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Synthetic biology in marine
cyanobacteria: Advances and
challenges
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Uppsala, Sweden

The current economic and environmental context requests an accelerating

development of sustainable alternatives for the production of various target

compounds. Biological processes offer viable solutions and have gained

renewed interest in the recent years. For example, photosynthetic chassis

organisms are particularly promising for bioprocesses, as they do not require

biomass-derived carbon sources and contribute to atmospheric CO2 fixation,

therefore supporting climate change mitigation. Marine cyanobacteria are

of particular interest for biotechnology applications, thanks to their rich

diversity, their robustness to environmental changes, and their metabolic

capabilities with potential for therapeutics and chemicals production without

requiring freshwater. The additional cyanobacterial properties, such as

efficient photosynthesis, are also highly beneficial for biotechnological

processes. Due to their capabilities, research efforts have developed several

genetic tools for direct metabolic engineering applications. While progress

toward a robust genetic toolkit is continuously achieved, further work

is still needed to routinely modify these species and unlock their full

potential for industrial applications. In contrast to the understudied marine

cyanobacteria, genetic engineering and synthetic biology in freshwater

cyanobacteria are currently more advanced with a variety of tools already

optimized. This mini-review will explore the opportunities provided by

marine cyanobacteria for a greener future. A short discussion will cover

the advances and challenges regarding genetic engineering and synthetic

biology in marine cyanobacteria, followed by a parallel with freshwater

cyanobacteria and their current genetic availability to guide the prospect for

marine species.
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Introduction

Modern society faces various challenges that must be
addressed promptly to preserve most living organisms. The
current environmental crisis is particularly pressing and
threatening and demands that the present industrial and
economical behaviors are entirely revised (Levi and Cullen,
2018). As such, many research, political and industrial efforts
have focused on developing sustainable solutions to mitigate
the climate emergency. In this context, bioprocesses, relying on
living organisms for biological catalysis, stand as a key solution
due to their flexibility, robustness and sustainability. Moreover,
the current omics data and synthetic biology techniques
available to strengthen and diversify bioprocesses further
support their wider use for various industrial applications,
including fuels, chemicals or pharmaceuticals production.

Of particular interest for sustainable industrial bioprocesses,
cyanobacteria perform oxygenic photosynthesis, using solar
energy for their metabolism while fixing atmospheric CO2.
These prokaryotes are significant contributors to global carbon
fixation in many environments, participating in ecosystem
maintenance. The tremendous diversity and strain-specific
variation of pigments and photosystems (Stephens et al.,
2021), essential elements for photosynthesis, provide great
opportunities for tailored biotechnological applications,
with strains metabolically adapted to specific environmental
conditions, such as high salinity, temperature and fluctuating
light. To date, hundreds of cyanobacterial species have
been isolated in marine and freshwater environments with
new species continuously being identified and further
characterized. Historically, a few model freshwater species
have previously led researchers to understand cyanobacterial
metabolism and photosynthetic capabilities and develop
synthetic biology tools for strain engineering (Gale et al.,
2019). However, marine cyanobacteria display several
advantages over their freshwater counterparts, including
their capacity to grow in seawater, their robustness to
environmental changes and specific metabolic abilities,
including biosynthesis of complex and unique biomolecules.
Currently, more work is still needed to adapt many
synthetic biology techniques to marine cyanobacteria and
fully unlock their biotechnological and industrial potential
( Khalifa et al., 2021).

This short review will briefly discuss the impressive diversity
of marine cyanobacteria and the associated opportunities for
unique bio-applications. The recent development of genetic
tools and the advances of synthetic biology in marine
cyanobacteria will be further reviewed, highlighting some of
the challenges that must be addressed to move forward with
these species and expand their applications. Finally, some of the
more advanced synthetic biology tools developed for freshwater
cyanobacteria will be summarized to draw a parallel between
marine and freshwater species. While the focus of this review

will be synthetic biology for industrial applications, it is worth
mentioning that synthetic biology methods are also relevant for
fundamental studies, such as phenotypic screening or regulation
characterization, but will not be discussed here.

