). Two metabolic pathways related to lipid 
metabolism, i.e., D-glutamine and D-glutamate metabolism and 
Alanine, aspartate and glutamate metabolism, were used in 
subsequent analyses based on pathway impact analysis 
(Supplementary Figure  3). Within the enriched pathways, 7 
microbiota-related metabolites were identified as being 
significantly different between BC and AG. These included 
oxoglutaric acid, succinate, fumaric acid, L-aspartic acid, 
L-asparagine, L-glutamic acid and GABA (Table 4). As shown in 
Figure  9, L-asparagine, fumaric acid (p < 0.01) and GABA 
(p < 0.05) were significantly higher, whereas succinate, oxoglutaric 
acid, L-aspartic acid and L-glutamic acid were significantly lower 
in BC (p < 0.01).

Correlation analysis

In total there were 76 species with the relative abundance 
above 0.1% (RA abv. 0.1%) in metagenomic analysis. They were 
all analyzed in association with 7 metabolites related to lipid 
metabolism and 10 MQT-LM by Spearman correlation. Among 
them, 8 species have different correlations with meat quality traits 
(Supplementary Figure  4A), 7 metabolites have different 
correlation with meat quality traits (Supplementary Figure 4B) 

FIGURE 1

Intramuscular fat in longissimus dorsi sections (200×). Angus cattle (A); Xinjiang brown cattle (B).

TABLE 2 Comparison of beef quality traits.

Characteristics AG BC p value

Weight, kg 625.39 ± 21.51 482.65 ± 19.16 0.001

Carcass weight, kg 379.92 ± 17.74 278.73 ± 6.88 0.001

Backfat thickness 

(BFT), mm

5.76 ± 0.27 6.62 ± 0.21 0.023

Eye muscle area 

(EMA), cm2

80.23 ± 2.78 71.05 ± 2.91 0.035

Intramuscular fat 

(IMF), %

11.09 ± 0.39 9.74 ± 0.43 0.032

Muscle shear force 

(MSF), N

46.35 ± 6.33 46.07 ± 6.19 0.972

Moisture content 

(MC), %

71.28 ± 0.78 72.71 ± 1.27 0.348

Ash content (AC), % 7.56 ± 0.31 6.58 ± 0.29 0.032

Muscle fiber sectional 

area (MFSA), μm2

1248.39 ± 154.58 1662.83 ± 65.26 0.039

Intramuscular 

adipocyte areas (IAA), 

μm2

48310.08 ± 9752.09 18312.65 ± 2721.01 0.018
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and 12 species have different correlation with 7 metabolites related 
to lipid metabolism (Supplementary Figure 4C). Based on this 
result, the differential genus and species, the differential MQT-LM 
and the differential metabolites related to fat metabolism between 
AG and BC were further analyzed by Spearman correlation. IMF 
was positively correlated with Prevotella copri (p < 0.01, r = 0.84), 
Blautia wexlerae (p = 0.01, r = 0.78) and Ruminococcus gnavus 

(p < 0.01, r = 0.93; Figure 10A). BFT was negatively correlated with 
Blautia wexlerae (p < 0.01, r = −0.83; Figure 10A). The Spearman 
correlation analysis of MQT-LM and differential microbiota-
related metabolites related to lipid metabolism showed that IMF 
was positively correlated with levels of succinate (p = 0.01, r = 0.81), 
oxoglutaric acid (p < 0.01, r = 0.83) and L-aspartic acid (p = 0.03, 
r = 0.71), and negatively correlated with levels of GABA (p = 0.03, 

A B C D

FIGURE 2

Comparison of α-diversity in the gut microbiota between Xinjiang brown cattle (BC) and Angus cattle (AG). (n = 5 in each breed). Simpson diversity 
index (A); The Chao1 estimator (B); The ACE estimator (C); Shannon diversity index (D). Values were expressed as means ± SEM. * denotes P < 0.05 
indicating significant difference.

