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An AI-based approach for
detecting cells and microbial
byproducts in low volume
scanning electron microscope
images of biofilms
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Parvathi Chundi1* and Mahadevan Subramaniam1*

1Department of Computer Science, University of Nebraska, Omaha, NE, United States, 2Civil and
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Microbially induced corrosion (MIC) of metal surfaces caused by biofilms

has wide-ranging consequences. Analysis of biofilm images to understand

the distribution of morphological components in images such as microbial

cells, MIC byproducts, and metal surfaces non-occluded by cells can provide

insights into assessing the performance of coatings and developing new

strategies for corrosion prevention. We present an automated approach based

on self-supervised deep learning methods to analyze Scanning Electron

Microscope (SEM) images and detect cells and MIC byproducts. The proposed

approach develops models that can successfully detect cells, MIC byproducts,

and non-occluded surface areas in SEM images with a high degree of

accuracy using a low volume of data while requiring minimal expert manual

e�ort for annotating images. We develop deep learning network pipelines

involving both contrastive (Barlow Twins) and non-contrastive (MoCoV2) self-

learning methods and generate models to classify image patches containing

three labels—cells, MIC byproducts, and non-occluded surface areas. Our

experimental results based on a dataset containing seven grayscale SEM

images show that both Barlow Twin and MoCoV2 models outperform the

state-of-the-art supervised learning models achieving prediction accuracy

increases of approximately 8 and 6%, respectively. The self-supervised

pipelines achieved this superior performance by requiring experts to annotate

only ∼10% of the input data. We also conducted a qualitative assessment of

the proposed approach using experts and validated the classification outputs

generated by the self-supervised models. This is perhaps the first attempt

toward the application of self-supervised learning to classify biofilm image

components and our results show that self-supervised learning methods are

highly e�ective for this task while minimizing the expert annotation e�ort.

KEYWORDS

microscopy images, deep learning, self-supervised learning, contrastive learning,

scanning electron microscope, microbially induced corrosion, Barlow twins,
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1. Introduction

Deep learning algorithms have achieved impressive

successes in analyzing and extracting knowledge from images

through classification, object detection, semantic and instance

segmentation, and other quantitative tasks (Dong et al., 2021;

Zaidi et al., 2022). These methods allow domain experts in

diverse fields including biology, medicine, and engineering to

explore a variety of hypotheses with a high degree of confidence

and with less manual effort. Deep learning approaches learn and

discover latent patterns that are often impossible to specify and

program for using deterministic image processing algorithms.

MIC causes wide-ranging adverse socio-economic

consequences, costing billions of dollars each year (Little et al.,

2020). Devising effective MIC prevention strategies requires

domain experts to analyze various properties of biofilms

as they grow on exposed metal surfaces. Analyzing biofilm

images to understand the distribution of their morphological

components including microbial cells, cell clusters, microbially

induced byproducts, metal surfaces non-occluded by cells and

byproducts can be highly beneficial to experts in studying the

growth and evolution of biofilms. Prevention strategies for

designing new coatings on metals for controlling biofilm growth

can then be assessed and improved based on the distribution

of these biofilm constituents on the metal surface captured in

SEM images.

The overall objective of this work is to develop automated

image analyses and knowledge extraction methods to detect

the distribution of various biofilm constituents over different

regions of an exposed metal surface. In order to detect the

presence of biofilm constituents across different regions of a

biofilm image, the image is first divided into smaller image

patches and deep learning classifiers are trained to detect the

presence of each constituent (class object) in each patch. This

information is used to automatically derive the distribution

of these class objects in each image. Manually detecting these

class objects and determining their distributions in different

regions is a tedious and time-consuming process. Images lacking

sufficient resolution make it difficult for experts to manually

detect certain class objects in such images with certainty. Tools

such as BiofilmQ (Hartmann et al., 2021), ImageJ (Rueden

et al., 2017) that have been used for microscopy image analyses

are not effective in analyzing biofilm images where the class

objects appear in bursts of high density and separating cells from

clusters and byproducts is often ambiguous (Ragi et al., 2021).

On the other hand, deep learning methods can be used to build

models that can accurately and automatically detect each of the

above three class objects in each image patch and these results

can then be used to automatically build heatmaps depicting the

distribution of these class objects in each image.

However, building high-performing deep learning models

for detecting these class objects using SEM biofilm images is a

non-trivial problem. For deep learning methods require a large

volume of expert-labeled images to learn patterns underlying

these class objects that they can subsequently use to detect

these objects. Generating large volumes of images is problematic

since developing biofilms typically takes several days and is

usually performed in batches of limited sizes. In addition, due

to the crowded nature of these films, accurately annotating each

image is labor intensive. Further, SEM images are captured

under different resolutions using different magnification scales

leading to cells objects with varying shapes and sizes and this

makes it difficult to learn their features, especially with a small

amount of data. Our approach utilizes the state-of-the-art self-

supervised learning methods at the image patch level along

with image processing and other pre-defined deep learning

models in order to address the above challenges and build high

performing models for biofilm image analyses. Biofilm images

are pre-processed using contrast level enhancement based on

histogram equalization (CLAHE) to sharpen the class objects in

each image (Lam et al., 2017). We then apply pre-defined super-

resolution deep learning models to improve the resolution of

class objects and reduce the size and shape variations introduced

while capturing SEM images. The available data volume is

amplified by dividing each image into a large number of patches

which are used to train the deep learningmodels. Self-supervised

learning approaches first learn the representations underlying

these unlabeled patches without any expert involvement. These

representations are then fine-tuned to detect class objects in

the image patches using a very small (less than 10%) expert

annotated patches.