Diversity, opportunities and
engineering of marine
cyanobacteria

The diversity of marine cyanobacteria
offers various opportunities for
biotechnological applications

Marine cyanobacteria are a highly diverse group
of photosynthetic prokaryotes, with relevant metabolic
properties for future sustainable industrial applications. Their
photoautotrophic abilities, attractive for biotechnological
applications, are also incredibly important for global CO2

fixation to support a variety of ecosystems. In fact, some genera
can fix up to four gigatons of carbon per year (Biller et al., 2015).
From a biotechnological perspective, in addition to the extensive
CO2 availability, their ability to prosper at high salinities further
supports sustainability, preventing competition for drinking
water. Furthermore, considering their natural habitats where
temperature, nutrient availability, salinity and light intensity
constantly fluctuate, marine cyanobacteria are particularly
robust to environmental changes (Ludwig and Bryant, 2012),
which may be beneficial in an industrial context where growth
parameters might vary slightly. While most species maintain
a circadian rhythm, relying on complex regulatory cascades
for adaptation to fluctuating light exposure, some species,
isolated from light-deprived environments, show unique
adaptability to growth in darkness (Coe et al., 2021; Callieri
et al., 2022), further expanding their metabolic flexibility. In
fact, the diversity of marine environments has been a driving
force for cyanobacterial evolution and there is a high correlation
between specialized features of some species and their natural
habitats (Biller et al., 2015). Considering the exceptional
diversity of marine cyanobacteria, this review will not attempt
to summarize each and every unique capacity previously
described but will point out some species of industrial relevance
and their different properties, further highlighting how this
diversity can be exploited for tailored applications (Table 1).
It is worth mentioning that brackish cyanobacteria, such as
Aphanizomenon flos-aquae (Lyon-Colbert et al., 2018), will
not be covered in this review but are important players in
cyanobacterial biodiversity and have a significant impact
on human health for bloom-forming species, as discussed
elsewhere ( Śliwińska-Wilczewska et al., 2019).

Prochlorococcus isolates, the most abundant photosynthetic
organisms, have primarily been isolated from tropical and
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TABLE 1 Examples of genetic tools available for marine cyanobacteria and their applications for metabolic engineering.

Species Features Genetic tools available Reported metabolic
engineering

Unicellular Prochlorococcus Unique photosynthetic apparatus
Small genome Adapted to

darkness

Ongoing optimisation of DNA entry (Laurenceau et al., 2020) –

Synechococcus sp.
PCC 7002

Flexibility “Model” marine
cyanobacterium Fast-growing

Genome integration sites (Vogel et al., 2017)
Counterselection method (Begemann et al., 2013)

Characterised genetic elements (Markley et al., 2015; Pérez et al.,
2017; Jones et al., 2021a)

Marker excision with recombinases (Jones et al., 2021b)
Target downregulation (Zess et al., 2016; Gordon et al., 2016)

Nozzi et al., 2017;
Hasunuma et al., 2019;

Yang et al., 2021

Synechococcus sp.
NKBG 15041c

Fast-growing Genome integration (Yoshino et al., 2017; Badary et al., 2018)
Characteristed promoters (Badary et al., 2015)

Yoshino et al., 2017; Badary
et al., 2018

Synechococcus sp.
PCC 11901

Fast-growing Tolerant to high
temperatures and light intensities

Genome integration (Włodarczyk et al., 2020)
Characterised promoters (Włodarczyk et al., 2020)

Włodarczyk et al., 2020

Synechocystis sp.
PCC 7338

Facultative photoautotroph – –

Filamentous Anabaena sp. ATCC
33047

Nitrogen fixation Genetic deletions (Bandyopadhyay et al., 2021) Bandyopadhyay et al., 2021

Arthrospira maxima High protein content – –

Synechococcus spp. is currently the most amenable to genetic modifications. This list of examples is not exhaustive.

