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Stenotrophomonas acidaminiphila, the most recent reported species in genus 

Stenotrophomonas, is a relatively rare bacteria and is an aerobic, glucose 

non-fermentative, Gram-negative bacterium. However, little information of S. 

acidaminiphila is known to cause human infections. In this research, we firstly 

reported a multidrug-resistant strain S. acidaminiphila SINDOREI isolated from 

the blood of a patient with sepsis, who was dead of infection eventually. The 

whole genome of strain SINDOREI was sequenced, and genome comparisons 

were performed among six closely related S. acidaminiphila strains. The core 

genes (2,506 genes) and strain-specific genes were identified, respectively, to 

know about the strain-level diversity in six S. acidaminiphila stains. The presence 

of a unique gene (narG) and essential genes involved in biofilm formation 

in strain SINDOREI are important for the pathogenesis of infections. Strain 

SINDOREI was resistant to trimethoprim/sulfamethoxazole, ciprofloxacin, 

ofloxacin, cefepime, ceftazidime, and aztreonam. Several common and 

specific antibiotic resistance genes were identified in strain SINDOREI. The 

presence of two sul genes and exclusive determinants GES-1, aadA3, qacL, and 

cmlA5 is responsible for the resistance to multidrug. The virulence factors and 

resistance determinants can show the relationship between the phenotype 

and genotype and afford potential therapeutic strategies for infections.
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Introduction

The genus Stenotrophomonas, which was first described with the 
type species Stenotrophomonas maltophilia (Palleroni and Bradbury, 
1993), currently comprises 16 validly described species (Wang et al., 
2018). Members of the genus Stenotrophomonas demonstrated great 
metabolic versatility and intraspecific heterogeneity (Ryan et al., 
2009). The most recently reported species, Stenotrophomonas 
acidaminiphila, is an aerobic, glucose non-fermentative, Gram-
negative bacterium, which is initially isolated from a petrochemical 
wastewater treated by an upflow anaerobic sludge blanket (UASB) 
reactor (Assih et al., 2002), and strains of S. acidaminiphila occur 
ubiquitously in the environment (Vinuesa and Ochoa-Sánchez, 
2015; Patil et  al., 2016; Huang et  al., 2018; Huyan et  al., 2020). 
However, the information on the characteristic of strains is still 
limited. To date, the reported strains of S. acidaminiphila were 
limited, especially clinical isolates. Additionally, the further genomic 
analysis was necessary to dig the features of S. acidaminiphila.

Stenotrophomonas species, especially S. maltophilia and 
S. acidaminiphila, can cause human infections (Looney et  al., 
2009; Huang et al., 2018). Multidrug-resistant (MDR) strains of 
Stenotrophomonas are associated with a high rate of mortality in 
immunocompromised patients (Paez and Costa, 2008). In the 
genomes of Stenotrophomonas, various genes encoding virulence 
determinants are involved in the infections (Trifonova and 
Strateva, 2019). Surveillance of the presence of virulence genes is 
important to supplement knowledge about the pathogenesis of 
infections (Windhorst et al., 2002; de Oliveira-Garcia et al., 2003).

Trimethoprim/sulfamethoxazole (TMP/SMX) was considered 
as the first-line therapy (Abbott and Peleg, 2015; Kumar et al., 
2020), but was plagued by increasing resistance worldwide 
(Al-Jasser, 2006; Tan et  al., 2008; Looney et  al., 2009). 
Fluoroquinolones and β-lactam drugs have been used as potential 
alternative antibiotics to TMP/SMX for Stenotrophomonas 
infections. However, recent studies have revealed a trend in 
decreasing susceptibility (Wei et al., 2016; Ko et al., 2019). The 
strains’ intrinsic and acquired mechanisms of antibiotic resistance 
to most antibiotics limited the antimicrobial options for 
Stenotrophomonas infections.

The molecular mechanisms involved in its extensive 
antimicrobial resistance include efflux pumps and encoded genes. 
The sul1 gene, sul2 gene and dfrA gene are well known to 
be responsible for resistance to TMP/SMX (Barbolla et al., 2004; 
Domínguez et  al., 2019). Two chromosomal-mediated 
β-lactamases, namely L1 and L2, with several regulatory genes, 
such as ampR, ampN and ampG, are associated with β-lactam 
resistance (Okazaki and Avison, 2008; Huang et al., 2010; Lin 
et al., 2011). A chromosomally encoded qnr gene protects both 
gyrase and topoisomerase IV from quinolones and confers 
resistance to fluoroquinolone (Ko et al., 2019). Moreover, efflux 
pumps are shown to be associated with resistance to multidrug 
and are classified to five families, namely the resistance-
nodulation-cell-division (RND) family, the major facilitator 
superfamilies (MFS), the small multidrug resistance (SMR) family, 

the ATP binding cassette (ABC) family, and the multidrug and 
toxic compound extrusion (MATE) family (Putman et al., 2000).

