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Advances in synthetic biology and the clinical application of bacteriotherapy 

enable the use of genetically engineered bacteria (GEB) to combat various 

diseases. GEB act as a small ‘machine factory’ in the intestine or other tissues 

to continuously produce heterologous proteins or molecular compounds 

and, thus, diagnose or cure disease or work as an adjuvant reagent for disease 

treatment by regulating the immune system. Although the achievements 

of GEBs in the treatment or adjuvant therapy of diseases are promising, 

the practical implementation of this new therapeutic modality remains a 

grand challenge, especially at the initial stage. In this review, we  introduce 

the development of GEBs and their advantages in disease management, 

summarize the latest research advances in microbial genetic techniques, and 

discuss their administration routes, performance indicators and the limitations 

of GEBs used as platforms for disease management. We also present several 

examples of GEB applications in the treatment of cancers and metabolic 

diseases and further highlight their great potential for clinical application in 

the near future.
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Introduction

Despite the success of modern medical technologies in the prevention and treatment 
of most human diseases, the rapid increase in antibiotic-resistant microorganisms (Cassini 
et al., 2019) and chronic patient populations (Bernell and Howard, 2016; Bray et al., 2018; 
Blüher, 2019; Khan et  al., 2020; Powell-Wiley et  al., 2021), adverse effects caused by 
chemical drugs, exorbitant medical costs (Gheorghe et al., 2018; Lentz et al., 2019), cancers 
and other incurable diseases urgently require highly economic, convenient and efficient 
methods for addressing these issues. Increasing evidence demonstrates the links between 
the dysfunction of the human microbial community and the onset and development of 
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many human diseases (Gilbert et al., 2016; Dang and Marsland, 
2019), signifying the potential use of microorganisms as an 
alternative strategy to conquer these issues (Mazhar et al., 2020). 
Remarkably, bacteria account for over 90% of intestinal microbes, 
and advances in synthetic biology enable the precise manipulation 
of bacteria for diverse purposes (Lawson et al., 2019). For instance, 
technical improvement in Clustered regularly interspaced short 
palindromic repeats-cas9 (CRISPR-cas9; Li et  al., 2020; Wang 
et  al., 2020) and molecular biological methods (e.g., gene 
synthesis, DNA/RNA sequence, DNA transfection, clone 
techniques of large DNA fragment, etc.; Tavanti, 2022) greatly 
contribute to generating various engineered bacteria for producing 
many proteins and molecular compounds that originate from 
uncultivated microorganisms, fungi, archaea, microeukaryotes 
and eukaryotes (Çelik and Çalık, 2012; Gupta and Shukla, 2016; 
Charbonneau et al., 2020). Mounting evidence demonstrates that 
genetically engineered bacteria (GEB) can be  orally or 
intravenously administered in clinical trials to cure different 
diseases (Liu et al., 2016; Zhang et al., 2018). Due to their special 
colonization ability in solid tumors, intestinal tracts, respiratory 
tracts, genital tracts, and the oral cavity, GEBs perform their 
activities by supplying active molecules, interfering with immune 
cells, restraining pathogenic bacteria, or killing tumor cells by 
expressing foreign genes or enhancing endogenous gene 
expression, thus preventing, diagnosing or curing diseases (Fan 
et al., 2019). Here, we systemically summarize the recent advances 
in bacteriotherapy, which uses GEBs as the main body, including 
the introduction of genetically engineered bacteria, engineering 
techniques, administration strategies, performance indicators, and 
biological safety. Finally, we describe the preclinical and clinical 
applications of GEBs and several probiotics in the treatment of 
cancers and metabolic diseases and discuss their limitations 
and prospects.

