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Global coordination of the
mutation and growth rates
across the genetic and
nutritional variety in
Escherichia coli
Zehui Lao, Yuichiro Matsui, Shinya Ijichi and Bei-Wen Ying*
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Fitness and mutability are the primary traits of living organisms for adaptation

and evolution. However, their quantitative linkage remained largely deficient.

Whether there is any general relationship between the two features and how

genetic and environmental variables influence them remained unclear and

were addressed here. The mutation and growth rates of an assortment of

Escherichia coli strain collections, including the wild-type strains and the

genetically disturbed strains of either reduced genomes or deletion of the

genes involved in the DNA replication fidelity, were evaluated in various media.

The contribution of media to the mutation and growth rates was differentiated

depending on the types of genetic disturbance. Nevertheless, the negative

correlation between the mutation and growth rates was observed across the

genotypes and was common in all media. It indicated the comprehensive

association of the correlated mutation and growth rates with the genetic

and medium variation. Multiple linear regression and support vector machine

successfully predicted the mutation and growth rates and the categories

of genotypes and media, respectively. Taken together, the study provided

a quantitative dataset linking the mutation and growth rates, genotype,

and medium and presented a simple and successful example of predicting

bacterial growth and mutability by data-driven approaches.

KEYWORDS
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Introduction

Growth fitness and genetic mutability are the primary traits as the driving
force of adaptation and evolution (Baer et al., 2007; Basan et al., 2020). The
growth rate and the mutation rate are the quantitative parameters representing the
adaptiveness and evolvability of the living organisms, respectively (Elena et al., 2007;
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Korem Kohanim et al., 2018; Zheng et al., 2020). Theoretical
studies usually reported the fitness-dependent mutation rates
upon mathematical simulation (Agrawal, 2002; Shaw and Baer,
2011). Experimental evolution often found elevated mutation
rates along with fitness increase (Barrick et al., 2009; Kishimoto
et al., 2010; Lenski, 2017; Shibai et al., 2017), which was practical
to rescue the growth from genetic engineering in laboratory
(Kurokawa and Ying, 2019). The highly increased mutation
rate, i.e., mutator, usually resulted in a decrease in growth rate
(Funchain et al., 2000; Ishizawa et al., 2015), and the fitness
increase associated with the mutation rates (Couce et al., 2017;
Nishimura et al., 2017). The experimental observations and
theoretical assumptions suggested that the mutation and growth
rates were associated. However, the quantitative linkages of the
mutation and growth rates remained largely deficient. Whether
and how the genetic and environmental changes disturb the
relationship between mutation and growth rates are unclear,
although both growth fitness and mutability are supposed to be
constrained by the genetic and environmental conditions.

The previous studies strongly suggested that genetic
disturbance influenced the mutation and growth rates. The
reduced genome collections were constructed with bacterial
strains (Hashimoto et al., 2005; Kato and Hashimoto, 2007;
Mizoguchi et al., 2008; Karcagi et al., 2016) to discover
the minimal genetic information essential for living systems
(Mizoguchi et al., 2007; Reuß et al., 2017; Breuer et al.,
2019; Rees-Garbutt et al., 2020) and to benefit the genetic
engineering for substrate production (Sharma et al., 2007;
Morimoto et al., 2008) and metabolic rewiring (Lee et al., 2009).
The systematic assays showed that the genome reduction caused
the decreased growth rates (Karcagi et al., 2016; Kurokawa
et al., 2016) accompanied by increased mutation rates despite
the regular mismatch repair (MMR) system (Nishimura et al.,
2017). In comparison, the genetically disturbed MMR systems
significantly induced the mutation rates, often associated
with reduced growth rates (Ishizawa et al., 2015). These
studies investigated the relationships between the mutation
and growth rates in the genome-reduced and MMR deficient
strains, demonstrating that both genome reduction and MMR
deficiency participated in the changes in the mutation and
growth rates.