To our best knowledge, S. acidaminiphila was mostly isolated 
from aquatic environments. It is worth noting that the first clinical 
isolate S. acidaminiphila SUNEO (Huang et al., 2018) was isolated 
from the bile of a cholangiocarcinoma patient with obstructive 
jaundice and cholangitis and was found resistant to 
sulfamethoxazole and imipenem based on the antimicrobial 
susceptibility testing. Meanwhile, the comparisons and analysis of 
whole genomes aid the identification of resistant determinants to 
develop the antimicrobial strategies.

In this study, the first MDR clinical isolate, S. acidaminiphila 
SINDOREI, was cultured and isolated from the blood of a patient 
with sepsis in China. The complete genome of SINDOREI was 
assembled to highlight the virulence factors and resistant genes 
characterizing the specific isolates. Additionally, we profiled the 
adaptive changes in S. acidaminiphila SINDORI through the 
characteristic of genome and genomic comparisons of six 
S. acidaminiphila strains.

Materials and methods

Bacterial isolation and culture conditions

Pure strain SINDOREI was cultured from the blood of a patient 
with sepsis. The 51-year-old man was transferred to Xiangya Hospital 
of Central South University (Changsha, China) on March 16, 2020, 
complaining of intermittent fever and full-body pain for more than 
1 month without obvious causes. Based on physical examination, 
laboratory test results and other related examinations including bone 
marrow (BM) aspirate smear, flow cytometry and RT-PCR, etc., a 
diagnosis of sepsis was made. The antibiotic treatment did not 
improve his condition. The patient had a continuous high fever 
(39.5°C) with some new symptoms such as chills, high fever, appetite, 
fatigue, and shortness of breath and eventually died for multiple organ 
failure. The detailed medical record of the patient was shown in 
Supplementary Table S1. The blood samples of this patient were 
inoculated on nutrient agar with 5% sheep blood and incubated 
aerobically at 37°C overnight for three times. Only smooth, opaque 
and yellow colonies showing clear zones were isolated. Then, the 
isolates were conducted species identification by using MALDI 
Biotyper (Bruker, Germany) and returned no match in the database. 
At last, the purified isolate was further performed the whole genome 
sequencing and was classified as S. acidaminiphila.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by VITEK2 
system (bioMerieux, France) for minimum inhibitory concentration 
(MIC) according to the manufacturer’s instructions. MIC breakpoint 
was determined referring to the clinical and laboratory standards 
institute (CLSI) guidelines (M100, 30th Ed.; Wayne, 2020).
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Phylogenetic analysis based on the 16S 
rRNA sequence

The phylogenetic tree based on the 16S rRNA sequence which 
recovered from the genome of SINDOREI were constructed using 
MEGA version 11 software using maximum-likelihood method 
with 1,000 bootstrap replications (Tamura et  al., 2021). The 
phylogenomic analysis based on whole genomes of the members 
of genus Stenotrophomonas were performed using the genome 
taxonomic database toolkit (GTDB-Tk; Chaumeil et al., 2019) and 
iqtree (Nguyen et al., 2015).

Genome sequencing, assembly and 
annotation

The genomic DNA of S. acidaminiphila SINDOREI was 
extracted using cetyltrimethylammonium bromide (CTAB)-based 
methods. Then genomic DNA was randomly fragmented and was 
selected to average size of 200–400 bp. Adaptors were ligated to the 
ends of fragments by PCR assay. PCR products were processed 
into the sequencing library. The qualified BGI-seq libraries were 
sequenced on a BGISEQ-500 platform with read length of PE100. 
The Nanopore libraries were prepared and sequenced according 
to the manufacturer’s instructions (Oxford Nanopore, Oxford, 
UK) and sequenced on MinION with flowcell version of R9.4.1. 
The short reads and nanopore long reads were assembled using 
software Unicycler (Wick et al., 2017). The genes were predicted 
using Glimmer software (Delcher et  al., 2007) and were 
functionally annotated by querying eggNOG, NR, Pfam and 
Swiss-Prot databases to obtain the corresponding annotations.