We have applied the proposed approach to automatically

analyze SEM images of biofilms involving sulfate-reducing

bacteria (SRB) grown on mild carbon steel and detect

the presence and distribution of three-class objects—cells

(and cell clusters), microbial byproducts, and non-occluded

surface—across different regions of a biofilm SEM image.

We have conducted multiple experiments to evaluate, (1)

the applicability and effectiveness of the usage of state-of-

the-art self-supervised techniques, (2) compare and contrast

the two major self-supervised categories (contrastive and

non-contrastive), (3) performance comparison between self-

supervised approaches and their fully supervised counterparts

on the biofilm dataset, and (4) qualitative analysis of self-

supervised model performance through expert feedback.

Object classification is one of the fundamental tasks in

machine learning. Over the years, image classification has

been used extensively in many major domains in their

applications, such as medical, engineering, and material science.

Previous attempts mostly consist of pipelines with hand-

crafted feature extraction to feed into the classification models.

Several image processing techniques such as morphological

techniques, Fourier spectrum and Wavelet coefficients, and

texture and clustering have been used to extract useful feature

representations (Soda and Iannello, 2009). Scale Invariant

Feature Transform (SIFT) (Lowe, 2004), Speeded Up Robust
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Features (SURF) (Bay et al., 2006), Hough transforms (Hough,

1962), and Geometric hashing (Mian et al., 2006) are some of

the popular traditional computer vision techniques to extract

features for image classifiers.

Deep learning approaches have significantly outperformed

the hand-crafted feature extraction approaches and are currently

the defacto approach for object classification tasks. These

approaches are primarily based on the supervised machine

learning methods which generate models that can automatically

detect objects in images by training them on images annotated

by experts. Due to the large volume of expert annotated

images needed to train these models several alternative machine

learning methods that work with scant annotated data are

being developed (Tajbakhsh et al., 2020; Chakravarthy et al.,

2022), Self-supervised learning is a popular method categorized

under the techniques supported by scant annotations. In self-

supervised learning, first representations are learned from input

data without any expert annotations and then these learned

representations are fine-tuned to perform the downstream

object classification task using scant expert annotations.

Currently, there are mainly two types of self-supervised learning

approaches, namely contrastive and non-contrastive. Some of

the popular frameworks proposed in the category of contrastive

self-supervised learning are SimCLR (Chen et al., 2020a)

and MoCoV2 (He et al., 2020) which use both positive and

negative pairs to learn representations from unlabeled data.

Non-contrastive frameworks such as SimSiam (Chen and He,

2020), BYOL (Grill et al., 2020), and Barlow Twins (Zbontar

et al., 2021) have shown a higher capacity to learn powerful

representations only considering the positive pairs (Hence no

contrasting negative pairs). Further, compared to contrastive

learning, the non-contrastive learning frameworks require

smaller sized batches to train the models (Tian et al., 2021).

In the literature, there are several applications in a variety of

domains that have been carried out with both contrastive and

non-contrastive approaches (Jamaludin et al., 2017; Tajbakhsh

et al., 2019; Azizi et al., 2021; Bommanapally et al., 2021).

In this paper, we focused on the self-supervised

learning method for the biofilm image classification task

since the annotation process of these SEM images requires

significant domain expertise and is extremely time-consuming.

Bommanapally et al. (2021) proposed self-supervised learning

based on SimSiam framework to analyze SEM biofilm images

to detect the images containing microbial byproducts. They

use expert annotated images for representation learning as

well as the downstream task, which makes it different from

self-supervised learning methods. Further, requiring experts

to annotate all images and detecting only byproducts without

distinguishing them from other classes, makes this approach

impractical in practice. The proposed approach uses a limited

number of expert annotated images for the downstream task

only in addition to performing a comprehensive classification

of cells and non-occluded areas besides MIC byproducts. Ragi

FIGURE 1

Flow chart of the classification task.

et al. (2021) developed deep learning-based image segmentation

approaches to automating the extraction of quantitative

parameters of cells in biofilms. Ragi et al. (2021) developed

two deep learning-based image segmentation approaches to

automate the extraction of quantitative parameters of cells

in biofilms. This work employs supervised learning methods

and focuses on image segmentation task and is very different

from the approach described in this paper. In this regard, to

the best of our knowledge, this is the first attempt to apply

self-supervised learning for a comprehensive classification of

SEM biofilm image components.

2. Materials and methods

In this section, we describe our deep learning pipeline

based on contrastive and non-contrastive self-supervised

approaches to classify biofilm images, the dataset, the self-

supervised approaches, and the evaluation metrics to assess the

performance of the models. The pipeline with components is

depicted in Figure 1. The pipeline takes a set of SEM raw images

as input and generates a pre-processed image corresponding

to each input image. The pre-processed images are manually

annotated by experts. All the pre-processed images (annotated

and non-annotated) are divided into patches. Here, a patch is

defined as a sizem×m square-shaped region of an image sizeN

× M, where m << N and m << M. The non-annotated image

patches are used to learn representations using self-supervised

approaches whereas annotated patches are used to fine-tune the

models for the downstream classification task. We describe the

details of different components of the pipeline in detail below.
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2.1. Dataset

While the pipeline applies to image classification in general,

our focus in this paper is on the classification of Scanning

Electron Microscope (SEM) images. This dataset consists of

a set of SEM images of Desulfovibrio alaskensis (DA-G20), a

sulfate-reducing bacteria (SRB) and their biofilms on bare mild

steel surfaces grown in MIC experiments conducted in batch.