subtropical regions and have fascinated scientists for several
decades, partly due to their condensed genome, with only
∼1,700 genes (Rocap et al., 2003). Within this group, strains
remain highly diverse, especially regarding light adaptation, and
have been reviewed in details elsewhere (Biller et al., 2015). Their
photosynthetic apparatus is unique amongst cyanobacteria as it
lacks the widely spread cyanobacterial phycobilisome structures
and, instead, relies on divinyl chlorophyll a and b pigments
in the antenna (Ting et al., 2002), a contrasting pigment
composition to the phylogenetically close Synechococcus strains.
A few Synechococcus species are arguably some of the most
studied and well-understood marine cyanobacteria and are, in
fact, almost ubiquitous to all marine environments, due to their
large pigment diversity. Their fast growth rate, environmental
robustness and extensive dataset further add to their industrial
potential. Prochlorococcus and Synechococcus genera remain
the predominant unicellular marine cyanobacteria studied
currently, although selected species of other genera (Brito
et al., 2017) are starting to attract interest. On the contrary,
fewer filamentous species have been researched in the synthetic
biology field, perhaps due to the difficulty to work around their
morphology. Interestingly, some Anabaena species have the
dual ability to fix both carbon and nitrogen and can sustain
high light intensities and a wide range of temperatures and
pH (Moreno et al., 2003), promising for potential industrial
applications. Lastly, Arthrospira (also called Spirulina) maxima,
another rising filamentous cyanobacterium, is gaining interest
for its use as a food supplement as it offers a higher protein
content than its freshwater counterpart Arthrospira platensis.
Indeed, Arthrospira sp., and primarily A. platensis, have been
extensively exploited for food, cosmetics and pharmaceutical

applications. Their unique spiral morphology enables to achieve
high biomass cultivations, further harvested for downstream
processes (Affan et al., 2015). A. maxima has also recently
been proposed as a suitable medium for mammalian cell
cultivation (Jeong et al., 2021), therefore bypassing the need
for animal-derived medium, or as a source for chlorophyll
a extraction (Martins et al., 2021), with possible cancer
therapeutics applications.

Moreover, new species are constantly isolated from
various environments with highly specific metabolic
properties, such as nitrogen fixation or production of
complex secondary metabolites (Hoffman, 1999; Brito
et al., 2017; Shiels et al., 2019). Therefore, it is very likely
that additional organisms with interesting properties will be
isolated in the near future. The close correlation between
the natural habitat and the evolution of unique features also
further promotes biotechnological applications in specific
regions. Indeed, since species have adapted, for example,
to extreme temperatures or different light intensities, these
same species can become the workhorse of biotechnological
applications in these regions, without needing further strain
adaptation and accelerating the development of highly
specialized applications. Moreover, it is worth mentioning
that, in addition to their photoautotrophic capabilities,
native secondary metabolites from marine cyanobacteria
have also gained interest for their potential therapeutics
applications as reviewed elsewhere (Tan and Phyo, 2020;
Lopes et al., 2022). Similarly, natural pigments produced
by cyanobacteria have direct applications in the food and
cosmetics industries, contributing to a global greener future
(Saini et al., 2018).
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However, although native products remain important, the
future of cyanobacteria lies in the possibility to convert them
into specialized cell factories for the production of various
compounds. Utilizing their complex and flexible metabolic
abilities, and, in particular, solar energy and CO2 fixation, these
applications will drive the change toward a sustainable future.
This course can, however, only be achieved if routine strain
engineering, mediated by robust and efficient genetic tools,
is accessible for introduction and manipulation of metabolic
pathways, leading to maximal compound bioproduction
and strain robustness for industrial conditions. While this
review focuses on the bioproduction of specific chemicals,
cyanobacteria are also relevant for other biotechnological
applications, such as bioremediation, which has been discussed
elsewhere (Rotter et al., 2021; Touliabah et al., 2022).

