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Colistin is a last-resort antibiotic used in the treatment of multidrug resistant

Gram-negative bacteria. However, the activity and efficacy of colistin has

been compromised by the worldwide spread of the mobile colistin resistance

genes (mcr-1 to mcr-10). In this study, two clinical Escherichia coli strains,

named EcCAI51, and EcCAI73, harbored mcr-1, showed multidrug-resistant

phenotypes (with colistin MIC = 4 µg/ml), and belonged to phylogroup

D: multilocus sequence type 1011 (ST1011) and phylogroup A: ST744,

respectively. Findings revealed the existence of mcr-1 gene on two conjugable

plasmids, pAMS-51-MCR1 (∼122 kb IncP) and pAMS-73-MCR1 (∼33 kb IncX4),

in EcCAI51, and EcCAI73, respectively. The mcr-1-pap2 element was detected

in the two plasmids. Additionally, the composite transposon (ISApl1-IS5D-

pap2-mcr-1-ISApl1) was identified only in pAMS-51-MCR1 suggesting the

potential for horizontal gene transfer. The two strains carried from 16 to 18

different multiple acquired antimicrobial resistance genes (ARGs). Additionally,

two different multireplicon virulence plasmids (∼117 kb pAMS-51-Vr and

∼226 kb pAMS-73-Vr) carrying the sit operon, the Salmochelin siderophore

iroBCDE operon and other several virulence genes were identified from the

two strains. Hierarchical clustering of core genome MLST (HierCC) revealed

clustering of EcCAI73, and EcCAI51 with global E. coli lineages at HC levels

of 50 (HC50) to 100 (HC100) core genome allelic differences. To the best of
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our knowledge, this study presented the first complete genomic sequences of

mcr-1-carrying IncP and IncX4 plasmids from human clinical E. coli isolates

in Egypt. In addition, the study illustrated the mcr-1 broad dissemination in

diverse plasmids and dissimilar E. coli clones.

KEYWORDS

E. coli, Egypt, IncP plasmid, IncX4 plasmid, ST1011, ST744, mcr-1

Introduction

Colistin is one of the last-resort antibiotics used in the
treatment of infections caused by multidrug or carbapenem
resistant Gram-negative bacteria. In 2016, the first mobile
colistin resistance gene (mcr-1) was reported from Escherichia
coli and Klebsiella pneumoniae isolated from patients, food, and
animals in China (Liu et al., 2016). mcr-1 acts by modifying
the lipid A part of the lipopolysaccharide in Gram-negative
bacteria by adding phosphoethanolamine, reducing the
binding affinity to colistin (Liu et al., 2016). Furthermore,
mcr-1-carrying E. coli strains have been reported in Egypt
from patients (Elnahriry et al., 2016), cattle, and chickens
(Elbediwi et al., 2019). mcr-1 has been detected in several
plasmid groups, including IncX4, IncHI2, IncI2, IncI1, IncN,
IncFIB, IncP, and IncW (Lu et al., 2018; Elbediwi et al.,
2019; Soliman et al., 2021). Ten mcr genes (mcr-1–mcr-
10) have been characterized, all of which confer resistance
to colistin by the same mechanism described above. We
reported the first mcr-9-carrying Enterobacter hormaechei
clinical isolate in the Middle East (Soliman et al., 2020a).
Recently, Tartor et al. (2021a) reported the first emergence
of an Egyptian K. pneumoniae isolate co-harboring mcr-10
and fosA5 genes from bovine milk in Middle East. Other
variants of mcr including mcr-1, mcr-2, mcr-3, mcr-4,
and mcr-7 were also reported in Gram-negative bacteria
(E. coli, K. pneumoniae, and Pseudomonas aeruginosa)
isolated from bovine milk in Egypt (Tartor et al., 2021b).
We additionally reported two mcr-1-, tet(X7)-, and fosA3-
positive E. coli ST155 strains showing resistance to last
resort antibiotics (such as colistin, and tigecycline) from
poultry farm in Egypt (Soliman et al., 2021). Recently,
a uropathogenic E. coli strain carried mcr-1.1 on a self-
transmissible IncHI2 plasmid from Alexandria, Egypt
(Zakaria et al., 2021).