Owing to its high ductility, weldability, and low cost, mild

steel remains a popular choice of metal in civil infrastructure,

transportation, oil and gas, and other industrial applications.

However, under aqueous conditions, mild steel is susceptible

to MIC caused by microorganisms including the SRB. DA-G20

was cultivated and grown in lactate C media with the following

media components including sodium lactate (6.8 g/L), sodium

citrate (0.3 g/L), sodium sulfate (4.5 g/L), ammonium chloride

(1 g/L), dehydrated calcium chloride (0.06 g/L), potassium

phosphate monobasic (0.5 g/L), magnesium sulfate (2 g/L), and

yeast extract (1 g/L). The culture medium was deoxygenated by

filter-sterilized nitrogen gas purging for 20min at 15 psi followed

by sterilization at 121◦C for 20 min at 15 psi. The pure cultures

of DA-G20 were inoculated in 150 mL serum bottles containing

80 mL of lactate-C medium and were incubated at 30◦C and 125

rpm in an orbital shaker. The exponential phase pure cultures

(10%) of DA-G20 were prepared and inoculated (40 mL) into

the Paracell Kit (Gamry Instruments) using low carbon steel

electrodes with the volume of 360 mL lactate C media. All the

electrochemical measurements and their results were discussed

in our recent publication (Susarla et al., 2021).

After 30 days of incubation, the biofilm surface morphology

on the low carbon steel electrodes was analyzed using SEM.

The biofilm samples were gently rinsed with double distilled

water followed by fixation using glutaraldehyde (3%) in sodium

cacodylate buffer (0.1 M, pH 7.2) (Dedysh et al., 2015). The

samples were then washed subsequently using 25, 50, 75, and

100% acetone and dried overnight in a desiccator. The dried

samples were then sputter-coated with a gold film and analyzed

using Zeiss Supra40 variable pressure field-emission SEM fitted

with an Oxford Aztec Energy advanced system. The SEM was

controlled using an accelerated voltage of 5 kV.A set of these

images along withmeta-information such as magnification level,

scale, time and date, etc. The dataset used in this paper consists

of 7 grayscale SEM images at a resolution of 1024×758 with

magnifications ranging from 436X- 2.30KX for the scale ranges

from 2 to 10 micrometers.

2.2. Image pre-processing

Image pre-processing is an important step in computer

vision tasks to improve the quality of the images for a particular

application. Better performance can be achieved by cleaning

the image data to the desired quality and format. Each image

in the dataset includes meta-information in a black strip such

as magnification level, scale, time and date, etc. This meta-

information was removed in each image by manually cropping

out the black strip and then, contrast enhancement (Lam et al.,

2017) was applied to improve the clarity of the images. Often,

the SEM images are captured by domain scientists at different

scales of magnification resulting in object sizes. This is especially

problematic for low volume datasets where it is common to

divide an image into patches (see below for more details) to

augment data volumes. Objects with vastly varying sizes make

it challenging to produce image patches of a single size where

objects are contained in the patch. In order to enhance image

details and normalize object sizes across different magnification

scales, image resolution enhancement techniques were applied

to SEM images with higher micrometer scale images and lower

magnification. The images with relatively lower scale and higher

magnification were not undergone any resolution enhancement

process.

Different image resolution enhancement techniques,

specifically super-resolution techniques such as BSRGAN

(Zhang et al., 2021), Real-ESRGAN (Wang et al., 2021), and

SwinIR (Liang et al., 2021) using different magnification

scales were applied to the raw images to produce multiple

high-resolution image samples at different magnification

scales (2X and 4X). These samples were analyzed using a

blind voting approach by experts to select the best sample.

Four experts analyzed each of these samples and voted along

with justifications on the best samples. Voting ties among

the experts and samples were arbitrarily broken. Based on

this methodology, the BSRGAN super-resolution technique

with 4X scaling was chosen for improving the resolution and

clarity of the images in the dataset. After applying the BSRGAN

super-resolution technique to the images, high-resolution

images were obtained from the original biofilm dataset, and

each high-resolution image had a resolution of 4096×2728.

2.3. Annotation, patch generation, object
masking

Machine learning approaches typically require experts to

annotate images by assigning class labels to images and their

components. The expert-labeled images serve as ground truth

those are used by the algorithms to learn and to test the

performance of these learning algorithms. In the current work,

three classes—(i) Byproduct, (ii) Cell, and (iii) Surface—were

identified and labeled by the experts in each image in the dataset.

Cells were marked in blue color, byproducts in pink, and surface

in green. Image annotations were performed using the image

labeler package in Matlab.

The authors who are biofilm and microscopy experts labeled

the cells based on the unique features including cell shape,
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structure, and size of the bacterium used. However, byproducts

include complex substances such as biofilm microstructure,

corrosion products, and microbial products that do not have

unique shapes and structures. These domain experts categorized

these structures all into the same category called byproduct.

Future studies are warranted such as surface elemental analysis

combined with microscopic techniques to specifically categorize

these structures.