Limited genetic tools have been
developed and applied in marine
cyanobacteria

Genetic accessibility is crucial for chassis organisms with
potential industrial applications. Indeed, this allows to engineer
strains with, for example, non-native properties and improved
catalytic efficiency in order to meet industrial standards, which
need robust and superior strains. Numerous methods for
genome editing with direct synthetic biology applications have
now been established for many organisms, especially model
organisms, such as Saccharomyces cerevisiae or Escherichia
coli. However, the toolkit available for non-model organisms,
including cyanobacteria, remains limited, preventing routine
strain engineering for specific industrial aims. Expanding
this toolkit is undeniably challenging, especially due to the
polyploidy of most cyanobacteria (Griese et al., 2011), but vital
to accelerate cyanobacterial bioprocesses.

Considering the importance of reliable engineering
methods, several research groups have spent time and effort
developing such tools (Table 1). Today, Synechococcus sp.
PCC 7002 (hereafter Synechococcus 7002) is arguably the most
genetically amenable marine cyanobacterium (Figure 1). In
fact, several genomic integration sites have been characterized
for minimal metabolic disruption, allowing insertion of genetic
constructs at different loci (Ruffing et al., 2016; Vogel et al.,
2017). Integration in the native plasmid pAQ1 also offers an
interesting option due to the higher copy number compared to
genome integration (Yang et al., 2021). Natural transformation
tends to be the most common DNA transfer for genomic
integration in Synechococcus 7002 by selecting transformants
through antibiotic resistance. In addition, an acrylic acid
counterselection method has previously been described where
deletion of the acsA gene confers resistance to acrylic acid
(Begemann et al., 2013). Furthermore, genetic elements are
critical to achieve the required expression level. To test their

activity, reporter genes, coding, for instance, for the yellow
or green fluorescent protein, can be used. As such, several
publications have now identified promoters with specific
strength for Synechococcus 7002. Native promoters often
are a suitable starting point as host compatibility is assured
and have previously been investigated in Synechococcus 7002
(Ruffing et al., 2016). Additional tested promoters include
a library of synthetic promoters derived from Synechocystis
sp. PCC 6803 PcpcB promoter, further engineered for IPTG
inducibility (Markley et al., 2015). Other inducible systems
include a T7-based system (Jones et al., 2021a), a zinc-inducible
promoter (Pérez et al., 2017), and a tetracycline-dependent
system (Zess et al., 2016), which allow tuneable gene expression.
Ribosome-binding sites also influence expression levels but are
often overlooked in most chassis organisms, although a RBS
library has been characterized in Synechococcus 7002 (Markley
et al., 2015). These different genetic elements can therefore
drive expression of synthetic constructs, awarding additional
properties to Synechococcus. Importantly, a recombinase-
based tool has previously been optimized for this organism
to allow removal of selection markers, highly relevant for
wider use of engineered strains (Jones et al., 2021b). The
authors showed that both CRE and DRE recombinases
were functional and compatible for recombination at their
respective lox sites, allowing marker removal. Interestingly, to
avoid maintaining the recombinase genes permanently in the
genome, this approach exploited Synechococcus 7002 polyploidy
where the recombinases were inserted in an essential gene,
therefore unable to achieve full segregation, and maintained
until marker removal, after which the wild-type locus at the
essential gene took over the recombinase insertion. While
these different strategies allow targeted genome-editing for
expression of heterologous genes, strain stability may be
limited, with accumulation of mutations and a potential
decrease of productivity, as discussed elsewhere (Jones, 2014;
Hitchcock et al., 2020). This limitation, although not specific
to cyanobacteria, must be addressed for longer and larger
cultivations in industrial plants and may be partially mediated
by fine-tuned regulation of heterologous pathways. Lastly,
target downregulation through RNA interference (Zess et al.,
2016) and CRISPR interference (Gordon et al., 2016) by
blocking target translation and transcription, respectively, has
been reported and is particularly powerful for genome-wide
phenotypic analysis. It can also improve target production as
illustrated by increased lactate production when using CRISPR
interference for elevating concentration of the lactate precursor
pyruvate. While development of these tools is impressive, their
direct applications for metabolic engineering are striking. In
fact, a significant number of non-native target compounds
have now been produced by Synechococcus 7002 at a laboratory
scale. To name a few, bioproduction of the hydrocarbons
limonene and bisabolene (Davies et al., 2014), the pigment
astaxanthin (Hasunuma et al., 2019), the amino acid L-lysine
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(Korosh et al., 2018), the building block 2,3-butanediol (Nozzi
et al., 2017), the potential aircraft fuel pinene (Yang et al.,
2021), the fatty acid lauric acid (Work et al., 2015) or the
biomaterial precursor polyhydroxyalkanoate (Zhang et al.,
2015) has been achieved. The chemical diversity of these
compounds further highlights the industrial importance of
this chassis organism for a greener future. While the native
metabolism offers the opportunity to synthesize complex non-
native molecules, such as pigments or secondary metabolites,
by providing precursors for engineered pathways, complete
heterologous routes converting core metabolites, such as acetyl-
CoA or pyruvate, are also relevant for target bioproduction in
cyanobacteria. While this review primarily highlights synthetic
biology for non-native chemical bioproduction, engineering
strategies can also improve the biosynthesis of native secondary
metabolites, such as antioxidants or UV protectants (Vega et al.,
2020), as discussed extensively elsewhere (Jeong et al., 2020).
As such, cyanobacterial target bioproduction is suitable for
diverse groups of chemicals. Further more additional metabolic
engineering reported in these studies, such as deletion of the
glycogen synthase (Davies et al., 2014), further illustrate that our
current understanding of the metabolism can support metabolic
manipulation and strain optimization. These strategies can now
also be guided by in silico methods, such as a genome-scale
method, available for Synechococcus 7002 (Hendry et al., 2016),
allowing more informed designs.