SNP/InDel identification

Firstly, the genomes were broken into 500,000 reads with length 
of 150 bp using wgsim (v1.11)1 with parameters of (-e 0-r 0-R 0 -X 
0). Then, these reads were mapped to SINDOREI genome using bwa 
(0.7.17-r1188)2 with default parameters. Next, the SNPs were 
identified by bcftools3 and variations with quality <20 were filtered.

Average nucleotide identity values and 
digital DNA–DNA hybridization values

Average nucleotide identity (ANI) values between any two 
genomes were calculated using fastANI (Jain et al., 2018). The 
digital DNA–DNA hybridization (dDDH) values were obtained 

1 https://github.com/lh3/wgsim

2 https://github.com/lh3/bwa

3 https://github.com/samtools/bcftools

by means of genome-to-genome distance calculator via GGDC 3.0 
using Formula 2.

Genome comparisons and identification 
of core and strain-specific genes

For genome comparisons, six genomes of the S. acidaminiphila 
strains, including a type strain and other five cultured stains, were 
downloaded from the NCBI database (Table 1). The clusters of 
homologous genes among the investigated genome sequences 
were determined using OrthoMCL (Fischer et  al., 2011). The 
numbers of unique core genes and strain-specific genes of all 
isolates were mapped. The strain-specific genes that are present in 
strain SINDOREI were annotated through the clusters of 
orthologous genes (COG) database using software EggNOG-
mapper v2 (Cantalapiedra et al., 2021).

Virulence factor and resistance genes 
comparisons

To analyze the virulence factors of the members of species 
S. acidaminiphila, virulence factors database (VFDB) was used 
(Liu et  al., 2022). The protein-coding sequences were aligned 
against the comprehensive antibiotic resistance database (CARD; 
Alcock et al., 2020) and resistance-related genes were analyzed. 
Comparisons of specific genes related to resistance genes and 
efflux pumps between S. acidaminiphila strains were proceeded 
using local BLASTP alignment.

Phylogeny based on the amino acid of 
sul genes

The phylogenetic tree based on the amino acid of sul genes 
was also constructed by MEGA version 11 software, using 
maximum-likelihood method with 1,000 bootstrap replications 
(Tamura et al., 2021). The amino acid sequences of dihydropteroate 
synthase from Stenotrophomonas strain were downloaded from 
the National Center for Biotechnology Information.

Results

Genomic features of Stenotrophomonas 
acidaminiphila SINDOREI

The complete genome of SINDOREI was assembled into one 
circular chromosome with a total size of 3,996,619 bp and a GC 
content of 68.73%. SINDOREI genome contained no plasmid, and 
the details of the genome were listed in Supplementary Tables S2, S3. 
The genome of SINDOREI were functionally annotated  
in databases: eggNOG (Supplementary Table S4), NR 
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(Supplementary Table S5), Pfam (Supplementary Table S6) and 
Swiss-Prot (Supplementary Table S7). A total of 3,623 genes, 
including 3,536 coding sequences (CDSs), were predicted in the 
genome, along with 68 transfer RNA (tRNA genes) and nine 
ribosomal RNA (rRNA genes). The strain SINDOREI genome was 
profiled as a circular map, exhibiting CDSs, virulent genes, GC 
plot, and GC skew (Figure 1).

Phylogenetic analysis of members of the 
genus Stenotrophomonas

Firstly, a 16S rRNA phylogenetic tree of strain SINDOREI  
and other available type strains of genus Stenotrophomonas  
were constructed using the maximum-likelihood method 
(Supplementary Figure S1). Strain SINDORE was clustered to the 
branch of S. acidaminiphila with a bootstrap consistency of 99%. 
In addition, the 16S rRNA identities between SINDORE and other 
S. acidaminiphila strains was over 99.68%, indicating the strain 
SINDOREI belongs to S. acidaminiphila.

The phylogenomic tree was constructed and revealed that 
strain SINDOREI has the closest relationship with strain 
JCM13310T and strain T25-65, which was consistent with the 16S 
rRNA tree (Figure 2). Whole genome comparison identified the 
least SNPs/Indels (11,650) between SINDOREI and T25-65 
(Supplementary Table S8). Meanwhile, the ANI and dDDH values 
between S. acidaminiphila SINDOREI and S. acidaminiphila 
T25-65 are up to 99.9% and 94.1%, respectively (Figure  3; 
Supplementary Table S9).