Nevertheless, whether and how the coordination of the
mutation and growth rates in the genome-reduced and MMR
deficient strains responded to the environmental diversity
remained unclear. Variation in growth media was representative
of environmental diversity. Media variation could intuitively
disturb the growth rates, as experimentally demonstrated with
the wild-type (Aida et al., 2022), single-gene knockout (Liu
et al., 2020), genome-reduced (Kurokawa et al., 2016), and
laboratory-evolved strains (Kurokawa et al., 2022). The changes
in growth media also adjusted the mutation rates of the wild-
type and genome-reduced strains (Nishimura et al., 2017) and
those of MMR deficient strains (Ishizawa et al., 2015). These

experimental findings revealed that nutritional richness affected
the mutation and growth rates; resultantly, it might influence
the relationship between the mutation and growth rates.

As the genetic and environmental variables contributed to
the mutation and growth rates and probably interrupted their
coordination, whether and how these variables and parameters
related to each other are intriguing questions. In the present
study, we investigated whether there’s any global pattern among
the mutation and growth rates, genetic and environmental
variables, and, if applicable, how they coordinated with each
other. Instead of the mechanistic interpretation, we attempted to
construct simple models for quantitative understanding of the
genetic and environmental contributions to the coordination
of the mutation and growth rates. As a pilot survey, the
genome reduced strains, and the newly constructed mutator
strains were assayed to examine the genetic contribution. Three
media representing varied nutritional richness were tested to
investigate the environmental contribution. Both theoretical
regression and machine learning were applied to discover
a quantitative and global linkage taking the genotype, the
medium, and the mutation and growth rates into account.

Results and discussion

Nutritional richness mediated changes
in the mutation and growth rates

To investigate the nutritional-dependent changes in
mutation rate, two E. coli strain collections were analyzed.
The MDS collection was newly constructed from the cleaned
genome strain of MDS42 by deleting the genes participating in
the mismatch repairing and DNA replication fidelity systems,
i.e., mutS, mutH, mutL, and dnaQ (Echols et al., 1983; Rewinski
and Marinus, 1987; Yang, 2000). A total of 13 strains were
used in the present study. The KHK collection was a reduced
genome library constructed from the wild-type strain of W3110,
previously (Mizoguchi et al., 2008). Ten strains of varied
genome sizes in the KHK collection were chosen for the test,
as described previously (Nishimura et al., 2017). Repeated tests
showed that an increase in mutation rates in response to the
nutritional enrichment was observed in the MDS collection.
However, the mutation rate of the reduced genome, i.e., their
parent strain MDS42, was likely to be decreased in rich media
(Figure 1A). Although the degrees of change in mutation rates
were varied, the directional shift of the distributions of mutation
rates from poor (M63) to rich (LB) media was highly significant
(p = 8e-7) (Figure 1B). The tendency was consistent with the
directional changes in mutation rates of the MG collection in
response to the changes in media (Supplementary Figure 1),
although the dataset was obtained with different assay methods
previously (Ishizawa et al., 2015). Nutritional enrichment
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FIGURE 1

Nutritional richness-dependent mutation and growth rates. (A) Mutation and growth rates of the MDS collection in various media. The
abbreviations of the strains, i.e., the genes deleted, are indicated. S, H, L, and Q represent the deleted genes of mutS, mutH, mutL, and dnaQ,
respectively. Double letters indicate the double deletion of the genes. Blue, orange, and red circles represent the media of M63, MAA, and LB,
respectively. Standard errors of both mutation and growth rates are indicated (N = 3∼6). (B) Distributions of the mutation rates of the MDS
collection. Red and blue indicate the media of LB and M63, respectively. Frequency represents the number of strains. Statistical significance is
indicated (***p < 0.001). (C) Mutation and growth rates of the KHK collection in various media. The abbreviations of the strains are indicated.
Blue, orange, and red circles represent the media of M63, MAA, and LB, respectively. Standard errors of both mutation and growth rates are
indicated (N = 3∼6). (D) Distributions of the mutation rates of the KHK collection. Red and blue indicate the media of LB and M63, respectively.
Frequency represents the number of strains. Statistical significance is indicated (*p < 0.05).

increased the mutation rates of the mutators, independent of
the genomes.