FIGURE 3

Comparison of β-diversity in the gut microbiota between Xinjiang brown cattle (BC) and Angus cattle (AG). (n = 5 in each breed). ANOSIM, analysis 
of similarities.
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FIGURE 4

LEfSe analysis in the gut microbiota between Xinjiang brown cattle (BC) and Angus cattle (AG). (n = 5 in each breed). LEfSe, Linear discriminant 
analysis Effect Size.
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r = −0.70), L-asparagine (p < 0.01, r = −0.85) and fumaric acid 
(p < 0.01, r = −0.87; Figure 10B). BFT was positively correlated 
with GABA (p = 0.01, r = 0.79), L-asparagine (p = 0.01, r = 0.80) and 
fumaric acid (p = 0.04, r = 0.66), and negatively correlated with 
succinate (p = 0.01, r = −0.79), L-aspartic acid (p = 0.01, r = −0.78) 
and L-glutamic acid (p = 0.01, r = −0.78; Figure 10B).

Spearman correlation analysis was also performed on the 
differential metabolites related to fat metabolism with the 
differential gut microbiota in the BC and AG. Succinate were 
positively correlated with Prevotella copri (p = 0.03, r = 0.70), Blautia 
wexlerae (p = 0.02, r = 0.72) and Ruminococcus gnavus (p = 0.04, 
r = 0.67; Figure  10C). GABA were negatively correlated with 
Prevotella copri (p < 0.01, r = −0.84) and Blautia wexlerae (p < 0.01, 
r = −0.83; Figure 10C). Oxoglutaric acid were positively correlated 
with Prevotella copri (p < 0.01, r = 0.86), Blautia wexlerae (p = 0.02, 
r = 0.73) and Ruminococcus gnavus (p = 0.02, r = 0.75; Figure 10C). 
L-aspartic acid levels were positively correlated with Prevotella 
copri (p = 0.03, r = 0.70) and Blautia wexlerae (p = 0.03, r = 0.71; 

Figure 10C). L-asparagine levels were negatively correlated with 
Prevotella copri (p < 0.01, r = −0.84), Blautia wexlerae (p = 0.02, 
r = −0.73) and Ruminococcus gnavus (p = 0.03, r = −0.70; 
Figure 10C). L-glutamic acid levels were positively correlated with 
Blautia wexlerae (p = 0.01, r = 0.82) levels (Figure 10C). Fumaric 
acid were negatively correlated with Prevotella copri (p = 0.03, 
r = −0.71), Blautia wexlerae (p < 0.01, r = −0.83) and Ruminococcus 
gnavus (p = 0.01, r = −0.81; Figure 10C).

Discussion

Our present study showed that the body weight, the carcass 
weight and the EMA, IMF and the IAA of Angus cattle were 
significantly higher than those of Xinjiang brown cattle, whereas 
the BFT and the MFSA of Xinjiang brown cattle were higher. The 
carcass weight, EMA, and the MFSA were indicators of carcass 
muscle strength and meat yield (Choi and Kim, 2009; Lang et al., 
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FIGURE 5

The phyla composition and the differentials in the gut microbiota between Xinjiang brown cattle (BC) and Angus cattle (AG; top 20 Phyla). (n = 5 in 
each breed). The relative abundance of phyla composition (A); The differential phyla in the different relative abundance (B); Firmicutes/
Bacteroidetes Ratio (C). Values were expressed as means ± SEM. * denotes p < 0.05 indicating significant difference.
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2016). The subcutaneous fat deposition is a necessary stage in the 
beef cattle fattening process. The intramuscular adipocytes are 
mainly derived from fibroblasts that reside in the connective tissue 
surrounding and within skeletal muscle (Lowe et al., 2012). The 
proportion of IMF content to total fat content is affected by 
variety, age, nutrition, and other factors (Bong et al., 2012; Gotoh 
and Joo, 2016). Tenderness, juiciness, flavor, and marbling all 
increase as IMF content increases (Farrow et  al., 2009). Beef 
tenderness is improved by intramuscular adipose tissue 
infiltration, which destroys the collagen cross-linking that 
determines meat toughness (McEvers et  al., 2012). Because 
adipose tissue is denser than muscle tissue, increased amounts of 
IMF also make lean meat taste more delicate and may help 
muscles retain more moisture (Campos et al., 2016). The results 
herein showed that the meat quality of Angus cattle is preferable 
than that of Xinjiang brown cattle.

