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COVID-19 has caused enormous challenges to global economy and public 

health. The identification of patients with the COVID-19 infection by CT scan 

images helps prevent its pandemic. Manual screening COVID-19-related CT 

images spends a lot of time and resources. Artificial intelligence techniques 

including deep learning can effectively aid doctors and medical workers to 

screen the COVID-19 patients. In this study, we developed an ensemble deep 

learning framework, DeepDSR, by combining DenseNet, Swin transformer, 

and RegNet for COVID-19 image identification. First, we  integrate three 

available COVID-19-related CT image datasets to one larger dataset. Second, 

we  pretrain weights of DenseNet, Swin Transformer, and RegNet on the 

ImageNet dataset based on transformer learning. Third, we continue to train 

DenseNet, Swin Transformer, and RegNet on the integrated larger image 

dataset. Finally, the classification results are obtained by integrating results 

from the above three models and the soft voting approach. The proposed 

DeepDSR model is compared to three state-of-the-art deep learning models 

(EfficientNetV2, ResNet, and Vision transformer) and three individual models 

(DenseNet, Swin transformer, and RegNet) for binary classification and three-

classification problems. The results show that DeepDSR computes the best 

precision of 0.9833, recall of 0.9895, accuracy of 0.9894, F1-score of 0.9864, 

AUC of 0.9991 and AUPR of 0.9986 under binary classification problem, and 

significantly outperforms other methods. Furthermore, DeepDSR obtains the 

best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, and F1-score 

of 0.9695 under three-classification problem, further suggesting its powerful 

image identification ability. We  anticipate that the proposed DeepDSR 

framework contributes to the diagnosis of COVID-19.
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Introduction

In December 2019, a novel acute atypical respiratory disease, 
COVID-19, has broken in Wuhan, China (Ksiazek et al., 2003; 
Zhou et al., 2020). COVID-19 was defined as a global pandemic 
by the World Health Organization on 3 November 2020. Till 26 
June 2022, this disease has infected over 541 million individuals 
and caused over 6.3 million deaths (COVID Live—Coronavirus 
Statistics—Worldometer, 2022). COVID-19 has exacerbated 
human suffering, damaged the global economy, and seriously 
affected the health, environmental and social fields worldwide 
(Mofijur et  al., 2021). It has still indirectly affected the global 
educational and religions level. Moreover, it has caused healthcare 
service resources to the brink in many countries and regions and 
will deeply affect medical research (Harper et  al., 2020). 
Furthermore, middle-income countries especially low-income 
countries remain more vulnerable in preventing COVID-19 and 
need to face more serious challenges (Peters et al., 2020).

The COVID-19 pandemic has caused severe challenges to 
global public health (Wang et al., 2020; Sun et al., 2022a). The 
screening of massive samples each day overwhelms laboratories 
worldwide (Agaoglu et  al., 2022). Detection of SARS-CoV-2 
through RT-PCR from a nasopharyngeal swab sample is the most 
common avenue to diagnose COVID-19. However, RT-PCR does 
not demonstrate powerful sensitivity and specificity (Pu et al., 
2022). Moreover, it need spend about 6 h for sampling and 
consecutive tests to distinguish false positives and false negatives 
(Lee et  al., 2022). Multiple patients demonstrate clinical, 
laboratorial, and radiological features related to COVID-19, 
however, their RT-PCR test results are negative (Saad Menezes 
et al., 2022).

Many evidences have suggested that chest Computer 
Tomography (CT) is an accurate and efficient COVID-19 
diagnosis avenue (Chung et al., 2020; Pan et al., 2020; Wang C C 
et al., 2021; Wang B et al., 2021). It has high sensitivity and low 
misdiagnosis rate, thus is an efficient complement to RT-PCR 
(Fields et al., 2021). Although it is vital to rapidly detect patients 
with the COVID-19 infection by CT images, expert thoracic 
radiologists are not likely to immediately diagnose positive cases 
at all times, which may not only cause treatment delay, but also 
urge further transmission of COVID-19 because the COVID-19 
patients are not promptly isolated (Jin et al., 2020; Shorten et al., 
2021; Afshar et  al., 2022). In this situation, it is especially 
important to aid doctors and health care workers to distinguish 
COVID-19-related CT images from non-COVID-19-realted CT 
images using artificial intelligence techniques.