On the other hand, a decrease in mutation rates of the
KHK collection in response to the nutritional enrichment was
identified (Figure 1C). The distribution of mutation rates was
slightly but significantly (p = 0.03) shifted from low to a high
level in response to the medium alteration from LB to M63
(Figure 1D). The nutritional richness mediated changes in
mutation rates were somehow reasonable. Increased mutation
rates of the wild-type genomes and the mutators more often
caused the mutations that triggered the damage to the cells;
however, the sufficient nutrients in the rich media could
compensate for the damages caused by mutation. The specific
nutrients in the medium might have buffered the fitness decrease
caused by the mutations (Casanueva et al., 2012; Kinsler et al.,
2020; Eisner et al., 2022), which allowed high mutability.
Increased mutation rates of the reduced genomes in the poor
media could be elucidated by the severe environmental stress-
induced mutagenesis (Maharjan and Ferenci, 2017; Frenoy
and Bonhoeffer, 2018). The differentiated directions of the

changes in mutation rates responding to the nutritional changes
suggested that the large deletion of genomic fragments and
the interruption specifically in replication fidelity contributed
to the mutability differentiation. Note that the growth rates
were universally increased in the order of M63, MAA, and LB,
regardless of the genotypes (Figures 1A,C), which well-reflected
the expected contribution of the nutritional richness to the
growth fitness.

Genetic disturbance mediated changes
in the mutation and growth rates

A common negative correlation of growth rate to mutation
rate was highly significant in all media, despite the variation
in genotypes, including the reduced genomes and mutators
(Figure 2A and Supplementary Figure 2). The directional
changes in mutation rate were associated with the changes in
growth rate. Combining the reduced genomes and the mutators
resulted in the global correlation between mutation and growth
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rates in the three media (Figure 2A). Even if the three datasets
were combined, both the trend of negative correlation between
the mutation and growth rates and the differentiation in
the slopes remained clearly (Supplementary Figure 2). The
decreased growth rate accompanied by increased mutation
rate was independent of the nutritional richness. The global
parameters of the mutation and growth rates were stringently
connected, as a common phenomenon evidently in reduced
genomes, i.e., the MDS and KHK collections. Although the
fitness effect of mutations depended on the genomic background
(Wang et al., 2016), the trajectory across the various genotypes
indicated the coordination of the mutability to the fitness.

A simple regression (Eq. 1) showed that all strains of
various genotypes followed a common trajectory formed by the
mutation and growth rates, and the magnitudes of the correlated
changes were medium-dependent.

µi = LN(Mi/M∞)/α (1)

Here, Mi and µi represent the mutation rate and the
corresponding growth rate in a defined condition. M∞ and
α indicate the maximal mutation rate when the growth rate
dropped to zero and the magnitude of the growth decrease
caused by the increased mutation rate (slope), respectively. Both
M∞ and α are nutritional dependent but genotype independent
and could be calculated according to the experimental data
sets. The slope of α was −9.5, −12.6, and −12.8 in LB, MAA,
and M63, respectively (Supplementary Figure 2). Increased
mutation rate led to a similar degree of growth decrease in
MAA and M63 but a more significant reduction in LB. In
addition, M∞ were 1e-3, 4e-4, and 7e-6 bp−1division−1 in LB,
MAA, and M63, respectively, suggesting that the nutritional
richness decided the maximal mutation rate. Since the genome
size was approximately 4 × 106 bps, the poor nutritional
condition allowed only a few mutation(s) per genome compared
to the rich nutritional condition that allowed more than 1,000
mutations per genome.