Comparative genome analysis of 
Stenotrophomonas acidaminiphila

Six genomes of S. acidaminiphila strains were employed for 
the comparative genome analysis (Table 1). Only SINDOREI and 
SUNEO were isolated from clinical specimens. The largest genome 
size was from ZAC14D2_NAIMI4_2 (4,138,397 bp), followed by 

strain SINDOREI. There were 2,506 orthogroups found in each 
strain (Figure 4), which represented the set of non-redundant core 
genes of six strains (Figure 5). The second highest orthogroups 
(292 orthogroups) were uniquely observed in SINDOREI, 
JCM13310T, T25-65, T0-18 and ZAC14D2_NAIMI4_2, except 
SUNEO. Further analysis of pair-wise comparisons demonstrated 
that strain SINDOREI share 3,166, 3,105, 3,084, 3,028, and 2,691 
orthogroups with T0-18, JCM 13310T, T25-65, ZAC14D2_
NAIMI4_2 and SUNEO, respectively (Supplementary Figure S2). 
Strain ZAC14D2_NAIMI4_2 had the most strain-specific genes 
(293 genes) as shown in Figure 5A, followed by strain JCM 13310T 
(216 genes). The ratio of specific genes in strain ZAC14D2_
NAIMI4_2, SUNEO, T0-18, JAM 13310T, SINDOREI, and T25-65 
was 8.2%, 6.4%, 6.2%, 6.1%, 4.5%, and 4.5%, respectively. 159 
genes were exclusive to strain SINDOREI, and functional analysis 
based on COG category revealed that these genes were mainly 
assigned to signal transduction mechanisms (Figure  5B). The 
annotations of SINDOREI specific orthogroups and genes were 
listed in Supplementary Table S10.

Virulence factors associated with 
infections

Virulence factors are components, produced by bacterial cells, 
which generally cause damages to the host by increasing adhesion, 
facilitating colonization and invasion into eukaryotic cells, 
escaping the host immune responses and providing the essential 
nutrient (Casadevall and Pirofski, 2009). The presence of various 
virulence genes was investigated in the strain SINDOREI genome 
and the comparison of virulence genes between related strain 
genomes was conducted. The results revealed that the virulence 
genes in S. acidaminiphila genomes are classified into 11 categories 
according to virulence factor (VF) category, including motility 
(flagella), adherence (Type IV pili and non-pilus adhesins), 
biofilm formation, immune modulation [lipooligosaccharides 
(LOS), capsule, and lipopolysaccharide (LPS)], antimicrobial 
activity/competitive advantage, stress survival, nutritional/

TABLE 1 The genomic information of the isolated strains of Stenotrophomonas acidaminiphila.

Strain Genome 
size (bp)

GC content 
(%)

Genes 
(total)

CDSs 
(total)

Isolation source Country Accession number

S. acidaminiphila SINDOREI 3,996,619 68.73 3,623 3,536 Blood of septic patient China PRJCA009493

S. acidaminiphila SUNEO 3,660,864 69.75 3,300 3,226 Human bile China GCA_002951995.1

S. acidaminiphila ZAC14D2_

NAIMI4_2

4,138,397 68.48 3,752 3,677 Sediments of polluted river Mexico GCA_001314305.1

S. acidaminiphila T25-65 3,915,662 68.96 3,556 3,481 Aerobic biofilm reactors 

with antibiotics

China GCA_014076435.1

S. acidaminiphila T0-18 3,848,207 69.17 3,480 3,406 Aerobic biofilm reactors 

with antibiotics

China GCA_014109845.1

S. acidaminiphila JCM13310 3,942,520 68.81 3,598 3,425 Sludge from anaerobic 

chemical wastewater reactor

Mexico GCA_001431595.1

https://doi.org/10.3389/fmicb.2022.989259
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2022.989259

Frontiers in Microbiology 05 frontiersin.org

metabolic factor, regulation, exotoxin, effector delivery system, 
and others. The virulence genes of S. acidaminiphila genomes  
was shown in Figure  6 and the details of were listed in 
Supplementary Table S11. The genomes of S. acidaminiphila 
strains included the same VF categories, but the presence and 
distribution of genes were different. It is worth noting that the 
narGH operon only found in strain SINDOREI is responsible for 
nitrate reductase, which is identified as an important virulence 
factor for many bacterial infections, such as Mycobacterium 

tuberculosis and Pseudomonas aeruginosa (Palmer et al., 2007; 
Sohaskey and Modesti, 2009).