Many studies have suggested that artificial intelligence (AI) 
techniques including machine learning obtained enormous 
success in bioinformatics and medical image analysis (Chen et al., 
2018a,b, 2019; Wang B et al., 2021; Wang C C et al., 2021; Zhang 
et  al., 2021; Yang et  al., 2022; Liu et  al., 2022a). Over the last 
decade years, deep learning techniques have outperformed 
numerous state-of-the-art machine learning algorithms and 
demonstrated excellent learning ability in many fields including 

image recognition (Voulodimos et al., 2018; Wang B et al., 2021; 
Wang C C et al., 2021;Sun et al., 2022; Liu et al., 2022a,b).

Under the situation of no standardization, artificial 
intelligence technologies, especially deep learning, have been 
widely applied to data collection and performance evaluation 
for COVID-19 (Roberts et  al., 2021). Abbas et  al. (2021) 
proposed a novel convolutional neural network (CNN) model, 
DeTraC, to classify COVID-19-related chest X-ray images based 
on feature extraction, decomposition and class composition. 
Shalbaf and Vafaeezadeh (2021) designed a deep transfer 
learning-based ensemble model with different pre-trained CNN 
architectures to detect CT images for novel COVID-19 
diagnosis. Zhang et al. (2020) developed a deep learning-based 
anomaly detection system to screen COVID-19 from chest 
x-ray images. Zhou et al. (2021) explored an ensemble deep 
learning framework to detect COVID-19 from CT images. 
Karbhari et  al. (2021) introduced an auxiliary classifier 
generative adversarial network to generate synthetic chest X-ray 
images and further detect COVID-19 based on custom-made 
deep learning model. Chouat et  al. (2022) exploited deep 
transfer learning algorithm to screen COVID-19 positive 
patients based on CT scan and chest X ray images. Fan et al. 
(2022) proposed a branch network model by combining CNN 
and transformer structure for the identification of COVID-19 
using CT scan images. Ter-Sarkisov (2022) built a COVID-CT-
Mask-Net model to diagnose COVID-19 through regional 
features from chest CT scan images. Chieregato et al. (2022) 
presented a deep learning-based COVID-19 prognostic hybrid 
model to support clinical decision making.

These models are mainly based on CNN and attention 
mechanism and effectively classify COVID-19-related images and 
non-COVID-19-related ones. However, they remain to improve 
the classification performance. In this study, we developed an 
ensemble deep learning framework (DeepDSR) by integrating 
three state-of-the-art neural networks including DenseNet, Swin 
transformer, and RegNet for the COVID-19 diagnosis.

Materials and methods

Materials

We use three available CT image datasets related to COVID-19 
to investigate the performance of our proposed DeepDSR model. 
Dataset 1 can be  downloaded from https://www.kaggle.com/
datasets/plameneduardo/a-covid-multiclass-dataset-of-ct-scans. 
It contains publicly available 4,173 CT scan images from 210 
different patients, out of which 2,168 images are from 80 patients 
infected by COVID-19 and confirmed by RT-PCR in hospitals 
from Sao Paulo, Brazil (Soares et  al., 2020). Dataset 2 can 
be  downloaded from https://www.kaggle.com/datasets/
plameneduardo/sarscov2-ctscan-dataset. It contains 1,252 CT 
scan images from patients infected by COVID-19 and 1,230 CT 
scan images for patients non-infected by COVID-19 in hospitals 
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from Sao Paulo, Brazil (Soares et  al., 2020). Dataset 3 can 
be downloaded from https://github.com/UCSD-AI4H/COVID-
CT. It contains 349 COVID-19 CT images from 216 patients and 
463 non-COVID-19 CT images (Zhao et al., 2020).

To boost the generalization ability of our proposed DeepDSR 
model, we integrate the above three datasets to one larger dataset. 
Consequently, DeepDSR can be used to effectively classify CT 
images in both individual datasets and other datasets. And 
we remove images with poor imaging and ones nonconforming to 
specifications. Finally, we obtain one dataset with 7,398 pulmonary 
CT images, which include 3,768 CT images from patients with the 
COVID-19 infections, 1,247 ones with other pneumonia 
infections, and 2,383 ones from normal lungs. We  use 3,768 
COVID-19-related images and 2,383 normal CT images to train 
the models for binary classification problems and use all 7,398 
images for three classification problems. As shown in Figure 1, 
Lines 1–3 show pulmonary CT images from patients with 
COVID-19 infections, normal lungs, and patients with other 
pneumonia infections, respectively.