Note that the problem addressed in this paper is a multi-

label classification task, i.e., whether an SEM image patch

belongs to more than one class we did not differentiate

between cells and cell clusters in this work. Although pixel-

level annotations are typically used for semantic segmentation

tasks and bounding boxes are used for object detection tasks,

our paper uses pixel-level annotations for effective the multi-

label classification of SEM images. We also did not differentiate

between pristine and contaminated surfaces in this work. Our

initial analyses of the data indicated that cells and cell clusters

co-occur in all images and hence cells and cell clusters are

equivalent for classification. Similarly, all surface patches in

the images were found to have byproduct particles and hence

pristine and contaminated surface were treated equivalent for

classification. However, the proposed approach can be easily

extended to consider these additional classes by extending the

annotations and incorporating pristine surface data samples.

Though all the images in the dataset were annotated, only a

small portion (∼10%) of the annotated images were used by the

self-supervised learning methods for classification.

In general, large volumes of data are required to train

high performance deep neural networks (Huang et al., 2019).

However, it is challenging to produce biofilm images in high

volumes as the growth of each individual film is grown in limited

size batches and takes several hours (days) and batch sizes.

In order to amplify the data volume available for training the

models, each image was decomposed into multiple patches. We

have used the traditional sliding windows technique (Ciga et al.,

2021; Tsai et al., 2022) to split an image into smaller patches

using different kernel sizes and different overlapping ratios

(strides). The kernel size defines the dimensions of the patch and

the stride gives the next region of the image fromwhich the patch

is extracted. Overlapped patches were used to reduce feature

loss due to sharp patch boundaries. Four high-resolution image

patches and their counterparts cropped using the same image

coordinates from raw images are depicted in Figure 2. Figure 3

illustrates raw image patches and their corresponding ground

truth annotations, cropped from the same image coordinates.

Object masking technique renders the foreground image in

such a way that the target object is visible clearly and other

objects invisible or less visible (Li et al., 2004). It is a powerful

technique, not only to isolate the target objects but also to

maintain the spatial distribution of the objects in the image.

The object masks are generated from each image patch using

the pixel-level annotations (pink, blue, and green), for the target

FIGURE 2

Output patches after super-resolution method. Top row contain

patches from original image patches. Bottom row contains

patches after applying super-resolution.

FIGURE 3

Sample SEM images (first row) with their respective annotations

(second row), where Byproduct, Cells, and Surface indicates by

the colors pink, blue, and green, respectively.

objects Byproduct, Cell, and Surface, respectively (depicted in

Figure 4). The masked objects appear in black in the masked

patch whereas the target object instances appear in gray in the

masked patch. The variation in the intensities of the target

object in the masked patches depends on their intensities in

the patch input for masking. For a patch that contains objects

with multiple classes, multiple masked patches with pixel-level

information about each of the three target objects are generated.

Then based on the three target objects in these masked patches,

an image-level binary label is assigned to the these masked

patches and used to conduct multi-label image classification task

. These masked patches with image-level annotations are then be

used as the ground truth for multi-label classification task, for

both training and evaluation purposes (see below for details).

Note that, from this point, the masked patches with pixel-level

information is no longer used.
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FIGURE 4

Object masking example. (A) Original image patch, and its

object masks of (B) Byproduct, (C) Cell, and (D) Surface.

2.4. Self-supervised learning

Our approach is designed to incorporate both contrastive

and non-contrastive self-supervised learning algorithms to

compare their efficiency on SEM biofilm images. Based on

popularity, efficiency, and consistency with smaller training

batches, we chose the contrastive self-supervised framework

MoCoV2 (He et al., 2020) and the non-contrastive framework

Barlow Twins (Zbontar et al., 2021) for learning representations

from the image patches and performing the downstream

classification task. Both these methods use their own

mechanisms to extract complete representations consuming

smaller batch sizes, which suits better with the approach

discusses in this study. However, the approach is adaptable to

other contrastive and non-contrastive self-supervised learning

methods as well.

2.4.1. MoCo: Momentum contrast for
unsupervised visual representation learning

The contrastive learning approach assumes that a dataset

has images where some images belong to the positive class

and the rest belong to the negative class. The model learns

the similarity of the positive pair of images and dissimilarities

from the negative pairs of images. In MoCoV2, two encoders

namely query encoder and momentum encoder take two

(differently) augmented versions of the same unlabeled image

and generate representations. Here, the input image is called

query (q) whereas the encoded representations called keys

(k+ represents the positive key sample matches with q,

k− represents the negative samples mismatch with q). The

momentum encoder maintains a queue of keys for contrastive

loss (InfoNCE) calculation purposes (see Equation 1 below).

Here, the temperature parameter(τ ) scales the similarity scores.

MoCoV2 keeps the size of the mini-batch very small and

stores the results with higher memory size. The framework for

MoCoV2 is shown in Figure 5A.

infoNCE(q) = −log
exp(q.k+/τ )

exp(q.k+/τ )+
∑

k− exp(q.k−/τ )
(1)

2.4.2. Barlow twins

Barlow Twins’ self-supervised framework (Zbontar et al.,

2021) utilizes two encoder models to learn representations

taking unlabeled augmented data as the input. This framework

is inspired by the redundancy reduction principle (efficient

coding hypothesis) in the work of neuroscientist Horace

Barlow (Barlow, 1961). The two identical networks in this

framework, are structured with a backbone encoder followed

by three linear layers. Unlike, the contrastive self-supervised

frameworks (e.g., MoCoV2), Barlow Twins framework

calculates the loss function from the cross-correlation matrix

(C) computed using the output of two identical networks’

representations. When the batch-normalized output of the two

branches of the framework are zA and zB (see Figure 5B), the

loss function can be represented as shown in Equation (2),

where i and j index the vector dimensions of the encoder

output. The invariance term ensures robustness from the noise,

whereas the redundancy reduction term enforces to make the

representation components independent.