Biofilm formation, which is a mixture of cells, polysaccharides, 
nucleic acids, lipids and proteins, provides resistance to various 
antimicrobial drugs and to host immune defense of bacterial 
virulence. Biofilm-related infections represent more than 60% of 
all microbial infections in humans. In the genome of strain 
SINDOREI, various virulence factors are involved in the biofilm 
formation according to the previously reported including LPS 

FIGURE 1

Circular plot of Stenotrophomonas acidaminiphila SINDORE genome generated by circos. Predicted Coding Sequences (CDSs) are presented by 
various colors according to cellular functions. The Circles from outside to inside: 1, the scale line. 2, CDSs on forward strands. 3, CDSs on reverse 
strands. 4, virulent genes. 5, resistant genes. 6, GC plot, above average in green and below average in violet, respectively. 7, GC skew showing 
regions above and below average in yellow and light blue, respectively.
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(Huang et al., 2006; Pompilio et al., 2011; Zhuo et al., 2014; Madi 
et al., 2016), flagella formation (Di Bonaventura et al., 2007; Kang 
et al., 2015), type IV pili (Strom and Lory, 1993; Giltner et al., 
2012), and purine biosynthesis (Kang et al., 2015). Details are 
listed in Table 2. These genes associated with biofilm formation 
exist in the genome of strain SINDOREI, suggesting strain 
SINDOREI harbor the basic characteristic of biofilm formation.

Comparative analysis of antibiotic 
resistance genes

Antimicrobial susceptibility test revealed that strain 
SINDOREI is resistant to six antibiotics including TMP/SMX, 
ciprofloxacin, ofloxacin, cefepime, ceftazidime, and aztreonam 
(Table  3), which are classified as sulfonamide antibiotic, 
fluoroquinolone antibiotic and β-lactam antibiotic. At the same 
time, strain SINDOREI is sensitive to meropenem, piperacillin 
tazobactam, sulbactam cefoperazone, amikacin, and tigecycline.

The comparison of resistance-related genes in strains 
SINDOREI, SUNEO, JCM 13310T, T25-65, T0-18 and ZAC14D2_
NAIMI4 was performed (Table  4). The results showed that 
S. acidaminiphila possesses similar antibiotic resistance genes. A 
total of 24 key genes including encoded genes (14 genes) and 
efflux pumps (10 genes) contribute to the multidrug resistance in 
strain SINDOREI. The 24 genes are involved in resistance to 
TMP/SMX (Toleman et al., 2007; Hu et al., 2011), fluoroquinolone 
(Valdezate et al., 2005; Sanchez et al., 2009; Farhat et al., 2016), 
β-lactam (Okazaki and Avison, 2008; Huang et al., 2010; Lin et al., 
2011; Bontron et al., 2015), aminoglycoside (Huang et al., 2015), 

disinfecting agents (Huang et al., 2015), phenicol (Dong et al., 
2020) and tetracycline (Kadlec and Schwarz, 2018). Interestingly, 
four antibiotic resistant determinants, including GES-1, aadA3, 
qacL and cmlA5, were exclusive to strain SINDOREI. The sul2 and 
tetC genes were only found in SINDOREI, T25-65, and T0-18.

Homologues of the sul genes in 
Stenotrophomonas acidaminiphila 
genomes

The sul genes encoding variants of the dihydropteroate 
synthase are responsible for resistance to TMP/SMX in many 
bacteria (Huang et al., 2018; Domínguez et al., 2019). There are 
two sul genes (sul1 and sul2 genes) in Strain SINDOREI. The 
amino acid sequences of homologues to the sul genes in 
Stenotrophomonas genomes were employed to construct the 
phylogenetic tree. Four distinct groups were generated 
(Figure 7), and Sul1 and Sul2 in SINDOREI belong to different 
groups. The distribution of sul1 and sul2 genes in strain 
SINDOREI, T0-18 and T25-65 may promote the resistance to 
TMP/SMX. The amino acid sequence of Sul1  in strain 
SINDOREI shows 100% identity with that of strains JCM13310T, 
ZAC14D2_NAIMI4_2 and T25-65. The identity sequences 
suggests that these elements are ancient and acquired long with 
the use of antibiotics. According to the genome sequence of 
strain SINDOREI, we noted that IS6 and Tn3 family transposase 
were located immediately upstream of sul2 and IS6 family 
transposase was located downstream of sul2, suggesting that 
sul2 gene was acquired from horizontal gene transfer.