The pipeline of DeepDSR

It is difficult to obtain the best prediction accuracy when only 
thousands of images are trained. Thus, we design an ensemble 
model to reduce the limitation of lack of data through transfer 
learning. The ensemble model integrates three state-of-the-art and 
different network architectures, that is, DenseNet, Swin 
transformer and RegNet. The pipeline is shown as Figure 2. As 
shown in Figure 2, first, we preprocess data by integrating three 
available COVID-19-related CT image datasets to one larger 
dataset. Second, we  pretrain weights of DenseNet, Swin 
transformer, and RegNet on the ImageNet dataset based on 
transformer learning. Third, we continue to train DenseNet, Swin 
Transformer, and RegNet on the integrated larger dataset. Finally, 

the classification results are obtained by integrating results from 
the above three models and the soft voting approach.

DenseNet

CNNs can implement accurate and efficient train when they 
contain shorter connections between layers close to the input and 
those close to the output. Traditional convolutional networks 
composed of L  layers connect each layer to its subsequent layer. 
Inspired by the model proposed by Huang et  al. (2017), 
we  introduced a Dense convolutional Network, DenseNet, to 
classify COVID-19-related CT scan images. DenseNet implements 
connection between each layer in a feed-forward fashion to 
accurately and efficiently train the model. DenseNet with L  

layers has 
1
2

1L L+( )  direct connections. At each layer, as shown 

in Figure 3A, the CT image feature maps from all previous layers 
are taken as its inputs and its outputs are taken as the inputs at 
next layer. For ResNet (Radosavovic et  al., 2020), the original 
features and the new features are added by element by element to 
achieve the sample features. Differed from ResNet, DenseNet 
obtains shortcut through direct concatenation. DenseNet reduces 
the vanishing-gradient problem, boosts feature propagation, 
advances feature reuse while greatly decrease the number 
of parameters.

Swin transformer

Transformer has difficulty in application from language to 
vision because of differences between the two areas. Thus, Liu 
et  al. developed a hierarchical transformer to obtain data 
representation by shifted windows (Liu et al., 2021). For an image, 
first, transformer splits it into fixed-size patches. Second, the 
patches are linearly embedded and added position embeddings. 
Third, the embedded results are feed to a standard Transformer 
encoder. Finally, an extra learnable “classification token” is added 
to the sequence to classify images. Inspired by model proposed by 
Liu et al. (2021), we use the window-shift technique and design a 
Swin transformer to classify COVID-19-related CT scan images.

The window-shift technique and the sliding window approach 
are similar in modeling ability, but the former is beneficial for 
all-MLP architectures and has much lower latency than the latter. 
Swin transformer focuses on shifting window partition between 
consecutive self-attention layers. As shown in Figure  3B, the 
shifted windows connect with the windows in the previous layer, 
thus significantly enhancing the modeling ability. The window-
shift technique limits self-attention computation to 
non-overlapping local windows as well as supports cross-window 
connection, thereby effectively improving the image classification 
ability of models. Furthermore, Swin transformer utilizes the 
window-shift technique and demonstrates the flexibility when 

FIGURE 1

Image examples in dataset.
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modeling on COVID-19-related image identification as well as 
computational complexity linearly with image size.

RegNet

Neural architecture search and RegNet are two representative 
neural network design paradigms. The two complementary design 
paradigms can improve the efficiency of search algorithms while 
develop better models. Neural architecture search mainly focuses 
on the search strategy to more efficiently find the best network 
instances in a fixed and manually designed search space. In 

contrast, RegNet (Radosavovic et  al., 2020) more focuses on 
designing paradigms on novel design spaces.

RegNet is a novel neural network design paradigm. It used a 
residual network to simplify the deeper network training. It can 
boost the understanding of network design and further investigate 
design principles with strong generalize abilities across different 
settings. Instead of concentrating on individual network instance 
design, RegNet designs network design spaces that can 
parameterize network populations. The design process is similar 
to manually design network while advances the design space level. 
Consequently, we  can obtain a low-dimensional design space 
composed of multiple simple and regular networks.

FIGURE 2

The pipeline for COVID-19-related CT image classification based on an ensemble of DenseNet, RegNet, and Swin transformer.
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In this study, RegNet composes a stem with the stride of 2 and 
32 3 3×  convolution kernels, followed by a network body 
composed of a series of stages, and finally a head. In the network 
body, each stage operates at gradually reduced resolution. It 
consists of multiple identical blocks with the stride of 1 except that 
the first block uses stride-two convolution kernel. The head is 
composed of an average pooling layer and a fully connected layer. 
It is used to output n  classes.