In addition, the positive correlations of growth and
mutation rates between any pair of the media were observed
(Figure 2B). It demonstrated that the changes in nutritional
richness maintained the order of the growth fitness and
mutability. However, the direction of the changes in mutation
rates due to the genetic disturbance was somehow differentiated
(Figure 3A). The changes in mutation rates caused by MMR
deficiency were more significant in rich media (Figure 3A,
Upper) compared to the changes mediated by genome
reduction, which were more prominent in poor media
(Figure 3A, Bottom). Nevertheless, the changes in growth rates
in response to the nutritional alteration were roughly identical
in both collections (Figure 3B). Taken together, it was highly
intriguing that the negative correlations between the growth
rate and the mutation rate were in common once the medium
was determined; however, the directions of the nutritional

responsivity of the mutation rate were reversed decided by the
types of genetic disturbance.

Comprehensive association of the
mutation and growth rates with
genotypes and media

The exhaustive tests identified a common trajectory directed
the correlated changes in the mutation and growth rates
across varied genotypes at all nutritional levels. The results
were highly consistent with the previous studies on the
correlation of the mutation and growth rates in MG1655
(Ishizawa et al., 2015), as well as the coordinated changes in
the mutation and growth rates mediated by genome reduction
(Nishimura et al., 2017). It suggested a trade-off relationship
between the growth rate and the mutation rate in common,
which was feasible in evolution (Nishimura et al., 2017; Kang
et al., 2019). Experimental evolution of the KHK collection
demonstrated that equivalent generation led to equal numbers
of genome mutations fixed on the reduced genomes but
none in the wild-type genome; nevertheless, their growth
rates were improved comparably (Kurokawa et al., 2022). To
further confirm the generality of the relationship between
the mutation and growth rates, the evolved KHK collection
strains were additionally tested. The increased growth rates
resulting from the experimental evolution were associated with
reduced mutation rates (Supplementary Figure 3). However,
the mutations fixed in experimental evolution were unrelated
to the DNA replication fidelity and MMR system (Kurokawa
et al., 2022). The correlated changes in the mutation and growth
rates were in common. The trade-off mechanisms were crucial
in bacterial competition and coexistence (Ferenci, 2016) and
shaped the diversity of species in eco-evolution (Farahpour et al.,
2018). The negative correlation of the mutation and growth
rates across the genetic variation well-agreed with those reported
trade-offs, which might be relied on the cost-benefit working
principle in living systems (Eames and Kortemme, 2012; Weisse
et al., 2015; Erickson et al., 2017).

Intriguingly, genome reduction and MMR deficiency
showed differentiated directions of the correlated changes in
the mutation and growth rates in response to nutritional
variety (Figure 4A, Upper). The positive correlation of the
mutation rate to the growth rate triggered by MMR deficiency
supported the theoretical framework, which proposed that the
mutation accumulation rate increased with the cell division
rate across species (Gao et al., 2016). In contrast, both
genetic disturbances presented the universal direction in defined
media (Figure 4A, Bottom). The present study first observed
the reversibility in the direction of the medium-dependent
changes in mutation rate. The compensability between genome
reduction and MMR deficiency might be tuning the DNA
replication errors regulated by the gene expression to maintain
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FIGURE 2

Coordinated changes in mutation and growth rates. (A) Correlation between growth rate and mutation rate in the defined medium. Pearson
correlation coefficients, the p values, and the media are indicated. (B) Correlated changes of the mutation and growth rates in various media.
The upper and bottom panels show the correlated changes in growth and mutation rates between any two different media, respectively. Open
and closed circles stand for the collection of MDS and KHK collections, respectively.

the balance between fitness and evolvability in response to
environmental changes. Suppose genome reduction and MMR
deficiency had caused the correlated changes of the mutation
and growth rates in an identical but not reverse direction.
In that case, it must have been disadvantageous for survival,
as the high mutation rates might restrict the adaptative
evolution for growth improvement (Sprouffske et al., 2018).
Theoretically, the maximal mutation rate was assumed to
be 10−5

∼10−3/bp/division in different growth media (Eq. 1,
Figure 2), which were higher than those of RNA viruses
(Krašovec et al., 2017; Duffy, 2018). However, the experimentally
acquired mutation rates were lower than ∼10−6/bp/division,
independent of the genetic backgrounds of E. coli (Ishizawa
et al., 2015; Krašovec et al., 2017; Shibai et al., 2017; Ramiro
et al., 2020). As the genome size of E. coli was ∼4 Mb,
the mutation rate detrimental to survival was assumed to be
∼10−6/bp/division, which led to roughly one division for one
mutation.