GEB in disease management

GEB

A GEB is defined as a bacterium with the ability to efficiently 
express heterologous proteins or molecular compounds for a 
specific purpose after genetic engineering. As early as the 19th 
century, Coley revealed the therapeutic effects of inactivated 
bacterial mixtures in sarcoma therapy (Coley, 1893). By the end 
of the 20th century, genetic engineering techniques have been 
widely used to modify bacteria to obtain the expected compounds. 
After decades of effort, numerous GEBs have been established for 
various applications in the food industry, disease treatment, 
chemical synthesis, environmental protection, etc. Notably, E. coli 
(Michael Schultz, 2008; He et al., 2017; Christofi et al., 2019; Terol 
et al., 2021), Lactobacillus (Yang et al., 2015; Lin et al., 2016; Chen 
et al., 2017; Oh et al., 2020), Salmonella (Chirullo et al., 2015; 
Zheng and Min, 2016; Li et al., 2017; Lim et al., 2017; Kawaguchi 
et al., 2018) are the most popular bacteria used as chassis tools for 

constructing different GEBs. In particular, more than 50 bacterial 
species, such as Bifidobacterium (Liu et al., 2018), Bacillus subtilis 
(Westbrook et al., 2016), Listeria monocytogenes (Selvanesan et al., 
2022), and Lactobacillus brevis CD2 (He et al., 2017; Alfano et al., 
2020), are being used in health care and scientific research 
(Figure 1).

Advantages of GEBs in disease 
management

To date, GEBs have made great achievements in the 
management of various diseases, such as infectious diseases, 
antibiotic-related diarrhea, allergies, and metabolic syndromes, 
in health care for daily life (Ma et al., 2017; Mazhar et al., 2020). 
Importantly, GEBs have more systematic and comprehensive 
therapeutic effects than traditional methods in the prevention 
and treatment of some diseases (Duan et al., 2015; Isabella et al., 
2018; Kurtz et  al., 2019) partly because the colonized 
microorganisms in the body are almost equal to tiny living 
factories that can autonomously reduplicate, detect abnormal 
homeostasis, produce therapeutic agents, and initiate self-
destruction at a defined time (Pedrolli et al., 2019). Accordingly, 
GEBs have promising potential to be used at different stages of 
disease for different purposes. Genetically engineered bacterial 
vaccines, such as Salmonella, Vibrio cholera, Listeria, and Neisseria 
meningitidis, are capable of activating in vivo immune protective 
responses by introducing some effective antigens into low- or 
nonvirulence bacteria (Le et  al., 2015; Herzog, 2016; Sharma 
et al., 2020). Using cholera as an example, the oral administration 
of attenuated Haiti V to rabbits efficiently restrained the 
colonization of wild vibrio cholera in the small intestine, thus 

FIGURE 1

Microbial chassis for GEB construction.
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reducing the incidence of Vibrio cholera infection (Hubbard et al., 
2018; Satchell, 2018). Additionally, genetically engineered 
Lactobacillus succeeded in detecting Vibrio cholerae in stool 
samples via the specific phenomenon of “quorum sensing” in 
pathogenic microorganisms (Carignan et al., 2016; Mao et al., 
2018). In cancer therapy, some bacteria, such as Salmonella, 
Clostridium novyi-NT, and E. coli, have a special ability to 
colonize solid tumors, enabling them to be excellent candidates 
for drug delivery and drug production (Wei et al., 2016). For 
example, transforming growth factor alpha-pseudomonas 
exotoxin-expressing S. typhimurium displayed significant 
inhibitory effects on the growth of CT26, MC38, and 4 T1 solid 
tumors (Lim et al., 2017). In melanoma therapy, recombinant 
S. typhimurium transfected with the interferon-gamma gene 
plasmid integrated into the N-terminal region (residues 1–160) 
of a surface immunogenic protein demonstrated obvious toxicity 
to cancer cells (Yoon et al., 2017). In addition, S. typhimurium 
loaded with CpG ODN and PD-1-siRNA induced innate 
immunity and inhibited PD-1 expression, thus killing cancer cells 
(Jia et al., 2021).