In addition, RegNet contains RegNetX and RegNetY 
composed of RegNetX and squeeze-and-excitation network. As 
shown in Figure 3C, the squeeze-and-excitation network generally 
composed of one global average pooling layer and two fully 
connection layers that separately use ReLU and sigmoid as 
activation functions.

Ensemble

Although machine learning techniques achieve significant 
successes in knowledge discovery, they fail to obtain powerful 
performance because of imbalanced, high-dimensional and noisy 
features of data. Consequently, ensemble learning, which 
effectively integrates the prediction results from multiple 
individual classifiers, has been widely applied to image processing 
(Sagi and Rokach, 2018).

Ensemble learning methods first generate multiple weak 
predictive results using different machine learning models, 
and obtain better performance by ensemble of the results from 
each individual model with different voting strategies. It 
composes of five main types: bagging, AdaBoost, gradient 

A

B

C

FIGURE 3

(A) The DenseNet Block; (B) Shifted-Window technique; (C) The Squeeze-and-Excitation network.
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boosting, random forest, and random sub-space (Dong et al., 
2020). Bagging generates sample subsets based on the random 
sampling approach, and train basic learners in a parallel 
manner (Breiman, 1996). AdaBoost concentrates on improving 
classification ability of individual models via iteratively 
adjusting weights for all misclassified samples (Hastie et al., 
2009). Gradient boosting achieves sample subsets based on the 
random sampling approach, and trains each classifier to 
alleviate the residuals caused by the previous model. Thus, 
gradient boosting better fits the real data (Friedman, 2002). 
Random forest takes decision trees as predictors and separately 
trains multiple models to reduce the overfitting problem 
(Breiman, 2001). Random subspace constructs a set of feature 
subspaces based on the random sampling approach, and trains 
learners on the feature subspace set. Finally, it obtains the final 
classification by combining the results from each individual 
classifier (Ho, 1995).

Ensemble learning utilizes different ensemble strategies to 
ensemble results from individual models. For regression 
estimation, it gains the final results via averaging all 
predictions. For classification, ensemble learning uses the 
voting method to achieve the final classification by combining 
each individual classifier. The absolute majority voting 
approach takes the same classification result as one from more 
than half of individual classifiers as the final result, and the 
relative majority voting approach takes the classification result 
where the number of individual predictors involved in a 
certain prediction is the largest as the final result. Therefore, 
we  combine DenseNet, Swin transformer, and RegNet and 
develop an ensemble deep learning model, DeepDSR, to 
improve the COVID-19 classification performance of 
the model.

The classification scores from the three individual classifiers 
are integrated based on the soft voting approach. Given a query 
image, for a binary classification problem, suppose that its scores 
classified to COVID-19-related image by DenseNet, Swin 
transformer, and RegNet are S1 19covid- , S2 19covid- , and 

S3 19covid- , respectively, its final score S final
covid-19  classified to 

COVID-19-related sample can be represented by Eq. (1):

 
S S S Sfinal
covid covid covid covid- - - -= + +19

1
19

2
19

3
19

 
(1)

Similarly, its final score S final
non covid- -19  classified to 

non-COVID-19-related image can be represented by Eq. (2):

 

19 19 19
1 2

19
3

- - - - - -

- -

= +

+

non covid non covid non covid
final

non covid

S S S

S  
(2)

The image will be  taken as COVID-19 related when 
S Sfinal
covid

final
non covid- - ->19 19 , it will be taken as non-COVID-19 

related, otherwise.

Furthermore, for a three-classification problem, suppose that 
its scores classified to COVID-19 related by DenseNet, Swin 
transformer, and RegNet are S1 19covid- , S2 19covid- , and 

S3 19covid- , respectively, its final score S final
covid-19  classified to 

positive sample can be computed by Eq. (3):

 
S S S Sfinal
covid covid covid pcovid- - - -= + +19

1
19

2
19

3

19

 
(3)

Similarly, its final score S final
other  classified to other pneumonia 

can be computed by Eq. (4):

 
S S S Sfinal
other other other other= + +1 2 3  

(4)

And its final score S final
normal  from normal lung can 

be computed by Eq. (5):

 
S S S Sfinal
normal normal normal normal= + +1 2 3  

(5)

Finally, the image will be taken as COVID-19 related when 
S final
covid-19  is larger than S final

other  and S final
normal ; it will be taken as 

other pneumonia when S final
other  is larger than other two values; it 

is from normal lung otherwise.