Little is yet known about the genomic characteristics
of mcr-1-carrying clinical E. coli strains in Egypt.
Therefore, we aimed, in this study, to characterize
the complete genomic sequences of mcr-1-carrying
IncP and IncX4 plasmids from two clinical E. coli
isolates and to perform phylogenetic analysis for
these two strains.

Materials and methods

Bacterial strains used in this study

The two mcr-1-positive E. coli isolates, named EcCAI51
and EcCAI73, were detected from two patients in two different
hospitals located in Cairo, Egypt. The strain EcCAI51 was
isolated from the eye swab of a 50-years-old male patient
diagnosed with a respiratory infection in April 2015, while strain
EcCAI73 was isolated from a blood sample of a patient in
May 2015. The two strains were identified by 16S rRNA gene
sequencing using primers 27F and 1492R and screened by PCR
for mobile colistin-resistance genes (mcr-1–mcr-5) (Table 1;
Luo et al., 2015; Elnahriry et al., 2016; Liu et al., 2016; Xavier
et al., 2016; Borowiak et al., 2017; Carattoli et al., 2017; Yin
et al., 2017), extended-spectrum β-lactamases, carbapenemase-
encoding genes, plasmid-mediated quinolone-resistance genes,
and 16S rRNA methylases as previously described (Jousset et al.,
2019; Soliman et al., 2020b).

Antimicrobial susceptibility testing

The broth microdilution assay (BMD) was performed to
determine the minimum inhibitory concentration (MIC) of
various antimicrobials (Table 2) according to the standards and
interpretive criteria described by the Clinical and Laboratory
Standards Institute (Clinical and Laboratory Standards Institute
[CLSI] (2020) document M100-S24) and European Committee
on Antimicrobial Susceptibility Testing (EU-CAST) (for
colistin and tigecycline breakpoints).1 For all experiments, the
purified powder of each antibiotic was diluted following CLSI
recommendations. E. coli ATCC 25922 was used as a control.

Filter-mating conjugation

A mating-out assay was completed at 37◦C using the
two E. coli strains and the AZr (azide resistant) E. coli

1 http://www.eucast.org
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TABLE 1 Primers used in this study for PCR screening of mobile colistin resistance (mcr) genes.

Primer Nucleotide sequence (5′→3′) Annealing Tm, target size References

27F GAGTTTGATCMTGGCTCAG 50◦C, ∼1,600 bp Luo et al., 2015

1492R ACGGGCGGTGTGTRC

CLR5-F CGGTCAGTCCGTTTGTTC 53◦C, 308 bp Liu et al., 2016

CLR5-R CTTGGTCGGTCTGTAGGG

MCR-1-F2 CTCATGATGCAGCATACTTC 53◦C, 1,626 bp Elnahriry et al., 2016

MCR-1-R2 CGAATGGAGTGTGCGGTG

MCR2-IF TGTTGCTTGTGCCGATTGGA 65◦C, 566 bp Xavier et al., 2016

MCR2-IR AGATGGTATTGTTGGTTGCTG

mcr-2 full Fw ATGACATCACATCACTCTTGG 52◦C, 1,617 bp Liassine et al., 2016

mcr-2 full Rv TTACTGGATAAATGCCGCGC

MCR3-F TTGGCACTGTATTTTGCATTT 50◦C, 542 bp Yin et al., 2017

MCR3-R TTAACGAAATTGGCTGGAACA

Mcr-4 FW ATTGGGATAGTCGCCTTTTT 45◦C, 487 bp Carattoli et al., 2017

Mcr-4 RV TTACAGCCAGAATCATTATCA

MCR5_fw ATGCGGT TGTCTGCATTTATC 50◦C, 1,644 bp Borowiak et al., 2017

MCR5_rev TCATTGTGGTTGTCCTTTTCTG

TABLE 2 Minimum inhibitory concentrations (MICs) for mcr-1-carrying strains of E. coli and its transconjugants identified in this study.