FIGURE 2

The phylogenomic tree based on the genomes of members in genus Stenotrophomonas. The numbers presenting on the branches of the tree 
represented the bootstrap values (based on 1,000 replicates). The scale bar indicated 0.1 substitutions per nucleotide position.
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Discussion

In this study, the genomes of six S. acidaminiphila strains, 
including SINDOREI, SUNEO, JCM13310T, T25-65, T0-18,  
and ZAC14D2_NAIMI4_2, were employed to perform the 
comparative analysis. Strain SINDOREI was isolated from the 
blood of a patient with sepsis. Meanwhile, S. acidaminiphila was 
the sole organism cultured from this patient. Antimicrobial 
susceptibility test reveals that stain SINDOREI is resistant to 
TMP/SMX, ciprofloxacin, ofloxacin, cefepime, ceftazidime, and 
aztreonam. The results suggested that S. acidaminiphila is an 
emerging opportunistic pathogen with environmental origin.

Based on the analysis of six genomes, strain SINDOREI 
shows highest ANI and dDDH values with T25-65 and shared 
lowest ANI and dDDH values with SUNEO. Two thousand five 

hundred six orthogroups were found in six genomes, though 
only 2,691 orthogroups was shared between strain SINDOREI 
and SUNEO. The clinical isolates, strain SINDOREI and 
SUNEO, shows relatively high strain-level diversity compared 
to other strains. Further work is still needed for getting more 
isolates to profile a comprehensive picture of the population of 
S. acidaminiphila.

We explored the virulence features in strain SINDOREI, and 
the nitrate reductase enzyme operon (narGH) was also found. 
However, narH gene was only found in strain JCM 13310T, 
T25-65, T0-18 and ZAC14D2_NAIMI4_2. As reported previously, 
the nitrate reductase enzyme is important in the pathogenesis of 
many bacteria and a narG knockout mutant can cause reduced 
virulence and reduce lung damage in severe combined 
immunodeficiency mice (Fritz et al., 2002). Biofilm formation is 

FIGURE 3

ANI values of Stenotrophomonas acidaminiphila SINDOREI with the type strains of genus Stenotrophomonas.
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FIGURE 4

Groups of orthologous and paralogous genes (i.e., orthogroups) identified in the six Stenotrophomonas acidaminiphila strains used in this study. 
The vertical bars show the number of orthogroups exclusive to the strains marked as lower dots in the matrix. Horizontal bars represent the total 
number of genes in each strain.

A B

FIGURE 5

Comparison of the gene contents in Stenotrophomonas acidaminiphila. (A) Flower plot diagram showing the core genes and specific genes. 
(B) Distribution of COG functional annotations of SINDOREI specific genes.
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also an important pathogenesis of bacteria such as S. maltophilia. 
Various genes associated with biofilm formation were found  
in strain SINDOREI which were considered as the basic 
characteristics of biofilm formation involved in pathogenesis of 
infections. Biofilm can be attached to various abiotic surfaces and 
tissues (Flores-Treviño et  al., 2019). This specific structure 
provides up to 1,000 times more resistance to antimicrobial drugs 
(Mah, 2012; Olsen, 2015) and contributes to respiratory diseases 
(Costerton et al., 1999; Pompilio et al., 2010). New antimicrobial 
strategies (antibiofilm strategies) were used to treat 
Stenotrophomonas infections. Biofilm assay should be conducted 
in further study to explore biofilm’s correlations with virulence. 
Therefore, present ongoing studies about strain SINDOREI are 
limited and valuable to in-depth mining.

Investigation of the presence of virulence genes is important 
to explain the genetic mechanisms of multidrug resistance. In 
MDR strain SINDOREI, 24 genes involved in the resistance to a 
broad array of antimicrobial agents were analyzed. Strain 
SINDOREI has all the target genes mainly encoding antibiotic 
inactivating enzymes and multidrug efflux pumps, which is an 
important reason for the resistance to antibiotics. Meanwhile, the 

unique and redundant resistance genes occurred in strain 
SINDOREI. GES-1 (GES-type beta-lactamase), aadA3 
(streptomycin 3′-adenylyltransferase), qacL (antibiotic efflux of 
disinfecting agents), and cmlA5 (antibiotic efflux of phenicol 
antibiotic) associated with the resistance to β-lactam, 
aminoglycoside, disinfecting agents and phenicol are exclusive to 
strain SINDOREI. The phylogenetic analysis of homologues to sul 
genes indicated that there are two types of sul genes (sul1 and sul2) 
in strain SINDOREI. The presence of redundant genes (sul1 and 
sul2) in strain SINDOREI, should be responsible for the increased 
resistance to TMP/SMX. The presence of IS6 and Tn3 family 
transposase located upstream and downstream of the sul2, 
suggesting that acquisition of resistance genes is a relevant 
mechanism for strain SINDOREI antibiotic resistance.