The comprehensive association of the mutation and growth
rates with the genotype (genetic interruption) and medium
(nutritional richness) was supposed to be universal (Figure 4B).

The biological mechanism in charge of their connections,
if it existed, was largely unknown. It was somehow hard
to be addressed so far. A preliminary analysis showed that
the expression levels of the genes participating in the DNA
replication and mismatch repair were either increased or
decreased in the KHK collection strains (Supplementary
Figure 4). However, these reduced genomes maintained
the regular DNA replication and mismatch repair systems
(Mizoguchi et al., 2008; Kurokawa et al., 2016). It indicated
that the biological mechanisms could not directly explain
the correlated changes in mutation rates. High-throughput
transcriptome analysis was required to acquire the big data
linking the global changes in gene expression to the mutation
and growth rates. Instead, the theoretical understanding of
the relationships might be practical. Suppose the relationships
between the mutation and growth rates, the medium, and the
genotype were universal. Any of them might be theoretically
estimated according to the other three parameters. The
prediction with the regression and machine learning approaches
was challenged to achieve a quantitative understanding of the
cooperative relationships among the four parameters.
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FIGURE 3

Changes in mutation and growth rates. The magnitudes of the
changes in the mutation (A) and growth (B) rates due to the
genetic disturbance are shown in the logarithmic scale. The
upper and bottom panels indicate MDS and KHK collections,
respectively. Any pairs of the three media are indicated. Closed
and open circles represent the parent strain and its derivatives,
respectively.

Estimation of the mutation and growth
rates by multivariable regression

Whether the mutation and growth rates could be estimated
according to the other parameters was tested. Multiple linear
regression (MLR) was applied, where the logarithmic values of
mutation rates were used, and both the media and the genotypes
were set as the numerals (Supplementary Table 2). Note that
the genotype, which represented the combination of the reduced
genome and mutator genotype, was evaluated in two different
modes in MLR. Whether the genome reduction and the MMR
deficiency interacted or not were defined as interactive and
additive modes, respectively. MLR showed that the mutation
rate could be well-estimated according to the growth rate, the
medium, and the genotype (Figure 5A), independent of the
mode applied for the genotype (Supplementary Table 3). The
growth rate was also successfully predicted by MLR according
to the mutation rate, the medium, and the genotype in the mode
of interactive (Figure 5B). Although the prediction accuracy of
the additive mode remained equivalent to that of the interactive
mode, the contribution of the genotype to the regression
(prediction) was insignificant (Supplementary Table 3). The
results suggested genome reduction and deficient MMR.

FIGURE 4

Schematic drawing of the relationships among the mutation and
growth rates, medium, and genotype. (A) Experimentally
observed correlations of the mutation and growth rates.
(B) Hypothesized universal coordination of the mutation and
growth rates across the genetic and nutritional varieties.
Gradation in yellow represents the variation in nutritional
richness.

Moreover, another dataset was employed to address whether
the predictivity of the mutation and growth rates was general, as
varied strains and methods might cause different consequences.
The E. coli strain collection derived from MG1655 was adopted
from the previous study (Ishizawa et al., 2015). MLR of
the three different datasets comprising the MDS, KHK, and
MG collections, that is, the W3110, MDS42, and MG1655
derivatives, showed that the prediction of the mutation rate
was statistically significant. However, the accuracy was much
lower (Supplementary Table 4). On the other hand, the growth
rate prediction was somehow insignificant (Supplementary
Table 4), probably because of the differentiation in the methods
of growth assay. In conclusion, the mutation and growth rates
were roughly predictable to each other when the nutritional
richness and genotype were decided.