Strain MICa (µ g/ml)

MEM DOR CHL AMP CTX CST PLB GEN KAN TET CIP NAL

EcCAI51 0.25 S 0.0312 S 512 R 512 R 512 R 4 R 4 R 4 S 512 R 128 R 32 R > 512 R

EcCAI51-Tc1 1 S 1 S 128 R 64 R < 0.25 S 2 I 4 R 1 S 4 S 32 R 0.25 S 4 S

EcCAI73 0.0625 S 0.25 S 512 R 512 R < 0.25 S 4 R 4 R 64 R 512 R 128 R 16 R > 512 R

EcCAI73-TC3 1 S 0.25 S 8 S 32 R < 0.25 S 4 R 4 R 2 S 4 S 0. 5 S < 0.25 S 2 S

E. coli ATCC25922 0.0625 S 0.0625 S 8 S 64 R < 0.25 S 0.5 S < 0.25 S 2 S 4 S < 0.25 S <0.25 S 1 S

aindicated the abbreviations of antibiotics. AMP, ampicillin; DOR, doripenem; PLB, polymyxin B; KAN, kanamycin; CTX, cefotaxime; CHL, chloramphenicol; CIP, ciprofloxacin; CST,
colistin; GEN, gentamicin; MEM, meropenem; NAL, nalidixic acid; TET, tetracycline; S, sensitive; I; intermediate, R, resistant.

J53 strain as the donor and recipient, respectively (Soliman
et al., 2020b, 2021). These experiments were performed on
a solid media using filters with a 1:1 donor: recipient ratio.
After a 5-h incubation, filters were resuspended in 3 ml LB
broth, and bacterial mixtures were overlaid onto agar plates
supplemented with colistin (2 µg/ml) and sodium azide (150
µg/ml). Colony-direct PCR was performed using CLR5-F and
CLR5-R primers (Table 1) to confirm the transfer of the plasmid
carrying mcr-1.

Plasmid analysis, PCR-based replicon
typing, multi-locus sequence typing,
and Escherichia coli phylogroup

Plasmid analysis of the wild strains and transconjugants
was performed by alkaline lysis method and PCR-
based replicon typing (PBRT) (Carattoli et al., 2005;
Soliman et al., 2020b). Multi-locus sequence typing

(MLST) was performed for E. coli [using Achtman
seven housekeeping genes (adk, fumC, icd, purA, gyrB,
recA, and mdh)] according to the MLST database.2

E. coli phylogroups (A, B1, B2, and D) were detected
by Triplex PCR after amplification of chuA and yjaA
and the DNA fragment TSPE4.C2 as previously described
(Clermont et al., 2000).

Complete genome sequencing, and
analysis

The Qiagen Genomic-tip 20/G kit (Qiagen) was used to
extract the total genomic DNA following the manufacturer’s
recommendations. For Illumina sequencing by MiniSeq,
a Nextera XT Library Prep Kit and a Nextera XT Index
Kit was used to prepare the DNA library (Illumina, San

2 https://enterobase.warwick.ac.uk/species/index/ecoli
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Diego, CA, United States) according to the manufacturer’s
instructions. For Nanopore sequencing by GridION,
construction of the library was performed by the SQK-
RBK004 Rapid Barcoding Kit (Oxford Nanopore Technologies,
Oxford, United Kingdom). The library was loaded onto
a FLO-MIN106 R9.4.1 flow cell and sequenced with the
GridION device (Oxford Nanopore Technologies, Oxford,
United Kingdom). A hybrid assembly of MiniSeq short
reads and Nanopore long reads was achieved by Unicycler
(Wick et al., 2017). The annotation was performed using
DFAST.3 The complete genome sequences of the two
E. coli strains were investigated at the Center for Genomic
Epidemiology4 using ResFinder-4.1 (identity threshold
for gene predictions was 90%), MLST 2.0, pMLST 2.0,
VirulenceFinder-2.0 and PlasmidFinder-2. Genomic
comparisons were performed using the BRIG tool5 and
EasyFig tool.6 The BLAST program7 and ISfinder8 were used to
analyze the plasmids.

Phylogenetic analyses of the
mcr-1-positive Escherichia coli isolates

Raw Fastq files of the sequenced two E. coli strains, EcCAI51
and EcCAI73 were imported into Enterobase9 for WGS-based
phylogenetic analysis. Two sets of publicly available genomes
of E. coli in Enterobase that represent different sources and
belong to sequence types (ST) ST744 (n = 181) and ST1011
(n = 157) were chosen for the analysis. Our EcCAI51 (ST1011)
and EcCAI73 (ST744) genomes were compared separately
to the selected genomes from Enterobase belonging to the
same ST using single nucleotide polymorphisms (SNPs) and
hierarchical clustering (HierCC) of core genome (cg) MLST
(Zhou et al., 2020). E. coli K-12 MG1655 was used as the
reference strain for SNPs analysis of isolates. Metadata for the
selected genomes from Enterobase are given in Supplementary
Tables 1, 2.