To date, the generally used GEBs are mainly confined to some 
intestinal diseases, such as inflammatory bowel disease (IBD; 
Saez-Lara et  al., 2015) and cholera (Duan and March, 2010; 
Satchell, 2018). For instance, Lactobacillus transfected with 
interleukin 1 receptor antagonist was capable of reducing CD4+ 
IL-17A+ cells in mesenteric lymph nodes and blocking IL-1-cell 
signaling, thus alleviating the symptoms of acute colitis (Namai 
et  al., 2020); E. coli Nissle 1917 (EcN) with the expression of 
cholera autoinducer 1 could restrain the virulence gene 
expression of Vibrio cholera and, thus, reduce its colonization in 
the gut (Duan and March, 2010). Essentially, the advantages of 
GEBs could be briefly summarized as follows: reduced cost of 
health care because of manufacturing scale-up and long-term 
effects of GEBs in colonization sites; decreased adverse effects, 
especially when they are orally administered; and for structurally 
unstable or environmentally sensitive compounds, free of drug 
purification and low-temperature storage. Notably, GEBs can 
produce multiple foreign proteins or compounds in one strain 
instead of requiring several drugs to achieve synergistic 
treatments (Peters et al., 2019).

Microbial genetic engineering

Microbial genetic engineering uses genetic operation tools to 
shear, splice, and integrate the target genes and then introduce 
them into chassis cells. Thus, the recombinant genes are 
transferred into the desired products or endow the bacteria with 
new phenotypes. Due to the great progress in sequencing 
technologies and bioinformatics, a growing body of functional 
genes and gene clusters from nonculturable microorganisms are 
being excavated. How to express functional genes or gene clusters 
in a chassis cell is becoming a new research hotspot in the study 
of GEBs.

Indeed, GEB construction mainly includes the following two 
stages: upstream (functional gene acquisition) and downstream 
(heterogeneous expression). The acquisition of target genes or 
large gene clusters is an important part of the upstream stage of 
constructing an expected GEB (Cobb and Zhao, 2012). Due to the 
national microbial genome projects launched in multiple 
countries, numerous potential genes are available to be used for 
fabricating various GEBs. In fact, the size of the targeted genes 
determines the choice of MGE for GEB construction. The 
acquirement and modification of small gene fragments (<10 kb) 
can be performed using the general or long PCR method or direct 
DNA synthesis and restriction enzyme digestion (Fahnøe and 
Bukh, 2019). However, when the gene size exceeds 50 kb, some 
recombination methods, such as CRISPR–Cas9 and the Red/ET 
recombination system, are the optimal methods to alter, replace, 
delete or add bases or gene fragments of plasmids or genomes (Li 
and Elledge, 2012; Luo et  al., 2016; Alberti and Corre, 2019; 
Strain-Damerell et al., 2021). Specifically, CRISPR–Cas9 can edit 
bacterial DNA fragments up to 100 kb in a single step in which 
RNA-guided Cas9 nuclease targets and cleaves DNA fragments, 
and the final large gene fragments are assembled via Gibson 
assembly (Jiang et al., 2015).