Classification of the medium and
genotype by machine learning

Alternatively, whether the medium and the genotype could
be clustered according to the mutation and growth rates were
investigated by machine learning (Jordan and Mitchell, 2015),
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FIGURE 5

Prediction of the mutation and growth rates by multiple linear regression. Adjusted R2 denotes the accuracy of multiple linear regression. Red
dotted lines indicate the slope of 1. (A,B) Represent the mutation and growth rates, respectively. The corresponding statistics are summarized in
Supplementary Table 3.

which was beneficial for discovering the dataset with unclear
mechanisms relating to metabolism (Cuperlovic-Culf, 2018;
Kim et al., 2020), genetics (Libbrecht and Noble, 2015; Schrider
and Kern, 2018), evolution (Wang et al., 2018) and population
dynamics (Ashino et al., 2019; Cao et al., 2020; Gilpin et al.,
2020). Here, the support vector machine (SVM) was applied
to classify the three media (i.e., LB, MAA, and M63) and the
four genotypes (i.e., reduced genome, mutator, genome reduced
mutator, and wild type). All three datasets (i.e., the MDS,
KHK, and MG collections) were subjected to SVM machine
learning. The linear regression and the radial basis function
(RBF) models were tested, as both the quantitative parameters
of the mutation and growth rates and the qualitative parameters
of the genotype and medium were comprised in the datasets.
The growth medium was well-predicted from the mutation
and growth rates by both models (Figure 6A). The RBF
model presented a higher accuracy of medium classification,
either in testing (Figure 6A) or in training (Supplementary
Figure 5). Visualization of the medium variety clearly showed
the discontinuous edges/areas of MAA in the landscape formed
by the mutation and growth rates in the RBF model (Figure 6B).
The unique landscape in the MAA medium might be attributed
to either nutritional or generic biases. The MAA medium was
rich in amino acids and remained poor in other nutritional
elements, such as glucose. As fast growth preferred catabolism
of amino acids and reduced glucose uptake in E. coli (Zampieri
et al., 2019), the enriched amino acids in MAA possibly
benefited the growth even with a high mutation rate. In
addition, the reduced genomes had low redundancy in non-
essential sequences. As the genomic sequences were related to
the turnovers of carbon, nitrogen, and sulfur (Baker et al., 2015),
genome reduction might disturb the cycling of these essential
elements, causing slow growth even with a low mutation rate.

Taken together, the coordination of amino acids and glucose
catabolism and the reduced redundancy of the genome might
trigger the discontinued landscape of the mutation and growth
rates.

In addition, the two SVM models predicted the genotype
with comparable accuracy in the training (Supplementary
Figure 5). Nevertheless, the prediction accuracy of the RBF
model was significantly higher than that of the linear model
in the test (Figure 6C). Both models could roughly categorize
the four genotypes (Figure 6D). It demonstrated that a simple
SVM machine learning model could provide an acceptable
classification of the genotype, despite the prediction accuracy
being lower than that of classifying the medium. An increased
number of data points were required to achieve better precision.

In summary, the present study found an intriguing global
correlation of the growth rate to the mutation rate across a
wide genetic variety and nutritional variation. As the mutation
rate was proposed as a plastic trait associated with population
density across domains of life (Krašovec et al., 2017), the
cooperative relationship between the mutation and growth
rates was supposed to be universal in living systems (Shaw
and Baer, 2011). The results expanded the previous findings
of the correlated changes in the mutation and growth rates
with the defined genotypes (Wang et al., 2018) or the defined
conditions (Ishizawa et al., 2015; Nishimura et al., 2017). It
indicated the fundamental working principle in maintaining
cellular homeostasis. Genetic disturbance in the genome length
or the MMR system led to the coordinated changes of
mutation rate and growth fitness in common but the reverse
directional changes in response to nutritional richness. It
strongly suggested that the genetic deficiency could partially
compensate for each other, that is, the genome reduction might
recover the damage caused by the disturbed MMR system
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FIGURE 6