Studies have shown that the gut microbiome is closely related 
to host macronutrient and lipid metabolism, thus affecting the 
meat quality traits of IMF content, BFT and tenderness. The gut 

microbiome may play a part in determining meat quality in cattle 
(Nicholson et al., 2012; Zhang et al., 2017). By analysis of the host-
microbiota-metabolic axis revealed that gut microbiota is closely 
related to fat, sugar, and protein metabolism. Animal lipid 
metabolism-related meat quality traits are closely related to the 
composition of gut microbiota involved in lipid metabolism 
(Nicholson et al., 2012; Sun et al., 2016; Zhang et al., 2017). Zierer 
et al. (2018) analyzed the relationship between gut microbiota, host 
phenotype, and complex genetic traits in human twins and found 
that the microbiota structure is closely related to fat deposition. 
Gut microbiota imbalances or alterations in microbiota structure 
have also been shown to cause alterations in whole blood glucose 
and triglyceride levels, suggesting gut microbiota may regulate 
carbohydrate and lipid metabolism in the host body (Kuno et al., 
2018). In our present study, the results of the α-diversity analysis 
showed that the richness and diversity of gut microbiota in Angus 
cattle were greater than those in Xinjiang brown cattle. 
Furthermore, results of LEfSe analysis showed Angus cattle possess 
a greater variety of microbiota species in their gut microbiota 
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FIGURE 6

The genera composition and the differentials in the gut microbiota between Xinjiang brown cattle (BC) and Angus cattle (AG; top 20 genera). 
(n = 5 in each breed). The relative abundance of genera composition (A); The differential genera in the different relative abundance (B,C). Values 
were expressed as means ± SEM. * denotes p < 0.05 indicating significant difference.

https://doi.org/10.3389/fmicb.2022.988984
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2022.988984

Frontiers in Microbiology 10 frontiersin.org

compared to Xinjiang brown cattle. Significant differences in 
microbiota composition were also observed following β diversity 
analysis. Previous studies have shown that obesity is related to the 
relative abundance of Bacteroidetes and Firmicutes or changes in 
the ratio of Firmicutes / Bacteroides win the gut microbiota 
(Turnbaugh et al., 2006; Parnell and Reimer, 2012). The ratio of 
Firmicutes / Bacteroides is related to the production of short-chain 
fatty acids. These acids serve as macromolecular substances that 
maintain host balance and disease and have been used to prevent 
or treat obesity and type 2 diabetes (Andrade-Oliveira et al., 2015; 
Bindels et al., 2015; Zhang et al., 2015; Ohira et al., 2017; Thursby 
and Juge, 2017). For example, An et al. (2018) showed the gut 
microbiota in high-fat diet-induced obese rats was composed of 
higher levels of Firmicutes and lower levels of Bacteroidetes. 
Increase of Bacteroidetes is related to increased production of 
short-chain fatty acids, which provide cellular energy, maintain the 
intestinal epithelial barrier, and regulate the immune system 
(Greenhalgh et al., 2016). Ley et al. (2005) found that obesity was 
related to an increase in the number of Firmicutes, a decrease in 
the number of Bacteroides, or an increase in the ratio of Firmicutes 
/ Bacteroides in the gut. Bacteroidetes abundance is altered by 
environmental factors, such as dietary protein and fat content, and 

is also positively correlated with the deposition of animal fat (David 
et al., 2014; Johnson et al., 2017; Rampelli et al., 2018). Genus 
Prevotella is among the most abundant bacteria found in the 
rumen, they break down cellulose and use products of cellulose 
degradation as an energy source in sheep and cattle (Ellison et al., 
2017; Delgado et al., 2019), Prevotella copri is ubiquitous in the 
intestine and considered a potential marker for distinguishing high 
feed efficiency in beef cattle during life span and production cycles 
(Brooke et al., 2019). A greater abundance of Prevotella copri in the 
gut microbiota is associated with abnormal carbohydrate 
metabolism during obesity (Duan et  al., 2021), along with fat 
accumulation (Chen C. et al., 2021). Zheng et al. (2022) compared 
the gut microbiota and intramuscular differentially expressed 
genes in the Angus and Chinese Simmental cattle. The results show 
that the relative abundance of Prevotella copri was significantly 
higher in the Simmental cattle. Blautia wexlerae is yet another 
obesity-related bacterium. In contrast to Prevotella copri, Blautia 
wexlerae abundance is decreased during obesity (Benítez-Páez 
et  al., 2020). An important function of Blautia wexlerae is to 
produce acetic acid and butyric acid (Jang et al., 2019). A decreased 
abundance of Blautia wexlerae leads to decrease in acetic acid and 
butyric acid levels (Vital et al., 2018). Our findings to some extents 
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FIGURE 7