Cloning target genes or gene clusters into bacterial chassis 
includes gene transfer and genetic recombination using the 
techniques of transfection, transduction, conjugative transfer, 
lysogenic conversion, and protoplast fusion. The DNA size and 
property of the bacterial chassis determine the transfer methods. 
Heat-shock and electroporation transfection are widely used to 
transfer plasmids in E. coli, Salmonella, Bacillus thuringiensis, 
Pseudomonas aeruginosa, etc. Conjugative transfer and protoplast 
fusion often involve the transfer of plasmids from donor bacteria 
to recipient bacteria (Mukai et  al., 2020). For instance, the 
conjugative type IV secretion system is synergistic with 
DNA-processing machinery termed the “relaxosome,” and a large 
extracellular tube termed the “pilus” is capable of orchestrating 
directional conjugated plasmid transfer (Waksman, 2019). 
Additionally, homologous recombination technologies, mainly 
including homologous recombination, site-specific recombination, 
transposable recombination and the CRISPR–Cas9 technique, 
enable the direct integration of target genes into the host 
chromosome in an expected strain. The typical homologous 
recombination methods require more than 1 kb homologous 
sequences to realize the recombination of target genes into the 
chromosomal genome (Beumer et al., 2013). Due to CRISPR–
Cas9 technology, DNA operation has become much more efficient 
and accurate, which greatly benefits the extraction and 
heterologous expression of gene clusters in chassis cells, especially 
of those with a size of over 50 kb. Transposition (Martínez-García 
and de Lorenzo, 2012) and homologous recombination (Wang 
et  al., 2012; Davy et  al., 2017) are also available to integrate 
exogenous DNA fragments into the bacterial genome. Remarkably, 
when selection marker or CRISPR editing alleles are not 
applicable, transposition is an optimal choice for integrating target 
genes into the bacterial genome (Jiang et al., 2013; Vo et al., 2021). 
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To date, the generally used transposases mainly include sleeping 
beauty, piggyBac (Tschorn et al., 2020), Tol2 (Ni et al., 2016), Tn5 
(Balasubramanian et al., 2021; Xu et al., 2021), Tn7 (Kaczmarska 
et  al., 2022), and ICEBs1 (Ni et  al., 2016; Peters et  al., 2019; 
Strecker et al., 2019; Wu et al., 2021), all of which possess the 
ability to integrate small or large DNA fragments into bacterial 
genomes (Figure 2). However, the transposition efficiency slightly 
decreases as the size of the inserted DNA fragments increases 
(Kowalczykowski, 2015). Interestingly, several studies have shown 
that the synthetic Himar1 transposase-dead Cas9 fusion protein, 
which is characterized by DNA integration ability by Himar1 
transposase (a Tn7-like transposon) and targeted localization by 
programmable dead Cas9, is capable of achieving targeted 
transposition under cell-free condition, thus avoiding the random 
insertion of transposons (Bhatt and Chalmers, 2019). This 
recombination method succeeded in accomplishing the transfer 
of transposons larger than 7 kb, the accuracy of which was as high 
as 80% (Chen and Wang, 2019). Similarly, another integrated 

system originating from Tn6677 transposase utilized a Tn7-like 
transposon and CRISPR protein to guide RNA-assisted targeted 
insertion of transposable factors, enabling the accurate insertion 
of over 10 kb DNA sequences into bacterial genomes (Nelson 
et al., 2021).

However, the plasmid carrying capacity and transposition 
method do not allow for operating large DNA fragments, 
especially when their sizes are larger than 100 kb (Hashimoto 
et al., 2015). To achieve the heterologous expression of large gene 
clusters, researchers are more inclined to use transformation-
associated recombination (Bilyk et al., 2016; Zhang et al., 2019), 
bacterial artificial chromosomes (BAC; Huo et  al., 2019; 
Hashimoto et al., 2020b), phage recombination systems (Oßwald 
et al., 2014; Nah et al., 2017), or integrase-mediated recombination 
systems (Du et al., 2015; Ke et al., 2021; Figure 2). For example， 
the BAC technique enabled the integration of over 181 kb DNA 
fragments into the genome of Streptomyces lividans TK23 
(Hashimoto et al., 2020a). Concomitantly, the protoplast fusion 

FIGURE 2

General used recombination technologies, including phage infection, phasmid transfection, transposition recombination, conjugate transfer, BAC, 
protoplast fusion, and CRISPR-Cas9 in counter-clockwise order.
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method is also an option to acquire new functions for GEBs by 
integrating two bacterial genomes (Zhang et al., 2002). Although 
the insertion of foreign genes into the genome is more complex 
than the plasmid-based expression system, it possesses 
incomparable stability (Miyazaki and van der Meer, 2013; Pedrolli 
et al., 2019). Collectively, these methods, such as DNA extraction, 
site-specific mutation, gene insertion, gene deletion, and DNA 
transfection, have the potential to cater to most genetic 
manipulations in GEB construction, even when their size exceeds 
100 kb. However, it is still a considerable challenge to establish 
GEBs for reliably and efficiently expressing foreign proteins or 
compounds mainly because interspecific differences disable the 
microbial chassis from expressing most foreign genes or gene 
clusters, even after codon optimization. Therefore, the principal 
contradiction of establishing GEBs is that gene sequencing 
reveals an increasing number of functional genes or gene clusters 
from microorganisms characterized by nonculture, a long growth 
cycle, or harsh culture, but not enough microbial chassis are 
available to express or deliver them for disease diagnosis 
and treatment.