LossBT =
∑

i

(1− Cii)
2

︸ ︷︷ ︸

invariance term

+λ
∑

i

∑

j 6=i

C2ij

︸ ︷︷ ︸

redundancy reduction term

where Cij =

∑

(zAi )(z
B
j )

√
∑

(zAi )
2
√

∑

(zBj )
2

(2)

2.5. Downstream task

We design a learning scheme that converts the classification

of K classes into K binary problems, in this application, K =

3. We learn one model for each class and use the image

patches belonging to that class. The labeled and object-masked

image patches are used to fine-tune the binary classification

models to output whether the objects (Byproduct, Cell, and

Surface) are available in the patch or not. These outputs from

each classification model merge together to construct the final

classification result on a test patch. Therefore, in the final output,

one image patch may be assigned more than one class and in

some cases, all three classes.

2.6. Experiments

We applied the approach described in Figure 1 to

automatically classify byproducts, cells, and non-occluded

surfaces in the SEM biofilm images. The main objectives of our

experiments centered around the following research questions—

Rq1: Feasibility and effectiveness of automatic classification

of byproducts, cells, and non-occluded surface by using

state-of-the-art contrastive and non-contrastive self-supervised
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FIGURE 5

Self-supervised frameworks (A) MoCoV2, (B) Barlow Twins.

learning approaches. Rq2: Compare and contrast the biofilm

image classification performance of MoCo V2 (contrastive self-

supervised approach) with Barlow Twins (the non-contrastive

self-supervised learning approach). Rq3: Evaluate the savings of

the expert annotation effort and performance of self-supervised

models compared to their fully supervised counterparts. Rq4:

A qualitative analysis of the classification performance of the

self-supervised model through expert feedback.

All the model training and testing tasks were executed on

GPU enabled environment using a LAMBDA QUAD Deep

Learning Workstation with Intel(R) Core(TM) i9-9920X CPU

(3.50 GHz), Nvidia Quadro RTX 6000 GPU with 24 GBmemory

and 128 GB RAM.

We followed the pre-processing pipeline described in

Section 2.2 to prepare the dataset containing 7 grayscale

SEM images for model training. Using an image processing

tool, we manually cropped out the meta-information that

appeared on the images. Next, BSRGAN-based image resolution

enhancements were applied on SEM images with 10 or higher

micrometers scale whose magnifications were less than 1KX.

Then we processed 4Xmagnification on the images to normalize

object sizes across images. Then patches of size 64×64 and

128×128 were generated from each processed, non-annotated

image as well as each annotated image for experimentation

purposes. The sliding windows technique with a stride size of

2 was used as explained in Section 2.3 to generate these patches.

With a patch size of 128×128, we obtained 24021 image patches

from all 7 images in the dataset. We used the pixel colors

and masking process to generate, for each patch, at most three

ground-truth labels, one per class. We have used 80% of the

dataset to learn representations and 10% of the data to fine-tune

the model. Here, we used ten-fold cross-validation to fine-tune

strongly annotated data (image-level ground truth annotations).

The rest of the 10% data was used as test data to generate the

final multi-label classification results.

We implemented MoCoV2 and Barlow twins with ResNet-

50 (He et al., 2016) as the encoder architecture using the

model configuration recommendations for the best performance

as given in (Chen et al., 2020b; Zbontar et al., 2021).

We built 3 binary classification networks, one for each class

Byproduct, Cells, and Surface. The prediction from each binary

classification model was collectively used to construct multi

-label classification result on each input image patch. For

example, for the image patch shown in Figure 4, a successful

classification model should assign all three classes to the patch.

All the experiments were conducted repeatedly with ten random

cross-validations to improve the estimated performance and

better model generalization.

To obtain qualitative feedback, the experts were given 10

patches selected from each image spanning a spectrum of

difficulty levels (easy to annotate and hard to annotate) for

manually identifying the three classes. A simple user interface

was created (see Figure 6) for experts to provide their qualitative

feedback along with comments. The experts inspected each

image patch (see Figure 6 first image in the first row) for manual

classification in one of the three classes. For each patch, we have

provided the original image patch, then three Class Activation

Maps (CAM)1 (the three images to the right of the image patch

in first row in Figure 6) generated by the model for three classes

(Byproduct, Cells, and Surface) (Zhou et al., 2016). Predictions

indicate True (T) or False (F), if the model is confident about the

presence of the object returns T, else F.

Note that we used CAMs derived from them model outputs

about the image classification task to receive feedback from the

domain experts beyond model’s prediction performance. We

used CAMs as a supplementary artifact to visualize and explain

1 The heated (red) regions in a CAM show the location of the patch

where the model has high confidence about the presence of that

particular class label.
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FIGURE 6

Interface for qualitative feedback. Image in the first row, first column shows an image patch followed by three columns of CAMs showing the

true for class Surface, true for class Cells, and true for class Byproduct. Checkboxes and textboxes in the bottom half of the figure are available

to input experts’ agreements and feedback.

model inferences. This allowed the experts to validate whether

the model outputs regarding its multi-label classification task

were well justified and whether themodel’s attention when it was

predicting a class label(s) was found to be reasonable by experts.