Transfer learning and pre-training

CNNs usually need to train a mass of parameters. However, it 
is almost impossible to learn such massive parameters only 
through a few training images (Zhuang et al., 2020; Zhu et al., 
2021). In particular, transfer learning can utilize existing 
knowledge and transfer knowledge from source domains to the 
target domain and thus has been widely applied to solve problems 
in different while relevant fields (Pan and Yang, 2009; Weiss et al., 
2016). It usually pretrains weights on a large-scale dataset using a 
standard neural architecture and then fine-tunes the weights on a 
target dataset. It has been successfully applied to medical image 
classification, for instance, cancer classification, pneumonia 
detection, and skin lesion identification (Chang et  al., 2017; 
Deepak and Ameer, 2019; Khalifa et  al., 2019; Chouhan 
et al., 2020).

Furthermore, existing lung CT scan images do not satisfy the 
need of a powerful image identification model because most of 
lung CT images are not publicly available. In addition, a image 
processed by random affine transformation, random crop or flip 
may not be a complete lung CT image because of the specificity of 
CT scanning techniques. The above two situations may easily 
produce the overfitting problem of image classification models in 
small datasets. Therefore, we  want to pretrain the proposed 
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DeepDSR model by transfer learning to advance the training 
speed, reduce overfitting, alleviate problems produced by 
insufficient data, and further improve the classification 
performance (Hijab et al., 2019; Cherti and Jitsev, 2021; Mustafa 
et al., 2021).

Finally, we developed an ensemble deep model (DeepDSR) to 
analyze COVID-19 CT images by combining DenseNet, Swin 
transformer, and RegNet. First, we  integrate three COVID-19 
image dataset to one larger dataset. Second, we pretrain weights 
of DenseNet, Swin Transformer, and RegNet on the ImageNet 
dataset. Third, we repeatedly select 80% of CT images from the 
integrated larger dataset as the training set and the remaining 20% 
as the test set. Fourth, the training set is used to train DenseNet, 
Swin transformer, and RegNet, respectively. The test set is used to 
test the performance of DenseNet, Swin transformer, and RegNet, 
respectively. Finally, the final classification results are obtained by 
integrating the results from the above three models.

Results

Experimental evaluation and parameter 
settings

To evaluate the performance of the proposed DeepDSR 
framework, we use six measurement metrics: precision, recall, 
accuracy, F1-score, AUC and AUPR. Suppose that True Positive 
(TP), True Negative (TN), False Negative (FN), and False Negative 
(FN) are defined as Table 1. We can compute precision, recall, 
accuracy, F1-score, True Positive Rate (TPR), and False Positive 
Rate (FGR) as follows:

 
Precision TP

TP FP
=

+  
(6)

 
Recall TP

TP FN
=

+  
(7)

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(8)

 
1

2 × ×
- =

+
Precision RecallF score

Precision Recall  
(9)

 
TPR TP

TP FN
=

+  
(10)

 
FPR FP

TN FP
=

+  
(11)

And AUC is the area under the TPR-FPR curve, and AUPR is 
the area under the precision-recall curve. For each sample (image), 
its classification scores from three individual networks (DenseNet, 
Swin transformer, and RegNet) are computed by the softmax layer, 
respectively. Its final classification probability is obtained by 
averaging the scores from the three single models. AUC and 
AUPR can be  computed based on the obtained final 
classification probability.

Moreover, the six metrics are not equally important to 
COVID-19 CT image classification. The results caused by false 
negatives are more severe than ones caused by false positives for 
medical image classification. Therefore, recall and AUPR are more 
important compared to the other four evaluation metrics.

The experiments are performed for 100 epochs to obtain the 
optimal parameter settings. In addition, DenseNet and RegNet use 
stochastic gradient descent algorithm and Swim transformer uses 
AdamW as optimizer to update parameters. The detailed 
parameters are set in Table  2. In Table  2 and the following 
Tables 2–5, the bold font in each column represents the best 
performance computed by corresponding method.