Synechococcus 7002 remains undeniably the most genetically
accessible marine cyanobacterium. However, encouragingly,
some similar tools have been developed for Synechococcus sp.
NKBG 15041c, achieving bioproduction of glycogen (Badary
et al., 2018) and omega-3 fatty acids (Yoshino et al., 2017)
through metabolic engineering. Further promoter development
and characterization is also underway (Badary et al., 2015),
therefore expanding the genetic toolkit available for this
strain. The newly discovered strain Synechococcus sp. PCC
11901 has also been modified through natural transformation
for free fatty acids production, with rapid tool development
after isolation (Włodarczyk et al., 2020). On the other hand,
Prochlorococcus strains, although phylogenetically close to
Synechococcus spp. (Biller et al., 2015), remain highly resistant
to genetic modifications. Despite an extensive dataset on its
physiology and genomics (Berube et al., 2018), DNA transfer
into Prochlorococcus seems particularly challenging as discussed
elsewhere (Laurenceau et al., 2020). This further highlights
the difficulty to adapt genetic tools to non-model species of
any phylum, which requires to develop a robust DNA transfer
method that must consider any species-specific biological and
physiological obstacles, such as restriction-modification systems
(Johnston et al., 2019), membrane composition or requirements
for axenic cultivation.

Furthermore, the filamentous cyanobacterium Anabaena
sp. ATCC 33047 has yet to be engineered for heterologous
gene expression but deletion of nblA, coding for a small

protein involved in phycobilisome degradation, has recently
been reported through homologous recombination. This work
required to create a specific helper strain that carried Anabaena
sp. ATCC 33047 methylase genes to allow successful conjugation
(Bandyopadhyay et al., 2021). This first report of genetic
modifications in this strain will most likely lead to additional
strain engineering, which can be guided by this host’s genome-
scale model (Hendry et al., 2021).

Lastly, an impressive progress toward a robust genetic
toolkit for Arthrospira platensis has recently been reported
(Jester et al., 2022), further discussed later in this review. Earlier
phylogenetic analyses suggested that A. platensis and A. maxima
were closely related (Singh and Dhar, 2011), suggesting
that these new tools could be transferred to A. maxima.
However, genomics datasets have only recently been acquired
for Arthrospira sp. and it is, therefore, premature to conclude
how these two species differ. Nonetheless, a recent comparative
genomic analysis (Misztak et al., 2021) proposed that the two
species are, in fact, in two different Arthrospira groups, thus
questioning whether tool transferability could be achieved in
these two hosts.