Conclusion

In this study, we reported the world’s first case of fatal infection 
with S. acidaminiphila and obtained the high-quality genome of 
clinical isolated MDR strain SINDOREI. The comparative 

FIGURE 6

Comparison of the virulence factor genes in Stenotrophomonas acidaminiphila. The numbers show the gene copies in each genome and the 
virulence factor genes were classified into categories.
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TABLE 2 Genes involved in biofilm formation in Stenotrophomonas acidaminiphila SINDOREI.

Genes SINDOREI gene 
locus

Activity Function References

Polysaccharides

  wbtL JNIIIPNH_00556 Lipopolysaccharides 

Biosynthesis invovled in 

Biofilm formation

Glucose-1-phosphate thymidyl transferase Huang et al. (2006), 

Pompilio et al. (2011), 

Zhuo et al. (2014), and 

Madi et al. (2016)

  rfbC JNIIIPNH_00557 dTDP-4-dehydrorhamnose 3,5-epimerase

  spgM JNIIIPNH_00560 Phosphoglucomutase/phosphomannomutase

Flagella

  flgG JNIIIPNH_01883 Flagella formation. Flagella-

mediated attachment

Flagellar basal body rod protein Di Bonaventura et al. 

(2007) and Kang et al. 

(2015)

  flgH JNIIIPNH_01884 Flagellar basal body L-ring protein precursor

  flgI JNIIIPNH_01885 Flagellar basal body P-ring protein precursor

  flhA JNIIIPNH_01923 Flagellar biosynthesis protein

  fliI JNIIIPNH_01911 Flagellum-specific ATP synthase

  fliM JNIIIPNH_01915 Flagellar motor switch protein

  fliN JNIIIPNH_01916 Flagellar motor switch protein

  fliA JNIIIPNH_01926 Flagellar biosynthesis sigma factor

Fimbriae

  pilU JNIIIPNH_00520 Type IV pili formation. Type 

IV pili and twitching motility 

associated with biofilm 

formation

Twitching motility Strom and Lory (1993) 

and Giltner et al. 

(2012)

  pilU JNIIIPNH_00971

  pilZ JNIIIPNH_00959 Type 4 fimbrial biogenesis

  pilT JNIIIPNH_00970 Twitching motility

  pilH JNIIIPNH_02554 Twitching motility

  pilH JNIIIPNH_02624

  pilG JNIIIPNH_02625 Twitching motility

  pilR JNIIIPNH_02689 Two-component response regulator

  pilB JNIIIPNH_02692 Type 4 fimbrial biogenesis

  tapC JNIIIPNH_02705 Type IV fimbrial assembly

  tapD/pilD JNIIIPNH_02706 Prepilin peptidase

  pilM JNIIIPNH_02777 Type IV pilus inner membrane

  tapU JNIIIPNH_00971 Twitching ATPase

Other

  purD JNIIIPNH_03072 Purine biosynthesis involved 

in biofilm formation

Phosphoribosylamine-glycine ligase Kang et al. (2015)

  purC JNIIIPNH_03118 Phosphoribosylaminoimidazolesuccinocarboxamide

  purI JNIIIPNH_02993 Phosphoribosylformylglycinamidine synthase

genomes analysis suggested a unique gene (narG) and key genes 
involved in biofilm formation in strain SINDOREI played an 
important role in pathogenesis of infections. Antimicrobial 
susceptibility test revealed that stain SINDOREI were resistant to 
TMP/SMX, ciprofloxacin, ofloxacin, cefepime, ceftazidime, and 
aztreonam. The presence of redundant Sul1 and Sul2 from two 
distinct groups and the exclusive determinants GES-1, aadA3, 
qacL and cmlA5 exist in SINDOREI, which can explain the 
mechanisms of strain’s multidrug resistance and afford potential 
therapeutic strategies for pathogen infections.
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TABLE 3 Antimicrobial susceptibility test of Stenotrophomonas acidaminiphila SINDOREI, SUNEO and JCM 13310T.

Class Antibiotics SINDOREI SUNEO JCM 13310T

Sulfonamide antibiotic Trimethoprim/Sulfamethoxazole ≥64/304, R 80 (4/76), R ≤2/38, S

Fluoroquinolone antibiotic Ciprofloxacin ≥4, R ≤0.25, S ≤1, S

Ofloxacin ≥8, R ≤1, S

β-lactam antibiotic Cefalotin > 32, R

Cefepime ≥32, R ≤1, S

Ceftriaxone 16, I

Ceftazidime ≥64, R ≤1, S ≤4, S

Amoxicillin > 16, R

Piperacillin ≤16, S

Aztreonam ≥64, R

Imipenem ≥16, R > 8, R

Meropenem ≤0.25, S

β-lactam combination agents Amoxicillin clavulanic acid > 16, R

Ampicillin Sulbactam ≤2, S

Piperacillin tazobactam 8, S ≤4, S ≤16, S

Sulbactam cefoperazone ≤8, S

Aminoglycoside antibiotic Amikacin 16, S 16, S ≤8, S

Gentamicin 2, S ≤4, S

Tetracycline derivative Tigecycline ≤0.5, S ≤0.5, S

TABLE 4 The antibiotic resistance genes among the Stenotrophomonas acidaminiphila strains.