2.7. Evaluation metrics

The self-supervised learning models were evaluated with

respect to the learned representation quality and fine-tuned

downstream performance. These notions are explained below.

Initially, we conducted empirical experiments to estimate the

best-suited configurations (patch size, batch size, and number of

epochs) for learning representations. The representations were

learned with all the unlabeled data with different patch sizes (64

× 64 and 128 × 128), different batch sizes (128 and 256), and

different epochs (200, 300, and 400). We used all these models

with learned representations for further experiment setup.

2.7.1. Linear evaluation for learned
representation quality

To evaluate the learned representations’ quality, we

conducted a linear evaluation experiment using a linear

classification head on the learned representations as discussed

in Chen et al. (2020a); Grill et al. (2020); Zbontar et al.

(2021).We used standard configurations to run the experiments.

During the training stage, only the linear classification head

was trained with approximately 10% of image-level ground

truth annotations while the encoder models were remained

frozen (no weight adjustments for representations). Figure 7

shows the classification accuracy (See Equation 3) with different

configurations, where the x-axis represents the classification

accuracy and y-axis represents different configurations. The

accuracy of the models were calculated based on image-level

ground truth annotations.

Accuracy = (Number of correct predictions)/

(Total number of predictions) (3)

According to the results, both MoCoV2 and Barlow Twins

models illustrated the highest classification accuracy with the

parameter configuration of patch size 128×128, batch size 128

and trained with 200 epochs. For all the evaluation experiments,

at the training time, we used random crop and horizontal

flip augmentations, and at test time we used center crop

augmentations as suggested in Zbontar et al. (2021). We report

the best configuration (patch size 128×128, batch size 128, and

trained with 200 epochs) performance across all three classes

(Byproduct, Cell, and Surface) as well as overall averages of the

results in Table 1. For comparison purposes, as the baseline, we

trained the corresponding three binary classification supervised

models (supervised pre-trained ResNet-50 with same encoder

architecture used in self-supervised frameworks) (Kornblith

et al., 2019) using 100% of the available image-level ground

truth annotated data for linear evaluation and 10% of the

available image-level ground truth annotated data for fine-

tuning evaluation. These models are trained with the same

data augmentation as our self-supervised models and standard

cross-entropy loss.
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FIGURE 7

Linear evaluation accuracy comparison of MoCoV2 and Barlow Twins models with di�erent configurations of batch sizes and patch sizes. The

first row of the y-axis indicates the patch sizes, the second row indicates batch sizes, and the third row indicates the corresponding

self-supervised framework.

2.7.2. Fine-tuning evaluation

In this experiment setting, we evaluate the data efficiency

of each self-supervised model. We fine-tuned each (MoCoV2

and Barlow Twins) model that learned representations for

the downstream classification task on the image-level ground

truth annotated data for 20 epochs with different portions of

the labeled data. However, 10% of the image-level ground

truth annotated data showed significantly better classification

accuracy. We illustrated the accuracy of the classification tasks

from each binary classification model (over each class) as

well as averaged overall classification accuracy performance

in Table 2. All these results were generated using the best

configuration settings (including the patch sizes, batch sizes,

and augmentations) mentioned in Section 2.7.1. The accuracy of

the models were calculated based on image-level ground truth

annotations.

2.7.3. Qualitative evaluation

The qualitative evaluation of the applicability and

performance of the proposed approach for the classification

task involved summative and formative assessments by domain

experts. The experts assessed the Sq1: overall feasibility and

the utility of the proposed approach in classifying SEM biofilm

images in comparison to manual and semi-automated (ImageJ)

classification approaches, and aid in the discovery of class

objects, Fq1: existence of each class object predicted by the

models in the image patches by providing binary (T or F)

agreement along with additional remarks and Fq2: justification

provided by the model for its prediction for the existence of

each class in the image patch by providing (T or F) agreement

along with additional remarks.

3. Results

We report on quantitative analysis results in terms of

the evaluation of the robustness of the two self-supervised

approaches with respect to parameter variations (Rq1) and

compared the two self-supervised models along with a

supervised model baseline (Rq2, Rq3) using linear and fine-

tuning evaluations and the amount of annotation savings

achieved. In addition to these quantitative analyses results, we

also report on the results of our qualitative analyses on the

performance of our models by domain experts.

3.1. Evaluation of robustness to
parameter variations

Figure 7 shows the accuracy on the Y-axis and the parameter

settings (patch size and the batch size) on the X-axis. There are
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TABLE 1 Classification accuracy percentages under linear evaluation

on Biofilm dataset.

Method Accuracy (%)

Byproduct Cell Surface Overall

Supervised 88.32 ± 0.74 91.04 ± 0.51 96.21 ± 0.03 91.85 ± 0.42

MoCoV2 85.73± 1.49 89.71± 0.80 95.87± 0.43 90.44± 0.91

Barlow Twins 85.75± 1.08 85.10± 0.75 95.45± 0.26 88.77± 0.70

Best results are in bold. The results are presented in the format of (mean± std).

three plots in the figure, one plot for each setting of the number

of epochs used for model building. From the results, we can

observe that the overall performance of both the models trained

with the patch size 128×128 significantly outperformed those

with patch size 64×64, regardless of the batch sizes and amount

of training epochs. The difference in performance is around ∼

4.5%. One possible reason for this performance difference could

be due to the low information content within a 64×64 patch.

Hence, we used 128×128 as the patch size in all our experiments.