The performance comparison of 
DeepDSR with other three models for 
COVID-19 image binary classification

We compare the proposed DeepDSR method to three 
state-of-the-art deep learning models (efficientNetV2, ResNet, 
and Vision transformer) when classifying CT scan images to 
two classes: COVID-19 related or non-COVID-19 related. 
EfficientNetV2 (Tan and Le, 2021) aims to solve the problem 
of slow training when the size of the training image is large in 
efficientNetV1. Moreover, it replaced some MBConv 
structures in shallow layers with Fused-MBConv structures 
and found the optimal combination through neural 
architecture search technology to improve the network 
training speed. Finally, efficientNetV2 used a non-uniform 
scaling strategy to scale the model and thus make the model 
more reasonable.

ResNet (He et al., 2016) aims to solve the vanishing gradient 
and network degradation problems in traditional neural networks. 

TABLE 1 The confusion matrix.

True results

Positive Negative

Predicted results Positive TP FP

Negative FN TN

TABLE 2 Parameter settings.

Model Parameter setting

Swin transformer epochs = 100, batch_size = 8, lr = 0.0001

RegNet epochs = 100, batch_size = 16, lr = 0.001, lrf = 0.01

DenseNet epochs = 100, batch_size = 16, lr = 0.001, lrf = 0.01
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ResNet solved the vanishing gradient problem through data 
preprocessing and batch normalization layer, and reduced the 
network degradation problem through a residual structure. 
ResNet used a connection model of shortcut to add interlayers in 
the feature matrix and thus greatly improve the depth of 
the network.

Transformer (Vaswani et al., 2017) has been broadly used in 
the natural language processing field. Attention mechanism has 
been widely used in the computer vision field. Inspired by the 
transformer mechanism, Vaswani et al. divided each image into 
patches, and took the linear embedded sequence of these image 
blocks as the input of the transformer. The processing method of 
image patches is the same as marks in NLP applications. Vision 
transformer (Dosovitskiy et al., 2020) achieved excellent results 
when both pretraining on a sufficient scale dataset and migrating 
to tasks with fewer data points.

We first selected 80% images as training set and 20% as 
test set from the integrated COVID-19-related CT scan 
images. We then train DeepDSR, efficientNetV2 (Tan and Le, 
2021), ResNet (He et  al., 2016), and Vision transformer 
(Dosovitskiy et  al., 2020) for 100 epochs, respectively. The 
results are shown in Table 3 and Figure 4A. We can find that 
DeepDSR significantly outperforms efficientNetV2 in terms 
of precision, recall, accuracy, F1-score, AUC and AUPR. For 
examples, DeepDSR outperforms 21.93% and 33.42% 
compared to efficientNetV2 based on AUC and AUPR, 
respectively. DeepDSR also performs better than ResNet and 
Vision transformer although the improvement is slight. 
Figures 4B,C illustrate the AUC and AUPR values of DeepDSR 
and other models when classifying COVID-19-related CT 
images to two classes. The above results show that DeepDSR 
can efficiently identify CT scan images for patients infected by 
COVID-19.

The performance comparison of 
DeepDSR and three individual models for 
COVID-19 image binary classification

To investigate the image classification performance of the 
proposed DeepDSR model with DenseNet, Swin transformer, and 
RegNet, we conduct experiment for 100 epochs. At each epoch, 
we  select 80% samples to train DeepDSR, DenseNet, Swin 
transformer, and RegNet and the remaining 20% to test their 
performance. Table 4 and Figure 5A demonstrate the prediction 

results of the above four models. The results show that the 
proposed ensemble model, DeepDSR, outperforms other three 
individual models in terms of precision, recall, accuracy, F1-score, 
AUC, and AUPR. Figures 5B,C illustrate the AUC and AUPR 
values obtained from the above four models. We  find that 
DeepDSR, ensemble of DenseNet, Swin transformer, and RegNet, 
can more effectively classify CT images to two classes: COVID-
19-related or not.

Statics of true positives/negatives and 
false positives/negatives

We investigate the classification results on 1,231 COVID-19-
related CT images from the test set to more intuitively illustrate 
the affect of DeepDSR on CT image identification performance. 
Table 5 and Figure 6 give the number of true positives (TP), false 
positives (FP), false negatives (FN), and true negatives (TN) 
computed by DeepDSR, DenseNet, Swin transformer, and RegNet, 
respectively.