Administration route and 
performance indicators

GEB administration route

The route of GEB administration depends on multiple factors, 
including the target tissues, disease types, properties of 
heterogeneous proteins or compounds, and chassis cells 
(Hosseinidoust et al., 2016). However, considering the potential 
pathogenicity of microorganisms, especially when administered 
via intravenous administration, the delivery route should 
be seriously considered at the initial stage of GEB construction in 
health care and disease management. Intensive clinical trials 
demonstrate that therapeutic and adverse effects are closely 
associated with drug delivery models (Ott et al., 2004). To date, 
the routes of GEB administration mainly included oral 
administration, intravenous injection, intratumoral injection, 
nasal administration, and subcutaneous injection.

Oral administration is the most widely used method in 
bacteriotherapy because of its simple operation, noninvasiveness, 
and wide applicability. However, the gastrointestinal tract is 
known to be  a complex environment, including drastic pH 
changes among different organs [pH 1.0–2.5  in the stomach 
(Lund et  al., 2014), pH 7–7.4  in the small intestine, and pH 
6–6.7 in the colon (Kamada et al., 2013; Koziolek et al., 2015)] 
and differences in oxygen percentages (Zheng et  al., 2015), 
nutrient enrichment, and flora diversity, which greatly affect GEB 
activity when orally administered (Sender et al., 2016). Notably, 
the survival rates of GEBs have a great influence on their 
therapeutic efficacies, but they do not exceed 50% when they are 
orally taken without extra protection, highlighting the key role of 
shielding bacteria from a complex gastrointestinal environment 

(Heavey et al., 2021). Indeed, the emergence of new technologies, 
such as polysaccharides (alginate, κ-carrageenan, locust bean 
gum, gellan gum, and xanthan gum; Ta et al., 2021), cationic 
liposomes (Chowdhuri et  al., 2016), and mammalian cell 
membranes (Cao et al., 2019a), enable the isolation of bacteria 
from hostile environments. However, different packaging 
methods have different effects on the survival rates of GEBs after 
oral administration (Chowdhuri et al., 2016; Han et al., 2016; 
Sánchez et al., 2017; Cao et al., 2019b; Gharibzahedi and Smith, 
2021). For instance, liposomal emulsified bacterial vaccines 
exhibited higher immune-boosting capacity and therapeutic 
efficiency than the uncoated vaccines in animal experiments 
(Naciute et al., 2021).

Comparatively, the intravenous administration of live bacteria 
only occurs in preclinical and clinical cancer therapy due to the 
high pathogenicity of the systematic administration of GEBs 
(Forbes et  al., 2018). Additionally, nasal drip is another 
administration route of GEBs. Due to the specific safeguard 
function of nasal mucosa, intranasal vaccination becomes capable 
of activating local humoral and cellular immune responses at the 
entrance of the respiratory mucosa, distal mucosal sites, and their 
associated lymphoid tissues, thereby exerting prevention or 
therapeutic effects (Riese et al., 2014; Xu et al., 2021). Notably, 
bacterial administration via blood, nasal or intestinal routes is 
very beneficial for them to quickly reach disease sites, and thus, in 
most cases, their therapeutic effects are superior to those of oral 
administration (Wells and Mercenier, 2008; Pandey et al., 2022). 
However, some studies signified that the oral administration of 
GEBs was able to produce a higher immune response than 
intranasal immunization (Wan and Ping, 2021). The controversial 
issue is probably attributed to the use of distinct disease molds in 
these studies. In contrast to the treatment of enteric disease 
through oral administration, intranasal immunization is more 
suitable for the prevention of systemic allergy and airway 
inflammation (Sarate et al., 2019). In fact, various recombinant 
bacteria, such as Streptococcus gordonii, Staphylococci, and 
Lactobacillus, have shown great potential as active carriers of nasal 
vaccines (Mojgani et al., 2020; Dadar et al., 2021).