Nucleotide sequence accession
numbers

The complete genome sequence of EcCAI51 and EcCAI73
were submitted to DDBJ/ENA/GenBank under BioProject

3 https://dfast.nig.ac.jp/

4 http://www.genomicepidemiology.org/

5 http://brig.sourceforge.net/

6 http://mjsull.github.io/Easyfig/

7 https://blast.ncbi.nlm.nih.gov/Blast.cgi

8 https://isfinder.biotoul.fr/

9 https://enterobase.warwick.ac.uk/

ID: PRJDB11824 (SRA accession numbers DRA012212, and
DRA012213, respectively).

Results and discussion

Characterization of Escherichia coli
strains EcCAI51, and EcCAI73

Two polymyxin resistant E. coli isolates were identified from
two different hospitals located at the capital city of Egypt. The
two isolates showed multidrug-resistant phenotypes. Both the
isolates were resistant to colistin (MIC = 4 µg/ml), polymyxin
B (MIC = 4 µg/ml), ampicillin, chloramphenicol, tetracycline,
kanamycin, and fluoroquinolones but were sensitive to
meropenem and doripenem (Table 2). Although both isolates
were susceptible to carbapenem, carbapenem-resistant E. coli
carrying mcr genes were reported (Paveenkittiporn et al.,
2021). In that study, the investigators identified nine colistin
and carbapenem resistant MCR and NDM or OXA-48-like-
producing E. coli strains isolated from clinical samples in
Thailand during 2016–2019 (Paveenkittiporn et al., 2021).
EcCAI51 was resistant to cefotaxime due to production
of CTX-M-14. PCR and DNA sequencing confirmed the
presence of mcr-1 in both isolates. There was no clonal
relationship between the two isolates that assigned to
two different ST (ST1011 or ST744), and two different
phylogenetic groups (D or A). ST1011 and ST744 had
the same ST of mcr-1-positive clinical E. coli previously
identified from Egypt and Denmark, respectively (Hasman
et al., 2015; Elnahriry et al., 2016), and differed from the
STs recognized in mcr-1-positive clinical E. coli isolates from
Cambodia (ST354) (Stoesser et al., 2016) and South Africa
(ST10, ST1007, ST624, ST57, ST101, ST624, and ST226)
(Poirel et al., 2016). The two strains carried from 16
to 18 different multiple acquired antimicrobial resistance
genes (ARGs) located on the chromosome and/or different
plasmids (Table 3).

We obtained high-quality assemblies by combining the
Illumina MiniSeq short reads and the Oxford Nanopore long
reads adequately for completing the genomes and the plasmids
contained in both isolates (Table 3). E. coli EcCAI51, and
EcCAI73 carried three, and four plasmids, respectively (Table 3).
The chromosome of the EcCAI51 strain was 4,977,650 bp in
size with an average G + C content of 50.6% determining 4,540
coding sequences. ResFinder identified several chromosomal
ARGs as follow: mdf (A), aph(3")-Ib, aph(6)-Id, aadA2, aph(3’)-
Ia, sul1, sul2, dfrA12, blaTEM−1B, and blaCTXM−14b. In addition,
EcCAI73 has 4,728,273 bp chromosome with an average G + C
content of 50.7% and 4,396 coding sequences. The chromosomal
ARGs in EcCAI73 were mdf (A), aph(3’)-Ia, aph(3 ")-Ib, aph(6)-
Id, aadA5, mph(A), sul2, sul1, dfrA17, tet(B), catA1, blaTEM−1B,
and qacE11.
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TABLE 3 Features of chromosome and the plasmids of E. coli strains EcCAI51, and EcCAI73 isolated from clinical samples in Egypt.