The results show that DeepDSR, DenseNet, Swin transformer, 
and RegNet misclassify a few samples. DeepDSR computes the 
most TPs and TNs while the least FPs and FNs. Furthermore, 
efficientNetV2, ResNet, and Vision transformer compute much 
more FPs and FNs compared with DeepDSR, demonstrating 
higher error rates. Moreover, DeepDSR, ensemble of DenseNet, 
Swin transformer, and RegNet, outperforms all other three 
individual models. Thus, the neural network, combining the 
predictions obtained from all the base models, can significantly 
improve the CT image classification performance of models. In 
addition, the stacking ensemble consisting of all three base models 
outperforms all other combinations. DeepDSR is tuned to utilize 
those predictions that help improve the classification performance 
and ignore the wrong predictions made by the base models.

TABLE 4 The performance comparison of DeepDSR and three 
individual models for binary classification problem.

Precision Recall Accuracy F1-
score

AUC AUPR

Swin 

transformer

0.9619 0.9539 0.9675 0.9579 0.9943 0.9924

RegNet 0.9571 0.9832 0.9764 0.9700 0.9963 0.9949

DenseNet 0.9770 0.9790 0.9829 0.9780 0.9981 0.9973

DeepDSR 0.9833 0.9895 0.9894 0.9864 0.9991 0.9986

The bold fonts represent the best performance in each column.

TABLE 3 The performance comparison of DeepDSR and other models for COVID-19 image binary classification.

Precision Recall Accuracy F1-score AUC AUPR

EfficientNetV2 0.5077 0.9015 0.6231 0.6495 0.7800 0.6649

ResNet 0.9786 0.9602 0.9764 0.9693 0.9960 0.9943

Vision transformer 0.9811 0.9769 0.9838 0.9790 0.9982 0.9975

DeepDSR 0.9833 0.9895 0.9894 0.9864 0.9991 0.9986

The bold fonts represent the best performance in each column.
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The affect of transfer learning on the 
performance

In the above sections, we pretrain the weights of DenseNet, 
Swin transformer, and RegNet on the ImageNet dataset and 
continue to train the three models on the integrated larger dataset 

for 100 epochs. We set up a group of control experiments without 
pretraining (100 epochs and 200 epochs) to validate the 
importance of pretraining weights of the models for 100 epochs. 
The results are shown in Table 6 and Figure 7.

From Table  6 and Figure  7, we  can observe that the 
performance of network architecture with the pretrained weights 
is much better than that of the network without pretraining 
weights for 100 epochs and 200 epochs. For example, under 100 
epochs, the pretrained network computes accuracy of 0.9894, 
AUC of 0.9991, and AUPR of 0.9986, outperforming 7.88%, 
2.83%, and 5.61% than the network without pretraining, 
respectively. In addition, we also investigate the performance of 
DeepDSR with pretraining for 100 epochs and ones without 
pretraining for 200 epochs. The results show that the pretrained 
network significantly outperforms the network without 
pretraining even for 200 epochs. Accuracy, AUC, and AUPR 

TABLE 5 Statistical analyses of four models on 1,231 images.

DenseNet Swin 
transformer

RegNet DeepDSR

TN 743 736 733 746

FN 10 22 8 5

FP 11 18 21 8

TP 467 455 469 472

The bold fonts represent the best performance in each column.

A

B C

FIGURE 4

(A) The performance comparison of DeepDSR and other models for COVID-19 image binary classification. (B,C) The AUC and AUPR values of 
DeepDSR and other models for COVID-19 image binary classification.

https://doi.org/10.3389/fmicb.2022.995323
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fmicb.2022.995323

Frontiers in Microbiology 10 frontiersin.org

computed by the pretrained network are better 3.83%, 1.27%, and 
1.68% than ones without pretraining for 200 epochs, respectively. 
The results demonstrate that pretraining based on transfer 
learning can reduce the training time while improve the 
classification performance. Finally, when adding epochs on the 
pretrained network, however, the performance improvement is 
not obvious. On the contrary, it even produces drifts and thus 
causes poorer performance.

Performance comparison for 
three-classification problem

Finally, we classify CT scan images to three classes to further 
evaluate the robustness and credibility of DeepDSR. We use 7,398 
lung CT scan images, which contain 3,768 lung CT scan images 

from patients infected by COVID-19, 2,383 ones from normal 
lung, and 1,247 ones from patients infected by other pneumonia. 
And 80% images are selected the training set and the remaining 
images are the test set. We  repeatedly conduct the three-
classification experiments on the obtained 7,398 images for 100 
epochs. Table 7 and Figure 8 give precision, recall, accuracy, and 
F1-socre of DeepDSR, other three comparative methods, and 
three individual models.