The species composition and the differentials in the gut microbiota between Xinjiang brown cattle (BC) and Angus cattle (AG; top 20 species). 
(n = 5 in each breed). The relative abundance of species composition (A); The differential species in the different relative abundance (B,C). Values 
were expressed as means ± SEM. * denotes p < 0.05 indicating significant difference, ** denotes p < 0.01 indicating extremely significant difference.
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were supported by some recent publications. For example, Cao 
et al. (2021) fund that Butyrivibrio, CF231 and Dorea were negative 
correlated with water loss of sheep meat quality traits significantly. 
Lei et al. (2021) showed that the higher relative abundances of the 
genera Ruminococcaceae_NK4A214_group, Parabacteroides, 
Christensenellaaceae_R-7_group, and Ruminiclostridium might 
corelate with higher intramuscular fat (IMF) content. Zheng et al. 
(2022) found that the relative abundance of Roseburia, Prevotella, 
and Coprococcus were positive correlated with IMF of beef quality 
traits significantly. Animal experiments with Khan and Jena (2016) 
showed that butyric acid may improve insulin sensitivity and 
reduce insulin resistance. Recent studies have found that the 
abundance of Ruminococcus gnavus in the intestine of ruminants 
was increased in obese animals, decreased with malnourishment, 
and positively correlates with body mass index (Blanton et al., 
2016; Jang et al., 2019). In the present studies, the abundance of 
Bacteroidetes in the gut microbiota of Xinjiang brown cattle, i.e., 
Prevotella, Blautia at the genus level, Prevotella copri, Blautia 
wexlerae, and Ruminococcus gnavus at the species level were 
significantly lower than that of Angus cattle. Microbiota structure 
was related to differences in lipid metabolism, fat deposition, and 
obesity. Correlation analysis between Prevotella, Blautia, Prevotella 
copri, Blautia wexlerae, Ruminococcus gnavus, and meat quality 
indices related to lipid metabolism showed positive correlations 
with IMF amount and negative correlations with the BFT. These 
correlations suggest that Prevotella, Blautia, Prevotella copri, Blautia 
wexlerae, and Ruminococcus gnavus play an important role in 

regulating meat quality in Xinjiang brown cattle. Hosomi et al. 
(2022) performed a cross-sectional study of Japanese adults and 
identified that the Blautia genus, especially Blautia wexlerae, as a 
commensal bacterium inversely correlated with obesity and type 2 
diabetes mellitus, furthermore, they administrated Blautia wexlerae 
orally to the high fat diet (HFD) fed mice, the body weight and the 
weight of epididymal adipose tissue were significantly decreased 
than those HFD mice without Blautia wexlerae administration 
demonstrating Blautia wexlerae has potential to contribute to the 
prevention of obesity. This research was partly supported our result 
that Blautia wexlerae was negative correlated with IMF. The 
correlation of MQT-LM and certain bacterial species showed that 
these species were mostly related to IMF, the BFT, the IAA, body 
weight, and carcass weight. Among them, Prevotella sp. P3-122, 
Prevotella sp. P3-120, Prevotella sp. P2-180, and Prevotella sp. 
AM42-24 in the genus Prevotella play an important role in 
polysaccharide degradation and fermentation in the rumen 
(Shinkai et al., 2022). Zeybel et al. (2022) found that the abundances 
of Prevotella sp. AM42 24 were significantly reduced in subjects 
with mild hepatic steatosis versus no hepatic steatosis. Eubacterium 
hallii affects the metabolic balance of the host by forming different 
short-chain fatty acids in the intestinal tract (Engels et al., 2016), 
and it was increased in small intestinal biopsies of obese and 
insulin-resistant subjects upon lean donor fecal transplantation 
associated with improved insulin sensitivity (Wan et  al., 2019) 
suggesting it may be associated with MQT-LM. However, there is 
a lack of study on Blautia sp. AF13-16 in association with lipid 
metabolism. These data were further supported by the KEGG and 
KO analyses which showed that lipid metabolism was different in 
Prevotella intermedia between Xinjiang brown and Angus cattle.