Furthermore, intratumoral injection is another key 
administration route for live GEBs to treat solid tumors. This 
method is greatly beneficial for reducing the potential systemic 
toxicity of live GEBs (Taniguchi et al., 2010). The intratumoral 
injected bacteria actively or passively colonize necrosis because of 
their homing instincts, chemotactic effects (Mirkhani et al., 2021), 
and cumulative effects (Ganai et al., 2011). Then, they activate 
immunogenicity and release toxic molecules to induce cell 
apoptosis and restrain tumor growth (Yaghoubi et al., 2020; Lin 
et al., 2021). However, this treatment may lead to highly malignant 
adverse effects because the biological toxicity caused by rapid and 
massive cell death in highly colonized bacterial tumors is 
extremely harmful to other normal organs and even induces a 
cytokine storm, thus leading to patient death (Karbach et al., 2012; 
Pandey et al., 2022). Therefore, the administration route is a key 
factor in GEB construction for different purposes.
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GEB performance indicators

To date, there are still no official standards for evaluating the 
efficacy of GEBs in disease diagnosis, prevention, or treatment. 
Increasing evidence has demonstrated that the intrinsic biological 
property, colonization ability, dose tolerance, and potential 
pathogenicity of GEBs all influence their activities. Establishing 
standard performance indicators plays a key role in advancing 
GEB clinical transition.

Colonization ability
GEB colonization ability refers to their survival and biological 

inheritance at the expected sites of disease after they enter the 
body and is an important indicator for evaluating GEB efficacy in 
disease management. Various techniques, mainly including tissue 
sectioning, fluorescent labeling, 16S rRNA sequencing, 
quantitative polymerase chain reaction, etc., have been developed 
to evaluate GEB conization ability (Cronin et al., 2012; Shen et al., 
2015). Fluorescently labeled GEBs can be traced and recorded 
from the initial administration to fecal samples under a 
fluorescence microscope; sequencing technology could use 16S 
rRNA gene tags to obtain the current bacterial lineage in fecal 
samples, thus evaluating the colonization ability of GEBs by 
comparison with the initial fecal flora (Shen et al., 2015).

Recent studies have identified some bacteria with high 
intestinal colonization (Dosoky et al., 2020). For instance, E. coli 
NGF-1 has been found to colonize in vivo for up to 6 months in a 
stable and persistent state (Riglar et al., 2017). However, various 
external factors may influence the in vivo colonization ability of 
GEBs. The key influencing factor is the location of GEBs in the 
body because each bacterium in our body has a corresponding 
colonization area in which the microenvironment formed by long-
period interactions with other bacteria and mammalian cells 
provides a safe place for them to proliferate with high genetic 
stability (O’Toole and Claesson, 2010; Zou et al., 2019; Tochitani, 
2021). Therefore, the disease location in the body determines the 
species of chassis bacterium, thus enhancing their colonization 
and reducing the off-target effects of their secreted substances 
(Dosoky et al., 2020).

Indeed, some studies have taken advantage of organ-specific 
GEBs to exert their best therapeutic effects (Tarahomjoo, 2012), 
such as using colon-colonizing strains to treat ulcerative colitis 
(Conrad et al., 2014) and employing Lactobacillus bacteria, which 
colonize in the small intestine and colon, to treat Crohn’s disease 
(Donaldson et al., 2016). More importantly, the administration 
method also influences GEB colonization ability. The intravenous 
injected Salmonella typhi exhibited higher tumor colonization 
ability than the intraperitoneal administered ones. In addition, the 
tumor size and bacterial number affect GEB colonization in target 
sites (Mei et al., 2002). Currently, the studies investigating GEB 
colonization ability, genetic stability, and the mechanisms 
underlying their activities are still in their infancy, thereby 
requiring more basic and clinical studies to advance the clinical 
transition of GEBs.