The genetic toolkit for freshwater
cyanobacteria is more extensive

Although great progress on toolkit development has been
made in some marine cyanobacteria, freshwater species are
slightly more advanced in terms of complex genetic tools
(Figure 1). For example, many promoters, including native,
heterologous and inducible systems (Englund et al., 2016; Wang
et al., 2018; Behle et al., 2020), have now been characterized
in Synechocystis sp. PCC 6803 or Synechococcus elongatus PCC
7942 (Berla et al., 2013; Sengupta et al., 2020). This allows
tuneable target expression, essential for pathway expression and
metabolic engineering.

In addition, genome editing is still routinely achieved
through homologous recombination in most cyanobacteria, for
which neutral integration sites have been identified (Almeida
et al., 2017; Nagy et al., 2021). Counter-selection systems have
been developed for transformant selection, such as sacB for
sucrose sensitivity (Lagarde et al., 2000) or the protein synthesis
inhibitor mazF (Cheah et al., 2013) in Synechocystis sp. PCC
6803, leading to markerless strains, important for biosafety in
an industrial context. This has recently been further expanded
with the identification of additional counter-selection methods
in Synechococcus elongatus UTEX 2973 (Chen et al., 2021). Jones
et al. (2021b) also showed that their CRE/DRE recombinase
systems were functional in Synechocystis sp. PCC 6803.

Although these counter-selectable methods have shown
great potential, they remain particularly time-consuming in
polyploid organisms, which require multiple segregation steps
to isolate pure mutants. This limitation also complicates
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FIGURE 1

Progression of genetic tools toward routine strain engineering. Most marine cyanobacteria remain at earlier stages of tool development while
freshwater cyanobacteria and model organisms have more complex genetic tools available.

genomic modifications at multiple sites. CRISPR (Clustered
Regularly Interspaced Palindromic Repeats)-Cas tools have
revolutionized genome editing in various organisms, allowing
rapid and markerless genomic modifications. This RNA-guided
method, reviewed elsewhere (Zhang and Huang, 2022), causes
a double-stranded break, which must be repaired for cell
survival. The repair mechanism can be harnessed to insert
desired modifications. Genome editing with CRISPR has now
been performed in Synechocystis sp. PCC 6803, Synechococcus
elongatus PCC 7942, Synechococcus elongatus UTEX 2973
and Anabaena sp. PCC 7120 (Li et al., 2016; Ungerer and
Pakrasi, 2016; Lu et al., 2022), a tremendous step toward
a robust and modern genetic toolkit for cyanobacteria. In
addition, multiplexing (i.e., simultaneous targeting of several
genes) of CRISPR interference has been reported in freshwater
cyanobacteria (Yao et al., 2016; Santos et al., 2021) but still
lacking in marine species, preventing the use of CRISPRi in
systemic studies.

Some of the reported tools have been adapted in both
unicellular and filamentous species, suggesting that morphology
is not impeding tool development. In fact, a previous
CRISPR tool showed transferability in phylogenetically distinct
unicellular and filamentous species (Ungerer and Pakrasi, 2016).
In another study, the neutral site 2 from S. elongatus PCC
7942 was introduced in Anabaena sp. PCC 7120 genome
for direct tool transferability without requiring additional
cloning steps (Taton et al., 2020), allowing introduction of a

cryptomaldamide gene cluster from a marine cyanobacterium in
both species. Interestingly, cryptomaldamide was only detected
in Anabaena, hypothesized to be more suitable for production
of complex secondary metabolites. This further illustrates that
pathway transferability between unicellular and filamentous
species might not be as straight-forward as tool transferability,
likely due to metabolic differences. In addition, tools developed
specifically for filamentous species, such as Arthrospira platensis,
have also been reported. In fact, optimization of the genetic
engineering techniques led to the development of a potential
oral therapy for Campylobacter infections (Jester et al., 2022),
harnessing the edible properties of spirulina.