Gut microbiota interacts with its host, receiving energy from 
and providing energy to the host. This constant exchange of 
energy between microbiota and host is accomplished through the 
release of enzymes and metabolites such as short-chain fatty acids, 
amino acids, bile acids, casein B, and lipopolysaccharide (Fetissov, 
2017). Importantly, Escherichia coli secretes casein B and casein B 
may enhance the peptide YY (PYY) and glucagon-like peptide 
(GLP) secretion (Breton et  al., 2016). PPY and GLP decrease 
appetite, leading to decreased caloric intake and fat deposition 
(Murphy and Bloom, 2006; Berthoud, 2011; Zhang and van den 
Pol, 2017; Leidmaa et al., 2020). Fatty acids in food are absorbed 
by intestinal epithelial cells, where they are oxidized and degraded 
or re-esterified into triglycerides. Newly synthesized triglycerides 
are incorporated into cytoplasmic lipid droplets or chylous 
particles that are secreted in the lymphatic system (Iqbal and 
Hussain, 2009; Nakajima et  al., 2014). The digestion of 
polysaccharides provides monosaccharides to intestinal epithelial 
cells and reduces the absorption of fatty acids, and promotes 
storage of newly synthesized triglycerides in cytoplasmic lipid 
droplets. Escherichia coli acts in conjunction with epithelial cells 
to form mono- and disaccharides that increase fatty acid 
absorption and oxidation. Increased fatty acid oxidation results in 
decreased triglyceride synthesis, chylous particle size, and chylous 
granule secretion, leading to the depletion of cytoplasmic lipid 

TABLE 3 Genes of the glycerophospholipid metabolism pathway.

Protein ID KO Gene 
name

Pathway 
ID

Taxonomy

gene_9708818 K19664 carS ko00564 Methanobrevibacter 

millerae

gene_9222867 K17830 GGR ko00564 Methanosphaera 

stadtmanae

gene_9997979 K00111 glpA, glpD ko00564 Fermentimonas 

caenicola

gene_8259284 K18695 GPCPD1 ko00564 Prevotella intermedia

gene_9671445 K00631 plsB ko00564 Paenibacillus terrae

gene_9906485 K00980 tagD ko00564 Clostridium 

bornimense

gene_9981399 K06131 ClsA/B ko00564 Clostridium 

bornimense

gene_7283784 K06130 LYPLA2 ko00564 Butyrivibrio 

fibrisolvens

gene_9986649 K04019 eutA ko00564 Flavonifractor plautii

gene_9986650 K03735 eutB ko00564 Flavonifractor plautii

gene_9986651 K03736 eutC ko00564 Flavonifractor plautii

gene_9947823 K00113 glpC ko00564 Escherichia coli

gene_12284373 K01521 cdh ko00564 Escherichia coli

gene_8324574 K01096 pgpB ko00564 Escherichia coli

gene_9999662 K00995 pgsA, 

PGS1

ko00564 Spirochaeta africana
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droplets (Poquet and Wooster, 2016; Tazi et al., 2018). Although 
it is clear that Escherichia coli plays a role in regulating lipid 
metabolism, but there is no research on the relationship between 
Prevotella intermedia and lipid metabolism. Functional level 
analysis of bovine gut microbiota in our present study showed that 
there were differences in the expression of pgpB and GPCPD1 
genes within the “Glycerophospholipid metabolism” pathway in 
Escherichia coli and Prevotella intermedia suggesting that 

Escherichia coli and Prevotella are key bacteria that affect the 
MQT-LM in Xinjiang brown cattle.