Prediction of the medium and genotype by support vector machine. (A) Boxplots of the evaluation metrics of the machine learning models for
medium classification. The accuracy of predicting the growth medium with either linear or RBF model of SVM is shown. Five independent tests
with the data unused for training are indicated. Statistical significance is indicated (*p < 0.05). (B) Visualization of the medium clusters. One of
five tests is shown as an example. Color variation represents the medium variety as indicated. The data points are signified by the dots, in which
those for the test are circled by black lines and the rest for the training. (C) Box plots the evaluation metrics of the machine learning models for
classifying the genotype. The accuracy of predicting the growth medium with either linear or RBF model of SVM is shown. Five independent
tests with the data unused for training are indicated. (D) Visualization of the genotype clusters. One of five tests is shown as an example. Color
variation represents the genotype variety as indicated. The data points are signified by the dots, in which those for the test are circled by black
lines and the rest for the training.

to some extent. The simple regression and machine learning
models connected the growth rate, mutation rate, genotype,
and medium well. The successful connection among these
parameters indicated that the fitness and evolvability were
intrinsically associated in living cells, regardless of the genetic,
and environmental interruptions. To develop an advanced ML
model taking the underground biological mechanisms into
account, the transcriptome analysis is required to connect
the mutation and growth rates to the gene expression. The
ML predicted mechanisms remain to be challenged in the
future.

Materials and methods

Genetic construction of the MDS
mutators

Genome-reduced mutators were constructed by deleting the
genes that participated in mismatch repair or proofreading,
i.e., mutH, mutS, mutL, and dnaD, from the reduced genome
MDS42 (Pósfai et al., 2006). Genetic deletion of the single
genes and any pairs of these genes was performed as described
previously (Ying et al., 2014; Ishizawa et al., 2015). Briefly,
the deletions were induced via standardized λ-red homologous
recombination (Kirill and Barry, 2000; Ying et al., 2010).
The chloramphenicol resistance gene was used repeatedly as
a selection marker in each deletion. Genetic and phenotypic

verification of the transformants was carried out as previously
described (Ying et al., 2014; Ishizawa et al., 2015). The primers
for genetic deletion and PCR confirmation were reported
previously (Ishizawa et al., 2015). A total of 13 mutator strains
were successfully constructed. One out of 13 mutators failed to
grow in the minimal medium, as the genetic construction was
performed with the rich medium. Note that the gene circuit
sequence was previously used in various studies (Ying et al.,
2014, 2015, 2017; Ishizawa et al., 2015; Kishimoto et al., 2015;
Shibai et al., 2017; Lu et al., 2022), and no experimental bias was
observed.

Media

Three different media of LB, MAA, and M63 were used
for cell culture, representing rich, supplementary, and poor
nutritional conditions. The LB medium was commercially
available (Luria-Bertani, Sigma). The M63 and MAA media were
the minimal medium and the minimal medium supplied with
20 amino acids, respectively, prepared as described previously
(Kurokawa et al., 2016; Nishimura et al., 2017).

Growth assay

The growth dynamics in the three media were
assayed as described previously (Kurokawa et al., 2016;
Kurokawa and Ying, 2017). The cell culture was diluted and
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loaded to the 96-well plate (Costar), which was incubated in a
plate reader (Epoch2, BioTek) with a rotation rate of 600 rpm
at 37◦C. The cell growth was detected at an absorbance of
595 nm, reading at an interval of 30 min or 1 h for 24 to 48 h.
The growth curves were obtained for each well. Repeated tests
(N = 6∼12) were performed to acquire the growth curves in
each condition. The growth rates were calculated as described
previously (Kurokawa et al., 2016; Nishimura et al., 2017).