Dose tolerance
Intensive studies have emphasized the key role of dose in the 

therapeutic effects of GEBs against diseases (Ott et  al., 2004). 
Bifidobacterium infantis 35,624, which is generally used to treat 
irritable bowel syndrome, exhibited the best performance at a dose 
of 108 cfu per day, while 106 cfu and 1010 cfu per day did not result 
in significant differences from the placebo group (Whorwell et al., 
2006), thus indicating that the use of bacteria against disease is 
closely related to the bacterial number. Although a high amount 
of bacteria generally exhibits enhanced therapeutic effects, 
potential side effects also increase (Leventhal et al., 2020). The oral 
administration of SYNB1020 at a concentration of 1012 cfu per 
person induced adverse reactions, such as nausea and vomiting, 
in healthy volunteers and hyperammonemia patients (Kurtz et al., 
2019). Some studies further demonstrated that an increasing 
number of bacteria generally leads to the development of dose-
dependent problems and may even restrain immune system 
memories (Sivick et al., 2018). Therefore, how to achieve better 
therapeutic effects with low doses of GEBs remains a hot topic in 
the development of therapeutically engineered bacteria. Increasing 
their targeting ability is a selective strategy to decrease the 
administered dose. For example, the expression of tumor-targeting 
adhesins on the membrane surface of E. coli significantly 
decreased the intravenous injected bacterial number required for 
the minimum effective dose (Piñero-Lambea et al., 2015).

Simultaneously, different administration methods also 
influence the effective doses of GEBs in disease treatment. 
Lactobacilli were administered via intraperitoneal injection, 
intestinal administration, and oral administration, but the doses 
required to reach the same therapeutic efficacy differed by nearly 
10,000 times among them (Steidler et al., 2000). Notably, each 
bacterium has an optimal dose for producing the best therapeutic 
efficacy. The recommended dose for Bifidobacterium infantis 
35,264 is 108 CFU per day, while the optimal dose for probiotic 
preparation VSL#3 (VSL Pharmaceuticals) is 1.8 × 1012 CFU per 
day when taken by oral administration (Gionchetti et al., 2003). 
Although daily probiotic use has a long history, the use of bacteria 
for the prevention and treatment of disease is still at its initial stage.

Safety evaluation
Using bacteria to improve intestinal function and treat 

diseases has been proven to be a safe and effective modality (Sharif 
et al., 2017). However, GEBs prepared by genetic modification, 
chemical capsulation or other methods need to be fully evaluated 
for metabolic pathways and toxicological effects in vivo before 
clinical application. The pathogenicity of GEBs is mostly derived 
from the bacteria, but this defect could be  partly removed or 
mitigated by the gene knockout or mutation of virulence genes. 
Typical examples include lipopolysaccharide deletion in gram-
negative bacteria, virulence elimination in Listeria monocytogenes, 
and exotoxin gene knockout in Clostridium novyi (Zhou 
et al., 2018).

Additionally, the regulation of bacterial population provides 
another strategy to further enhance the safety of bacteriotherapy. 
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A synchronous lysis circuit consisting of positive and negative 
feedback genes, and an inducible promoter can precisely control 
the proliferation and lysis of bacteria, thus restraining the bacterial 
population within a specified scope (Din et al., 2016). Moreover, 
population competition between the intrinsic bacterial flora and 
orally administered GEBs is always inevitable. Once foreign 
bacteria dominate the original flora, they probably alter the 
physiology of the host, thus leading to dysfunction of the 
gastrointestinal tract, such as inflammation (Spees et al., 2013) and 
pathogenic infection (Kamada et al., 2013). Therefore, purging 
foreign bacteria from the host after treatment is another key issue 
in GEB application. Biocontainment strategies, alternative 
selection markers and the use of homologous DNA have been 
performed to inhibit potential transmission in the environment 
and purge residual foreign bacteria (Plavec and Berlec, 2020). For 
instance, SYNB1618 must rely on exogenous diaminopimelate for 
cell wall synthesis in the case of dapA gene deletion, thus ensuring 
the complete purge of the bacteria after treatment (Isabella 
et al., 2018).

GEB preclinical and clinical 
applications in disease 
management

As early as 100 years ago, bacteria were used to treat tumors 
and clostridial enteritis (Coley, 1893; Hoffman, 2016). Engineered 
bacteria at their initial stages mainly focused on the treatment of 
gastrointestinal inflammation and tumors (Steidler et al., 2000; 
Geirnaert et al., 2017; Zhou et al., 2018). Advances in genetic 
technology endowed GEBs with more functions and broad 
application prospects. An alternative method is to deliver foreign 
therapeutic drugs, thus alleviating the shortcomings of natural 
drugs in the low production level, short action time, and nonoral 
administration property. In this paragraph, we  conclude and 
describe the use of GEBs for treating multiple diseases, such as 
IBD, obesity, diabetes and cancer, in detail (Table 1).