Genes SINDOREI SUNEO ZAC14D2_NAIMI4_2 T25-65 T0-18 JCM13310

Trimethoprim/sulfamethoxazole resistance gene

  sul1 JNIIIPNH_01405 B1L07_06465 AOT14_RS07185 F0P98_RS10870 F0P95_RS03720 ABB33_13125

  sul2 JNIIIPNH_01524 – – F0P98_RS10870 F0P95_RS03720 –

  dfrA JNIIIPNH_02899 – AOT14_RS14395 F0P98_RS03500 F0P95_RS17150 –

Fluoroquinolone resistance gene

  qnr JNIIIPNH_03313 B1L07_15000 AOT14_RS17045 F0P98_RS16470 F0P95_RS02400 –

β-lactam resistance gene

  L1 JNIIIPNH_02567 B1L07_11340 AOT14_RS12805 F0P98_RS05130 F0P95_RS15250 ABB33_10340

  L2 JNIIIPNH_01026 B1L07_04670 AOT14_RS05350 F0P98_RS12890 F0P95_RS08575 ABB33_03240

  GES-1 JNIIIPNH_00474 – – – – –

  ampR JNIIIPNH_01025 B1L07_04665 AOT14_RS05345 F0P98_RS12895 F0P95_RS08570 ABB33_02800

  ampN JNIIIPNH_00207 B1L07_01060 AOT14_RS02770 F0P98_RS01145 F0P95_RS04785 ABB33_12865

  ampG JNIIIPNH_00208 B1L07_01065 AOT14_RS02775 F0P98_RS01150 F0P95_RS04790 ABB33_12870

  ampD JNIIIPNH_02390 B1L07_01310 AOT14_RS11925 F0P98_RS06020 F0P95_RS14375 ABB33_06015

  mrcA JNIIIPNH_02778 B1L07_01315 AOT14_RS13800 F0P98_RS04120 F0P95_RS16525 ABB33_04710

  mrdA JNIIIPNH_00607 B1L07_02815 AOT14_RS03340 F0P98_RS14735 F0P95_RS06700 –

Aminoglycoside resistance gene

  aadA3 JNIIIPNH_01525 – – – – –

Efflux pump

smeDEF RND system

  sme D JNIIIPNH_01709 B1L07_07555 AOT14_RS08230 F0P98_RS14800 F0P95_RS06630 ABB33_10360

  sme E JNIIIPNH_01710 B1L07_07560 AOT14_RS08235 F0P98_RS14795 F0P95_RS06635 ABB33_10365

  sme F JNIIIPNH_01712 B1L07_07570 AOT14_RS08245 F0P98_RS05900 F0P95_RS14485 ABB33_10375

(Continued)
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FIGURE 7

The phylogenetic tree based on the amino acid of sul genes in the members of genus Stenotrophomonas. The numbers present on the branches 
of the tree represent the bootstrap values (based on 1,000 replicates).

Genes SINDOREI SUNEO ZAC14D2_NAIMI4_2 T25-65 T0-18 JCM13310

smeOP-TolC RND system

  tolC JNIIIPNH_00706 B1L07_03300 AOT14_RS03825 F0P98_RS14240 F0P95_RS07185 ABB33_09990

  pcm JNIIIPNH_00707 B1L07_03305 AOT14_RS03830 F0P98_RS14235 F0P95_RS07190 ABB33_09985

  smeO JNIIIPNH_00709 B1L07_03315 AOT14_RS03840 F0P98_RS04655 F0P95_RS16015 ABB33_09950

  smeP JNIIIPNH_00710 B1L07_03320 AOT14_RS03845 F0P98_RS14220 F0P95_RS07205 ABB33_09945

SMR efflux pump

  qacL JNIIIPNH_01527 – – – – –

MFS efflux pump

  cmlA5 JNIIIPNH_01526 – – – – –

  tetC JNIIIPNH_01532 – – F0P98_RS10910 F0P95_RS03755 –

TABLE 4 (Continued)
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