Fluctuation test

The mutation rate was estimated by the fluctuation test
according to resistance to the antibiotic nalidixic acid, as
described previously (Ishizawa et al., 2015; Nishimura et al.,
2017). In brief, the number of cells was counted using a CFU
assay. The E. coli cell cultures in the exponential phase were
diluted and plated onto ∼10◦LB plates for CFU assay. Only
the number of colonies per plate ranging from 10 to 500 was
considered reliable for calculating the CFU. Approximately 30
tubes of identical cell culture were used to evaluate the frequency
of mutagenesis for each test. At least three repeated tests were
performed for each strain at each medium, and more than 8,000
agar plates were used. The mutation rates were calculated as
described previously (Kishimoto et al., 2010; Ishizawa et al.,
2015). Note that the mutation rate was evaluated based on the
emerging frequency of nalidixic acid resistance; nevertheless,
we previously verified that the relative mutation rates did not
change in response to different antibiotics (Ishizawa et al.,
2015).

Data acquisition

The mutation and growth rates of the MDS collection
(16 strains) were obtained in the present study. The reduced
genomes of E. coli strains, i.e., the derivatives of W3110,
were randomly selected from the KHK (Kyowa Hakko Kirin)
collection (Mizoguchi et al., 2008), as described previously
(Nishimura et al., 2017). Note that the KHK collection
strains were constructed in an accumulative deleted manner.
The mutation and growth rates of the ten KHK strains
were partially adopted from our previous report (Nishimura
et al., 2017). Additionally, the mutation and growth rates
of the MG collection, which included the wild-type genome
MG1655 and the nine derivative mutators, were acquired from
the previous study (Ishizawa et al., 2015). The data details
of the three collections are summarized in Supplementary
Table 2. The RNA sequencing dataset of the KHK collection
grown in the M63 medium was acquired from the DNA
Data Bank of Japan (DDBJ) under the accession number
DRA13430. Global normalization of the read counts (raw
data) was performed as described previously (Ying and

Yama, 2018). The relative expression levels of the genes
participating in the DNA replication fidelity was analyzed
(Supplementary Table 5).

Multiple linear regression

Multiple linear regression (MLR) was performed with
Python, as described previously (Aida et al., 2022). The media
of LB, MAA, and M63 were represented as 1, 0, and −1,
respectively. The E. coli strains of the reduced genome or MMR
deficiency (mutator) were commonly indicated as one unit, and
those of wild-type genome or non-mutator were set to zero.
Genome reduction and MMR deficiency were categorized in
the genotype, which was calculated by multiplying or adding
the values of 1 or 0. Whether their relationship was considered
interactive or additive, the two values representing genome
reduction and MMR deficiency were multiplied or added,
respectively. The logarithmic values of mutation rates were
used in the MLR analysis. A total of four global parameters,
i.e., growth rate, mutation rate, genotype, and medium, were
finally subjected to the analysis. Ordinary least squares (OLS)
regressions of the mutation and growth rates were performed
with the three parameters of medium, genotype, and mutation
or growth rate, respectively. The package of “stats” in Python
was used, and the parameter estimation method of “ols” was
applied.

Machine learning with support vector
machine

Support vector machine (SVM) was performed with Python
and using the “svm” module in the package of scikit-learn, as
previously reported (Aida et al., 2022). Briefly, the data points
were randomly divided into two sets for the training and testing
in ML as commonly performed (Zhou, 2021). The “random”
function in the “svm” module was used to divide the whole
dataset into the training and test datasets in the 60 to 40%.
Five repeated training and test were conducted to evaluate the
reliability of the SVM models. The linear and the radial basis
function (RBF) methods were tested. Five-fold nested cross-
validation searching the hyperparameters of C and gamma from
0.001 to 100 in increments of 10-fold was performed. The other
hyperparameters were all used as default. Finally, in the “linear”
method, C was set to 10 and 100 for classifying/predicting
the medium and the genotype, respectively. In the “RBF”
method, C and gamma were set to 10 and 1 and 100 and
0.01 for categorizing/predicting the medium and the genotype,
respectively. The score of fivefold nested cross-validation was
calculated by macro-averaging. The accuracy of the models was
estimated according to the confusion matrix.
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