Sample Size (bp) GC% No. of
CDSs

MLST or
pMLST

Incompatibility
group

Antimicrobial
resistance genes

QRDR point
mutations

Virulence genes

E. coli EcCAI51

Chromosome 4,977,650 50.6 4,540 ST1011 ND mdf (A), aph(3")-Ib,
aph(6)-Id, aadA2, aph(3’)-Ia,
sul1, sul2, dfrA12, blaTEM−1B ,
blaCTX−M−14b

-parC: S80I.
-gyrA: S83L, D87N.

air, chuA, eilA, gad, ireA,
papA_F20, papC, terC

pAMS-51-MCR1 121,922 49.2 121 ND IncP aadA2b, aadA1, mcr-1.1, sul3,
cmlA1

NA ND

pAMS-51-Vr 117,096 50.9 119 F24:A− :B1 IncFII: IncFIB
(AP001918)

tet(A) NA etsC, hlyF, iroN, iss, ompT,
traT, sitABCD

pAMS-51-IncI1 111,134 51 117 ST12 IncI1-Iγ floR NA ND

E. coli EcCAI73

Chromosome 4,728,273 50.7 4,396 ST744 ND mdf (A), aph(3’)-Ia,
aph(3")-Ib, aph(6)-Id, aadA5,
mph(A), sul2, sul1, dfrA17,
tet(B), catA1, blaTEM−1B ,
qacE11

-parC: S80I, A56T.
-gyrA: S83L, D87N.

gad, iha, mchB, mchC, mchF,
terC

pAMS-73-Vr 226,439 49.5 244 F18:A6:B40 IncFIA: IncFIB
(AP001918): IncFIC:
IncFII(K)

ND NA cba, cma, cvaC, etsC, hlyF,
iroN, iss, iucC, iutA, mchF,
ompT, traT, tsh, sitABCD

pAMS-73-IncI1 110,843 50 120 ST80
(CC31)

IncI1-Iγ aac(3)-IId, aadA22 NA ND

pAMS-73-IncY 110,329 46.9 110 ND IncY ND NA ND

pAMS-73-MCR1 33,304 41.9 39 ND IncX4 mcr-1.1 NA ND

gad, glutamate decarboxylase; lpfA, long polar fimbriae; iroN, enterobactin siderophore receptor protein; iss, increased serum survival; QRDR, quinolone resistance-determining region; ND, not determined; cba, colicin B; cma, colicin M; cvaC, microcin C;
etsC, putative type I secretion outer membrane protein; hlyF, hemolysin F; iha, adherence protein; iroN, Enterobactin siderophore receptor protein; iss, increased serum survival; iucC, aerobactin synthetase; iutA, ferric aerobactin receptor; mchB, microcin
H47 part of colicin H; mchC, MchC protein; mchF, ABC transporter protein MchF; ompT, outer membrane protease (protein protease 7); sitA, ron transport protein; terC, tellurium ion resistance protein; traT, outer membrane protein complement
resistance; tsh, temperature-sensitive hemagglutinin; air, enteroaggregative immunoglobulin repeat protein; chuA, outer membrane hemin receptor; eilA, Salmonella HilA homolog; ire, siderophore receptor; papA_F20, major pilin subunit F20; papC,
outer membrane usher P fimbriae.
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FIGURE 1

Schematic representation of IncP plasmids carrying mcr-1.1 identified from the genome sequences of K. pneumoniae and E. coli strains
analyzed in this study. Four IncP plasmid, p160070-MCR, pMCR_SCKP-LL83, pZR78, and pPC6-mcr1 carrying mcr-1.1 (accession no.
MG288678.1, MF510496.1, MF455226.1, and CP080254.1, respectively) have been detected from NCBI GenBank and was included in the figure.
The whole sequence of pAMS-51-MCR1 was used as the reference. The external ring represents the annotation of pAMS-51-MCR1. The plasmids
were included in the following order: pAMS-51-MCR1 (identified in this study), p160070-MCR, pPC6-mcr1, pZR78, and pMCR_SCKP-LL83.