Gut microbiota plays a role in maintaining host homeostasis and 
health via the production of short-chain fatty acids and neuroactive 
substances (Wang et al., 2020; Han et al., 2021). The neuroactive 
substance GABA is a major inhibitory neurotransmitter in the 
central nervous system (Cuevas-Sierra et al., 2021). GABA is also 
produced by intestinal microbiota to exhibit the largest change of 
metabolites in the intestine of obese patients in response to fecal 
transplant using samples from lean patients. This change of GABA 
was also related to the improvement in insulin sensitivity (Kootte 
et al., 2017). GABA may also play a role in the treatment of lipid 
metabolism disorders caused by type 1 and 2 diabetes by inducing 
pancreatic β-cells and stimulating insulin secretion (Soltani et al., 
2011; Tian et  al., 2011, 2013). Treatment of obese mice with 
metabolic dysfunction mice with GABA-producing bacteria 
attenuated the metabolic dysfunction and reduced mesenteric 
adipose tissue accumulation (Patterson et  al., 2019). GABA can 
be metabolized to succinate, a metabolic by-product of anaerobic 
fermentation performed in Bacteroides (Zhang et al., 2008; Feehily 
and Karatzas, 2013; De Vadder et al., 2016; Louis and Flint, 2017). 
Interestingly, succinate inhibits fatty acid release from adipocytes. 
Patients with higher circulating succinate levels have higher blood 
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FIGURE 8

The relative abundance of genes related to lipid metabolism in lipid metabolism pathways between Xinjiang brown cattle (BC) and Angus cattle 
(AG). (n = 5 in each breed). The expression of genes related to lipid metabolism (A–O). Values were expressed as means ± SEM. * denotes p < 0.05 
indicating significant difference.

TABLE 4 Pathways enriched in microbiota-related metabolites.

Pathway Compounds

Alanine, aspartate and glutamate metabolism (Total: 23; 

Hits: 7; Raw p: 0.01; −log(p): 4.52; Holm adjust: 0.88; 

FDR: 0.88; Impact: 0.63)

Fumarate acid

Succinate acid

Oxoglutaric acid

L-asparagine

L-Aspartic acid

L-glutamate acid

GABA

D-Glutamine and D-glutamate metabolism (Total: 5; 

Hits: 2; Raw p: 0.15; −log(p): 1.89; Holm adjust: 1.00; 

FDR: 1.00; Impact: 1.00)

L-glutamate acid

Oxoglutaric acid
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glucose levels that may be related to changes in gut microbiota and 
increased barrier permeability. Thus, microbial-derived succinate 
may play an important role in obesity and metabolism-related 
cardiovascular disease (Serena et al., 2018). The oxoglutaric acid, 
succinate and fumaric acid are metabolites of the citric acid cycle 
pathway that link metabolic pathways and lead to the formation of 
citric acid (Akram, 2014). L-glutamic acid is an amino acid that can 
be  utilized for carbohydrate production and is the precursor of 
glutathione. Meanwhile, L-glutamic acid is the first line of defense 
against free radicals in the liver and plays an essential role in the 
pathogenesis of metabolic diseases (Melis et al., 2004; Zhou et al., 
2019). Glutamine was previously thought to be  associated with 
obesity (Curtasu et al., 2019) and diabetes (Newgard et al., 2009), as 
higher levels of glutamine and related metabolites are part of the 
systematic response to higher blood glucose levels and act to 
stimulate insulin secretion to lower blood glucose levels (Newsholme 
et  al., 2005). In addition, other studies have shown that plasma 
L-asparagine levels are negatively correlated with blood lipid levels 
and positively correlated with type 2 diabetes risk (Ottosson et al., 
2018), and exogenous L-aspartic acid feeding limits fatty liver 
progression (Yanni et al., 2010). The results of the metabolomic 
analysis in the present study showed that oxoglutaric acid, succinate, 
fumaric acid, L-aspartic acid, L-asparagine, L-glutamic acid, and 
GABA levels differed between the two breeds of cattle, and 
differential metabolites were associated with MQT-LM. Specifically, 
IMF was positively correlated with succinate, oxoglutaric acid, and 
L-aspartic acid, and negatively correlated with GABA, L-asparagine, 
and fumaric acid. The BFT was positively correlated with GABA, 