Finally, with different training epochs (200, 300, and 400) the

models showed almost similar results, hence we preferred 200

epochs during the representation learning stage considering the

computational time-saving.

3.2. Linear and fine-tuning evaluations on
the dataset

In order to evaluate the quality of the representations

learned by the self-supervised models in comparison to the

supervised baseline (Rq2), a linear classification head was trained

while freezing the learned representations. Table 1 summarizes

the accuracy and overall performance of the binary linear

classification model for each of the three classes. As expected

due to the use of 100% image-level ground truth annotations,

the baseline supervised model performed better than the

self-supervised ones on the linear evaluations. In the linear

evaluation, the MoCoV2model outperformed the Barlow Twins

model by approximately by 2%. However, according to the

standard deviation (std) values, Barlow Twins’ results were more

consistent thanMoCoV2. Although both self-supervisedmodels

did not perform as well as the supervised approach in the linear

evaluation, their accuracy was pretty close to the supervised

model. In terms of the annotation effort (Rq3) the two self-

supervised models achieved performance comparable to the

supervised model baseline while using only 10% of the labeled

data.

Similarly, As shown in Table 2, fine-tuned Barlow Twins

model shows superior results (83.18%) over both supervised

baseline (75.01%) and fine-tuned MoCoV2 (80.73%). Here we

TABLE 2 Classification accuracy percentages under fine-tuning

evaluation on Biofilm dataset with all the labeled subset.

Method Accuracy (%)

Byproduct Cell Surface Overall

Supervised 69.01± 0.17 62.18± 0.28 93.86± 0.02 75.01± 0.15

MoCoV2 73.52± 3.28 73.18± 2.36 95.50± 0.40 80.73± 2.01

Barlow Twins 78.76 ± 3.40 74.67 ± 2.70 96.11 ± 0.47 83.18 ± 2.19

Best results are in bold. The results are presented in the format of (mean± std).

report the average accuracy on binary classification tasks as

well as overall performance with the same test set used in

linear evaluation experiments. These results provide empirical

evidence that the Barlow Twins model is more capable of

adjusting to perform a downstream task after fine-tuning the

weights using limited labeled data when compared to the

MoCoV2 method.

3.3. Qualitative results

For the summative assessment, Sq1, the expert feedbacks

were highly positive indicating that the classification performed

by the method was useful and applicable to many downstream

tasks including identification of image regions with specific

class objects, their co-occurrence frequencies to estimate their

correlations and other properties of their distribution across the

patches. They also found good efficiency improvement in using

the proposed approach measured in terms of the time taken

to manually analyze the dataset. It was estimated that several

orders of magnitude time improvements were obtained by

using the proposed approach in comparison to semi-automated

approaches based on tools such as ImageJ. This is particularly an

impediment to scalability as such manual and semi-automated

approaches will become impractical as the number of images

increases. Most importantly, the experts compared the class

objects discovered by the proposed approach so that they could

identify them in raw images and found instances where they

agreed with the model prediction and could recognize these

objects after reviewing the model predictions.

The domain experts inspected the original image patch,

corresponding three image-level annotations (as described in

Section 2.3) and the three-class activation maps for evaluating

whether (1) The predicted class is present in the original

image patch, and (2) The predicted class is present at the

location highlighted in the CAM (see Table 3). For Fq1, in

cases where the domain experts disagree with the machine

learning predictions three possible reasons were identified: (1)

Annotations were incorrect, (2) Annotations were correct but

the class predicted by the machine learning model was incorrect,
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TABLE 3 CAM visualization results.

Original Byproduct Cell Surface

We compare the visualization results obtained with each binary classification model. These visualizations were calculated for the last convolution output of the binary classification models.

and (3) Annotations were ambiguous where the domain experts

are also uncertain in cases involving overlapping cells and

byproducts.

In comparison to the Fq1, for Fq2, the disagreement between

the domain experts’ assessment and the machine learning

model predictions was larger. One of the main reasons for this

disagreement was that the present class activation maps scheme

could not highlight the presence of a particular class in the image

patch when the objects belonging to this class are separated and

are present in multiple regions in the image patch. Also, this

evaluation metric of the class activation maps is very subjective,

particularly on image patches involving overlapping objects

belonging to multiple classes. In summary, approximately 98%

of the time domain experts’ agreed with the model prediction.

4. Discussion

Several studies (Jaiswal et al., 2020; Tian et al., 2021;

Balestriero and LeCun, 2022) have proposed theoretical analysis

to form justifications for the empirical performance of self-

supervised approaches. Selection of data augmentation and

pretext tasks, dataset biases, and global and local spectral

embedding are some of the factors to justify the empirical

results. At a more general level, contrastive self-supervised

learning frameworks tend to extract better representations of

global data’s structures whereas non-contrastive approaches are

better at grasping local structures in the data. Based on our

experiments, we draw the following observations from the

experiment results.

Considering the overall classification accuracy results, it

is apparent that the proposed self-supervised learning-based

pipeline performs significantly better with a smaller amount

(∼10%) of image-level ground truth annotations. According to

the linear evaluation experiments, it is clear that both MoCoV2

as well as Barlow Twins models are capable of retrieving similar

quality representations using the unlabeled dataset. However,

with the fine-tuning process toward the final classification

downstream task using a limited amount of labeled data, Barlow

Twins model gained in performance enhancement not only

compared to MoCoV2 but also its supervised counterpart. As

both the self-supervised models surpassed supervised model

performance and considering the qualitative feedback on the

model predictions, we can conclude that the representations
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learned using the unlabeled data lead to better classification

accuracy. Moreover, Barlow Twins model is more preferable due

to its superior model classification accuracy performance while

incurring a substantially lower computational cost compared

to MoCoV2. Note that we use pixel-level annotations in

contrast to image-level annotations for our classification task.