Identification of IncP and IncX4
plasmids carrying mcr-1 in Egyptian
clinical Escherichia coli isolates

The mcr-1.1 gene was located on the plasmids pAMS-
51-MCR1 and pAMS-73-MCR1 from isolates EcCAI51 and
EcCAI73, respectively. pAMS-51-MCR1 was 121,922 bp
IncP type (Figure 1). A BLASTn search using the whole
pAMS-51-MCR1 sequence query detected that it has high
identity to other mcr-1-carrying plasmids. for example,
pAMS-51-MCR1 showed > 98.7% sequence identity to

K. pneumoniae plasmid pSCKLB684-mcr (55% coverage;
MH781719.1, IncY type), plasmid p160070-MCR isolated
from food in China (56% coverage; MG288678.1, IncP
type), and plasmid pMCR_SCKP-LL83 isolated from human
in China (56% coverage; MF510496.1, IncP type), which
were harbored mcr-1 (Figure 1). In addition, pAMS-51-
MCR1 showed > 98.7% sequence identity to E. coli plasmid
pZR78 (56% coverage; MF455226.1, IncP type), and plasmid
pPC6-mcr1 (56% coverage; CP080254.1, IncP type).

pAMS-73-MCR1 was 33,304 bp IncX4 type (Figure 2).
A BLASTn search using the whole pAMS-75-MCR1 sequence
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FIGURE 2

Schematic representation of IncX4 plasmids carrying mcr-1.1 identified from the genome sequences of E. coli, K. pneumoniae or Salmonella
enterica strains analyzed in this study. Four IncX4 plasmid, pE13-43-mcr-1, pSH15G2169, pWI2-mcr, and plasmid 16BU137_mcr-1.1 carrying
mcr-1.1 (accession no. MG747473.1, MH522417.1, LT838201.1, and MT316509.1, respectively) have been detected from NCBI GenBank and was
included in the figure. The whole sequence of pAMS-73-MCR1 was used as the reference. The external ring represents the annotation of
pAMS-73-MCR1. The plasmids were included in the following order: pAMS-73-MCR1 (identified in this study), pE13-43-mcr-1, pSH15G2169,
pWI2-mcr, and plasmid 16BU137_mcr-1.1.

query detected that it has 99.9% identity with 99% coverage
to other mcr-1-carrying IncX4 plasmids as follow: (i) plasmid
pWI2-mcr detected from clinical E. coli isolate WI2 in
France (LT838201.1), (ii) plasmid pSH15G2169 from
Salmonella enterica subsp. enterica serovar Typhimurium
strain SH15G2169 isolated from diarrheal outpatients in
Shanghai, China (MH522417.1) (Lu et al., 2019), iii) plasmid
16BU137_mcr-1.1 from clinical K. pneumoniae strain 16BU137
in China (MT316509.1), and iv) plasmid pE13-43-mcr-1
(MG747473.1) isolated from E. coli strain 13–43 collected from
urine sample in China in 2013.

Regarding the genetic environment of mcr-1.1, the mcr-1-
pap2 (a gene encoding a putative PAP family transmembrane
protein) element was detected in the two plasmids (Figure 3).
However, the composite transposon (ISApl1-IS5D-pap2-
mcr-1-ISApl1) (Figure 3) was only in pAMS-51-MCR1
suggesting the role of ISApl1 and its potential for horizontal
gene transfer (Partridge et al., 2018). ISApl1 belongs to
IS30 family and encodes a DDE-type transposase (Partridge
et al., 2018). It was first identified in the pig pathogen
Actinobacillus pleuropneumoniae (Tegetmeyer et al., 2008)
and was implicated in the acquisition and mobilization of
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FIGURE 3

Linear comparison of the genetic environment of mcr-1.1 detected in this study from the two strains with other mcr-1 context from different
plasmids and strains identified from NCBI GenBank.