L-asparagine, and fumaric acid, and negatively correlated with 
succinate, L-aspartic acid, and L-glutamic acid, suggesting that these 
metabolites may reflect alterations in lipid metabolism that 
determine meat quality. Associations between metabolomes, 
microbiota, and lipid metabolism functional expressions of the 
microbiota that differed between Xinjiang brown and Angus cattle 
showed that succinate, oxoglutaric acid, L-aspartate, and L-glutamic 
acid were positively correlated with the most abundant microbiota 
and that differed between breeds. Levels of GABA, L-asparagine, and 
fumaric acid were negatively correlated with the most abundant 
microbiota that was different between breeds, suggesting that 
MQT-LM may be regulated by changing the expression of lipid 
metabolism-related metabolites in gut microbiota. The correlation 
of microbiota and species (RA abv.0.1%) showed that except for the 
species correlation beef quality traits, there are four species of 
Prevotella stercorea, Ruminococcaceae bacterium YAD3003, 
Clostridium sp. af27-5AA, and Acetivibrio ethanolgignens related to 
lipid metabolites. Pisanu et  al. (2020) evaluate the impact of 
nutritional intervention on the gut microbiota of obese and 
overweight patients, then patients presented a statistically significant 
reduction in body weight and fat mass and an increase in the 
abundance of Prevotella stercorea. Yuan et  al. (2020) found that 
alteration of the gut microbiota Acetivibrio ethanolgignens under 
tributyltin exposure was involved in further mediating liver 
inflammation, causing lipid metabolism abnormalities with the 
energy supply process. Therefore, Acetivibrio ethanolgignens may 
be  a candidate for a potential microbial community marker for 
assistant diagnosis. But more supporting study regarding the 
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FIGURE 9

Metabolites in gut microbiota related to lipid metabolism between Xinjiang brown cattle (BC) and Angus cattle (AG). (n = 5 in each breed). The 
bacterial metabolites related to lipid metabolism (A–G) . Values were expressed as means ± SEM. * denotes p < 0.05 indicating significant difference,  
** denotes p < 0.01 indicating extremely significant difference.
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potentially useful markers of specific gut microbiota from meat 
animal origin are expected.

Conclusion

There are significant differences in meat quality traits in 
association with gut microbiota and its lipid metabolism related 
metabolites between Xinjiang brown cattle and Angus cattle. The 
intramuscular fat content was positively correlated with Bacteria 
species of Prevotella copri, Blautia wexlerae, and Ruminococcus 
gnavus, and the metabolites succinate, oxoglutaric acid, L-aspartic 
acid and L-glutamic acid, while negatively with GABA, 
L-asparagine and fumaric acid. The backfat thickness was 
negatively correlated with Blautia wexlerae and the metabolites 
succinate, L-aspartic acid and L-glutamic acid, while positively 
with GABA, L-asparagine and fumaric acid. Furthermore 
Prevotella Copri, Blautia wexlerae, and Ruminococcus gnavus was 
all positively correlated with succinate, oxoglutaric acid, while 
negatively with L-asparagine and fumaric acid. Lipid metabolism 
genes within the glycerophospholipid metabolism pathway is 
enriched in Prevotella intermedia and Escherichia coli. Our data 
suggest that Prevotella copri, Prevotella intermedia, Blautia 
wexlerae, and Ruminococcus gnavus may serve as the potential 
differentiated bacterial species in association with meat quality 
traits related to the lipid metabolism via their metabolites of 

oxoglutaric acid, succinate, fumaric acid, L-aspartic acid, 
L-asparagine, L-glutamic acid and GABA may serve as potential 
biomarkers to assistant for improving the meat quality in Xinjiang 
brown cattle.
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FIGURE 10

Correlation analyses of the differential MQT-LM – species – metabolites in Xinjiang brown cattle (BC) and Angus cattle (AG). (n = 10). Correlation of 
the differential MQT-LM and species (A); Correlation of the differential MQT-LM and metabolites (B); Correlation of the differential species and 
metabolites (C). * denotes p < 0.05 indicating significant difference.
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