Finally, an important tool for routine and rapid
genetic engineering is shuttle vectors, able to replicate
within the cyanobacterial population. This prevents time-
consuming genomic integration for genetic element and tool
characterization and provides higher expression levels. The
broad-host range replicon RSF1010 has been used widely in
freshwater cyanobacteria (Mermet-Bouvier et al., 1993; Taton
et al., 2014) and additional shuttle vectors, based on native
plasmids, have recently been engineered for Synechocystis sp.
PCC 6803 (Jin et al., 2018; Liu and Pakrasi, 2018). Although
beneficial for many applications, strains carrying shuttle vectors
tend to have an increased instability, which can be problematic
in an industrial context. Shuttle vectors are still missing for
most marine cyanobacteria, therefore preventing rapid tool
characterization before moving to strain engineering. This
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requires to identify compatible origins of replication capable of
maintaining a shuttle vector within the host population. Broad
host-range origins or origins derived from the host’s native
plasmids may be interesting to explore initially for potential
compatibility, as achieved in some freshwater species.

Discussion and outlook

The potential of marine cyanobacteria for various
biotechnological applications and, more importantly,
sustainable compound bioproduction is remarkable. The
diversity of these species and their unique metabolic properties,
evolved to survive in changing environments, offer tailored
possibilities for industrial bioprocesses, such as large-scale
photobioreactors for target bioproduction. To fully unlock their
potential, marine cyanobacteria must be genetically accessible
to further engineer strains for industrial purposes. While
some progress has already been made, the current genetic
toolkit remains insufficient. In fact, a clear discrepancy persists
between species where some Synechococcus species have been
and are still leading the field. On the other hand, despite
the current knowledge and techniques available on genetic
systems, some species continue to resist genetic modifications,
as exemplified by the studied Prochlorococcus. While some
biological challenges must participate in this discrepancy,
additional aspects, such as historical attention and devoted
resources, further contribute to the uneven genetic accessibility
of marine cyanobacteria.

Moreover, the genetic toolkit for freshwater cyanobacteria
is undeniably more extensive, with complex tools developed
for several genera. Considering how phylogenetically close
some marine and freshwater species are, the transferability
of methods is highly probable. In fact, a proteomic analysis
of Synechocystis sp. PCC 6803 and PCC 7338 showed how
close species can be, although protein regulation reflected
their respective natural habitat (Kwon et al., 2020). Similarly,
genetic elements from freshwater species have shown to be
functional in marine cyanobacteria (Markley et al., 2015),
suggesting possible transferability. As such, adaption of genetic
techniques similar to freshwater species is hopeful, especially
in a growing context for the search for bioprocesses. In
fact, the available research on marine cyanobacteria does
not suggest that challenges specific to these species prevent
their genetic engineering. Instead, the current lack of tools
reflects that these species have been historically less explored
than their freshwater counterparts. In addition, their extreme
diversity prevents from addressing these obstacles globally
as it would be inappropriate to assume one strategy would
succeed in all species. Instead, strain-specific methods will
be needed for efficient genetic manipulation. To achieve
this, optimized growth conditions and robust methods for
foreign DNA introduction are key first steps to build on

for more complex genetic tools. This, of course, might
prove difficult for interesting chassis organisms, such as
Prochlorococcus, for which engineering obstacles remain unclear
(Laurenceau et al., 2020).

However, it is worth pointing out that, despite the
discussed advances in freshwater species, cyanobacteria in
general remain behind in terms of complex genetic tools
compared to model prokaryotes, such as Escherichia coli,
for which, for example, sophisticated CRISPR tools, such
as prime-editing (Tong et al., 2021), have been developed.
Although adapting genetic tools to any organism is difficult,
the polyploidy of cyanobacteria is particularly challenging to
address and modulate and significantly contributes to limiting
tool development. In particular, the lack of understanding of
chromosomal copy fluctuations and their related environmental
clues prevent to overcome these issues systematically. As such,
further research efforts are needed to complete the genetic
toolset for both marine and freshwater cyanobacteria for their
unlimited industrial use.
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