mcr-1 (Liu et al., 2016). The mcr-1 genetic context, pap2-
mcr-1-ISApl1, was observed in i) E. coli strain 803DBmcr
plasmid 803-DB-mcr, isolated from human sample in
China in 2017 (MH128771.1) (Figure 3), ii) E. coli strain
ECZP248 plasmid pTBMCR401 isolated from chicken in
China in 2017 (CP034785.1) (Figure 3; Chang et al., 2020),
and iii) E. coli strain NDM132 plasmid pls1 recovered in
China, (KX458104.1) (Figure 3). The plasmids pAMS-51-
MCR1 and pAMS-73-MCR1 were effectively transferred
by mating out assay to the recipient E. coli J53 strain
with an efficiency of ∼2.7 × 10−5 and 1 × 100 CFU/ml,
respectively. PCR confirmed that transconjugants harbored
mcr-1. The transconjugants carrying both the plasmids
showed resistance to colistin (MICs = 2 or 4 µg/ml), and
polymyxin B (MICs = 4 µg/ml) (Table 2). Additionally,
the transconjugant EcCAI51-Tc1 was resistant to CHL, and
TET. It might be due to the transfer of both pAMS-51-
MCR1 (which carry cmlA1 conferring resistance to CHL)
and pAMS-51-VR (which carry tet(A) conferring resistance
to TET). In contrast, the other transconjugant EcCAI73-
TC3 was sensitive to CHL, and TET. However, the two
transconjugant were slightly resistant to AMP which is
suggested by the carriage of unknown β-lactamase on the
transferred plasmids. To our knowledge, this is the first report

of mcr-1-carrying IncP and IncX4 plasmids from human clinical
E. coli isolates in Egypt.

Analysis of the virulome of the two
mcr-1-producing Escherichia coli
isolates: Identification of two
multireplicon virulence plasmids

Numerous virulence factors (VFs) have been detected
chromosomally or on different plasmids contained within
the two isolates, explaining its pathogenicity and virulence
(Table 3). The chromosome of E. coli EcCAI51 carried
the following VFs: air (enteroaggregative immunoglobulin
repeat protein), chuA (outer membrane hemin receptor), eilA
(Salmonella HilA homolog), gad (glutamate decarboxylase),
ireA (siderophore receptor), papA_F20 (major pilin subunit
F20), papC (outer membrane usher P fimbriae), and terC
(tellurium ion resistance protein) while the chromosome of
E. coli EcCAI73 carried gad, iha (adherence protein), mchB
(microcin H47 part of colicin H), mchC (MchC protein),
mchF (ABC transporter protein MchF), and terC. Several
MCR-1-producing E. coli isolates with virulence characters
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FIGURE 4

Schematic representation of the multireplicon virulence plasmids identified from the genome sequences of E. coli strains analyzed in this study.
Four plasmid, pCombat11I9-2, pNIT-HK, and p94EC-1 (accession no. CP021728.1, MF474175.1, and CP047577.1, respectively) have been
detected from NCBI GenBank and was included in the figure. The whole sequence of pAMS-73-Vr was used as the reference. The external ring
represents the annotation of pAMS-73-Vr. The plasmids were included in the following order: pAMS-73-Vr (identified in this study), pAMS-51-Vr
(identified in this study), pCombat11I9-2, pNIT-HK, and p94EC-1.

have been previously reported from Nepali patient admitted
to an intensive-care unit in Qatar, and from retail poultry
meat in Czech Republic (Forde et al., 2018; Kubelová et al.,
2021).

Two different multireplicon virulence plasmids (∼117 kb
IncFII: IncFIB pAMS-51-Vr and ∼226 kb IncFIA: IncFIB:
IncFIC: IncFII(K) pAMS-73-Vr) carrying several virulence
genes were identified from the two isolates. Both the
plasmids carried the sitABCD operon mediating resistance to

hydrogen peroxide and catalyzing iron, manganese transport
(Sabri et al., 2006), the Salmochelin siderophore iroBCDE
operon mediating iron uptake and the iroN which act
as siderophore receptor, mediating the utilization of the
siderophore enterobactin (Russo et al., 2002). Additionally,
pAMS-73-Vr carried the iucABCD operon and iutA mediating
iron and aerobactin uptake (Torres et al., 2001). pAMS-73-
Vr also carried the vacuolating autotransporter toxin (vat
gene), which encourages the development of intracellular
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FIGURE 5

Phylogenetic analysis of ST1011 Escherichia coli isolate and other publicly available ST1011 E. coli isolates (n = 157) in Enterobase using single
nucleotide polymorphisms (SNPs) and hierarchical clustering (HierCC) of core genome (cg) MLST.