The results from Table  7 and Figure  8 show that the 
proposed DeepDSR framework significantly outperforms 
efficientNet-V2 and Vision transformer in terms of precision, 
recall, accuracy, and F1-score. DeepDSR is also better than 
ResNet and three individual models based on the above 
measurement metrics. For example, DeepDSR computes the 
best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, 
and F1-score of 0.9695, outperforming 1.93%, 1.27%, 1.31%, 

A

B C

FIGURE 5

(A) The performance comparison of DeepDSR and three individual models for COVID-19 binary classification problem; (B,C) The AUC and AUPR 
values of DeepDSR and three individual models for COVID-19 binary classification problem.
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and 1.59 compared the second-best methods (DenseNet, 
DenseNet, RegNet, and DenseNet), respectively. The results 
demonstrate that DeepDSR has better generalization ability 
and can thus be  applied to classify COVID-19-related CT 
scan images.

Conclusion

COVID-19 detection through CT scan images has the 
characteristics of high sensitivity, low misdiagnosis rate, and high 
commercial practicability. Therefore, it has been a research 
hotspot to detect COVID-19 through CT scan images based on 
deep learning. In this study, we developed a deep ensemble model, 
DeepDSR to identify CT scan images for patients infected by 
COVID-19. DeepDSR combined three different state-of-the-art 
network architectures, DenseNet, Swin transformer, and RegNet. 

FIGURE 6

Statistical analysis of four methods on 1,231 images.

TABLE 6 The affect of transfer learning on the performance.

Precision Recall Accuracy F1-
score

AUC AUPR

With 

pre-train

0.9833 0.9895 0.9894 0.9864 0.9991 0.9986

Without 

pre-train

0.8773 0.914 0.9171 0.8953 0.9716 0.9455

Without 

pre-train 

(200 

epoch)

0.9544 0.9224 0.9529 0.9382 0.9866 0.9821

The bold fonts represent the best performance in each column.

FIGURE 7

The affect of transfer learning on the performance.

TABLE 7 The performance of DeepDSR and other models for three-
classification problem.

Precision Recall Accuracy F1-
score

EfficientNet V2 0.4023 0.4479 0.5132 0.3736

ResNet 0.9487 0.9397 0.9541 0.9439

Vision 

transformer

0.7112 0.6264 0.7373 0.6301

Swin 

transformer

0.9488 0.9371 0.9548 0.9424

RegNet 0.9492 0.9463 0.9568 0.9476

DenseNet 0.9552 0.953 0.9608 0.9541

DeepDSR 0.974 0.9653 0.9737 0.9695

The bold fonts represent the best performance in each column.

FIGURE 8

The performance of DeepDSR and other models for three-
classification problem.
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It obtained the best performance compared to three classical deep 
learning models (efficientNetV2, ResNet, and Vision transformer) 
as well as three individual models when classifying CT images to 
two classes (COVID-19-related or non-COVID-19-related) or 
three classes (COVID-19-related, normal pneumonia, and 
healthy lung).

EfficientNetV2, ResNet, and Vision transformer are three 
state-of-the-art deep learning models with different network 
architectures. The proposed DeepDSR model computed the 
best measurement values compared with the three network 
architectures, demonstrating its optimal image classification 
ability. Moreover, DeepDSR aggregated three individual deep 
models, DenseNet, Swin transformer, and RegNet. Lower 
correlations between the three individual models more 
obviously reduced the variance of DeepDSR. In addition, 
DeepDSR also reduced its variance due to the ensemble 
nature. Therefore, DeepDSR, ensemble of different single 
models, significantly outperforms the three individual models, 
thereby suggesting its powerful performance.

Our proposed DeepDSR has three advantages: first, three 
COVID-19-related CT image datasets were fused to boost the 
generalization ability of DeepDSR. Moreover, multiple 
methods including batch normalization were adopted to 
prevent overfitting. Finally, DeepDSR, ensemble of DenseNet, 
Swin transformer, and RegNet, can more accurately classify 
CT images and thus improve the classification performance. 
However, the training of DeepDSR was more complex than 
single model, it also spend more time to train and test the 
model, and more parameters need to be  adjusted, thereby 
requiring more computing resources. In the future, we will 
design more robust ensemble deep learning models to 
accurately classify images for query diseases including 
COVID-19 and cancer. In particular, we will further consider 
deep heterogeneous ensemble framework to accurately 
identify images for related diseases by ensemble of deep 
learning model and supervised learning model.
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