Our earlier work (Bommanapally et al., 2021) based on image

level annotation resulted in low-level accuracy and this work

addresses this problem by using limited pixel-level annotations.

It is important to discuss the selection of model building

for the downstream task. Even though it is apparent that multi-

label classification suits the requirement of predicting multiple

objects that appear in an image patch, we used the simple

and intuitive binary classification models for assigning multiple

labels to an image patch. Some of the qualities of the dataset

such as imbalance class instance proportions (especially the ratio

between Surface class and Byproduct class was high), and low

inter-class variance between classes (Cell class and the Byproduct

class due to sharing similar visual features), binary classification

was a favorable choice over direct multi-label approaches such

as algorithm adaptation approaches. Even though it is well-

known that the adaptation of the binary relevance approach

has its potential weakness of ignoring correlations among

labels (Zhou and Zhang, 2017), we conjecture that this weakness

was mitigated because of the representation learning step of

self-supervised learning models which might have captured

the correlations.

The effectiveness of the machine learning approaches

developed in this paper is shown in classifying the morphologies

in SEM biofilm images on metals in which coatings were

applied to act as barriers to MIC (Chilkoor et al., 2020) due

to sulfate-reducing bacteria. We analyzed biofilm components

including cells, cell clusters, and byproducts in different regions

(patches) of SEM images of mild steel with graphene coatings.

Our classification results provide an automated alternative

for experts to analyze different coated areas and provide

additional inputs to the domain experts to further control their

experimental parameters. Several tools have been employed

to extract and evaluate the geometric properties of biofilm

microstructures including deep neural network (Buetti-Dinh

et al., 2019), BioFilm Analyzer (Bogachev et al., 2018), BiofilmQ

(Hartmann et al., 2021), and ImageJ (Rueden et al., 2017).

However, these tools characterize the smooth, homogeneous,

and non-overlaying geometric structures and are not generic

enough to classify the congested biofilm microstructures and

byproducts as done in this paper.

Some recent works (Atha and Jahanshahi, 2018; Stoean

et al., 2018) have used machine learning approaches to detect

corrosion (not MIC) in metals caused by environmental factors.

These works employ color spaces to identify discolorations and

variations in colors to identify corroded areas in metal surfaces.

They use different color channels (RGB, YCbCr, CbCr, and

grayscale) and patch sizes (128 × 128, 64 × 64, and 32 × 32) to

identify the optimal color spaces to detect corroded metal areas.

Supervised deep learning has been used by these methods and

image patches are used to increase training data volume similar

to our work. Identifying morphologies in SEM biofilm images

requires considerable expertise and cannot be done based on

the color spaces of SEM images. The intricate nature of these

images also makes it difficult to annotate and train supervised

deep learning models where a large number of annotated images

are needed for training. Given the low throughput of SEM

images, our approach similarly deals with a low volume data

set applied by patching, but employs self-supervised methods

for classification to minimize expert annotation effort. Self-

supervised learning provides a promising direction for analyzing

SEM biofilm images and can be used in a push-button manner

to study and explore biofilm characteristics with minimal expert

annotation efforts. According to the experiments in this study,

the model performance for grayscale SEM datasets depends on

the kernel size of the sliding window technique. Even though

a smaller sliding window kernel size (ex, 32 × 32) is useful to

achieve an accurate localization, the smaller the input image size,

the less number of features a CNN can learn which leads to a

decrease in model prediction performance. Given the variations

in the shapes and sizes of the cells, cell clusters, non-occluded

surfaces, and byproducts our application supports a very large

and rich feature space that are better captured by larger size

patches.

5. Conclusion

In this study, we investigated and presented a self-supervised

learning-based pipeline to improve the classification accuracy

of MIC constituents from biofilm SEM images using a limited

volume of annotated data. Even though the data generation has

grown on an exponential scale, manually annotating the data

remains a challenging concern as it is expensive and needs deep

domain knowledge. The SEM dataset used in this study can

be recognized as not only challenging to annotate but also to

generate in large volumes. We have experimented with several

aspects of image data pre-processing, self-supervised learning

and evaluated the performance on the classification tasks, both

quantitative and qualitative, by juxtaposing two self-supervised

learning frameworks, MoCov2 (contrastive) and Barlow Twins

(non-contrastive) on the dataset. Our study clearly showed that

self-supervised model (Barlow Twins) built using our pipeline

was able to produce 83.18% classification performance on the

SEM image patches with the patch size of 128×128 while

reducing the requirement of labeled data by at least 90%. Further,

the qualitative evaluation showed over 98% agreement on

summative and formative assessments by domain experts with

themodel predictions. Although the binary classificationmodels

used for multi-label classification might have the weakness

of ignoring correlations among labels during the downstream
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classification, we believe that most of the correlations were

captured during the representation learning stage. Given the

potential of state-of-the-art self-supervised learning to mitigate

the requirement of the large volume ofmanual label annotations,

we plan to extend this work to perform object segmentation

tasks and to further extract quantitative measures of the objects

such as area and length. We also plan to extend the experiment

setup with specific biofilm image augmentations, and additional

self-supervising methods.
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