vacuoles causing cytotoxic effects related to those triggered
by the Helicobacter pylori VacA toxin (Parreira and Gyles,
2003). The operons sitABCD, and iucABCD were previously
described from tet(X7)-mcr-1/IncHI2 plasmids detected in
E. coli isolates from poultry in Egypt and from plasmid
pZM3 detected from an Algerian Salmonella enterica isolate
(Harmer and Hall, 2020; Soliman et al., 2021). Numerous
other virulence genes were detected from both isolates’
plasmids and were included into Table 3. A BLASTn
search using the whole pAMS-51-Vr sequence query detected
that it has > 99.9% identity with > 92% coverage to
other virulence multireplicon plasmids detected from E. coli
isolates as follow: (i) plasmid pCombat11I9-2 from strain
Combat11I9 detected from urine in China (CP021728.1),
(ii) plasmid pNIT-HK from strain J53/pNIT-HK isolated in

Hong Kong (MF474175.1), and iii) plasmid p94EC-1 from
strain 94EC isolated from human fecal sample in Singapore
(CP047577.1) (Figure 4).

Evolutionary relatedness of ST1011,
and ST744 mcr-1-producing Egyptian
clinical Escherichia coli isolates
identified in this study

Phylogenetic analysis was performed by comparing the
genomes of our isolates EcCAI51 (ST1011) and EcCAI73
(ST744) to the publicly available E. coli genomes in Enterobase
using SNPs and HierCC of cgMLST (Figures 5, 6). Based on
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FIGURE 6

Phylogenetic analysis of ST744 Escherichia coli isolate EcCAI73 and other publicly available ST744 E. coli isolates (n = 181) in Enterobase using
single nucleotide polymorphisms (SNPs) and hierarchical clustering (HierCC) of core genome (cg) MLST.

differences of core genome loci among bacteria, different sets
of hierarchical clusters (HCs) in Enterobase were designated to
cluster bacterial genomes at higher resolution levels compared
to the conventional MLST. At HC100 (≤ 100 allelic differences),
the HC100 pattern (HC100| 29212) has been determined
for our ST1011 isolate (EcCAI51) and other ST1011 isolates
from various countries including China, Japan, Vietnam,
Bangladesh, Lebanon, and other European countries (Figure 5
and Supplementary Table 1). Likewise, our ST744 isolate
(EcCAI73) was clustered, and shared the same HC50| 3561
with no more than 50 allelic differences with other ST744
isolates from Thailand, the United States, Australia, Vietnam,
Switzerland, Netherlands, Spain, and Portugal (Figure 6
and Supplementary Table 2). In our recently published
reports, we have determined the clustering of mcr-producing
E. coli from Poultry in Egypt with global E. coli lineages
(Ramadan et al., 2021; Soliman et al., 2021), indicating the wide
spread of antimicrobial-resistant clones and the requirement of

implementing WGS-based phylogeny for disease surveillance
and control interventions.

A recent study illustrated that the mcr-1/IncX4 plasmid
(pHNSHP23) was stably maintained without an effect on
the growth of their hosts conferring a fitness advantage
and indicating the ability for an additional dissemination
with or without the selection pressure of antibiotics
(Wu et al., 2018). Furthermore, the mcr-1/IncP plasmids
(pHNGDF1-1 and pHNGDF36-1) were quite stable and
increased the biological fitness in the host (Lv et al.,
2018). The IncP plasmids has a broad host range and
a high conjugation efficiency which may accelerate the
spreading of mcr-1 across different hosts (Lv et al., 2018).
The future perspective following this study might be
as follow: I) assaying the stability of the two plasmids
identified in this study, pAMS-51-MCR1 and pAMS-
73-MCR, and II) analyzing the fitness costs of these two
mcr-1-positive plasmids.
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Conclusion

To the best of our knowledge, this study presented
the first complete genomic sequence of mcr-1-carrying IncP
and IncX4 plasmids from human clinical E. coli isolates in
Egypt. In addition, the study illustrated the mcr-1 broad
dissemination in diverse plasmids and dissimilar E. coli
clones. A multireplicon virulence plasmid, named pAMS-73-
Vr, carrying the operons sitABCD, iroBCDE and iucABCD/iutA
was identified. Both the strains showed MDR phenotypes, which
can be easily converted to extensive (XDR) or pan (PDR)
drug-resistant phenotypes by horizontal gene transfer of any
carbapenemase gene, particularly blaNDM (highly prevalent in
Egypt). Therefore, medical authorities must implement strict
infection control policies and antimicrobial surveillance plans
(including animals) to control the spread of such strains.
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