Gastrointestinal disease

The dysregulation of intestinal microbes induces 
gastrointestinal diseases and, in some cases, damages normal 
organs via the tissue-gut axis (Fassarella et  al., 2021; Lee and 
Chang, 2021). Routine supplementation with probiotics 
successfully improved or cured types of diseases, such as acute 
diarrhea (Mu and Cong, 2019), IBD (Saez-Lara et  al., 2015; 
Jakubczyk et  al., 2020), and diabetes (Kobyliak et  al., 2016; 
Razmpoosh et al., 2016; Kocsis et al., 2020; van de Wijgert and 
Verwijs, 2020; Davidson et  al., 2021). Specifically, IBD, as an 
autoimmune disease, is characterized by chronic inflammation of 
the gastrointestinal tract and the loss of epithelial barrier integrity 
in the intestine (Fakhoury et  al., 2014). Ulcerative colitis and 
Crohn’s disease are both classified as IBD. IBD has a high 

incidence worldwide, but there is still no efficient treatment 
method. Considering the key role of microorganisms in the 
intestinal microecological balance and IBD inflammatory 
characteristics, an anti-inflammatory cytokine, interleukin-10, 
was expressed in Lactobacillus to treat chronic disease, which 
finally led to a 50% therapeutic efficacy in a mouse IBD model 
(Steidler et al., 2000). Similarly, interleukin-4 (IL-4)-expressing 
Lactobacillus also significantly alleviated inflammatory responses 
caused by increased Th1 cells (Souza et al., 2016). Additionally, the 
oral administration of interleukin-35 (IL-35) expressing E. coli 
obviously attenuated inflammatory damage in mouse colon tissue, 
thereby improving the symptoms of IBD (Zhang et al., 2018). 
Furthermore, EcN has a long history in treating intestinal tract 
diseases in infants and toddlers. Using EcN to colonize and secrete 
intestinal trefoil factor could significantly improve the integrity of 
the intestinal epithelium and reduce the dextran sodium sulfate-
induced intestinal inflammatory response in a mouse model 
(Pedrolli et al., 2019).

Moreover, another potential way to treat colitis is to increase 
superoxide dismutase or catalase in the intestine, thereby reducing 
reactive oxygen species, which is a key factor in inflammation 
(Hwang et al., 2020; Wan et al., 2022). Utilizing GEBs to produce 
foreign proteins to enhance the delivery of superoxide dismutase 
or catalase to the intestine successfully reduced the inflammatory 
reaction in a trinitrobenzene sulfonic acid-induced colitis model 
(Del Carmen et  al., 2014). Additionally, the expression of 
manganese superoxide dismutase in Bifidobacterium greatly 
decreased dextran sodium sulfate-induced IBD (Liu et al., 2018). 
Furthermore, elastin is generally used to treat IBD because of its 
inhibitory effects on serine protease activity and anti-inflammatory 
effects (Bermúdez-Humarán et al., 2015). The oral administration 
of elastin-expressing Lactobacillus strains exhibited a strong 
inhibitory effect on dextran sodium sulfate-induced IBD 
(Bermúdez-Humarán et al., 2015). Similarly, genetically modified 
Lactobacillus strains could use mucosa to deliver an anti-
inflammatory molecule, recombinant mouse heme oxygenase-1, 
and thus reduce the incidence of acute colitis (Shigemori et al., 
2015). In addition to IBD, GEBs have been used to express foreign 
proteins, such as antibacterial pancreatitis-related protein, to 
alleviate or treat chemotherapy-induced intestinal diseases and 
mucositis in mice (Carvalho et al., 2017).

Cancer

The specific tumor microenvironment enables the 
colonization of facultative anaerobic or anaerobic bacteria in the 
hypoxic regions of solid tumors. The use of tumor-targeting 
bacteria, such as Bifidobacterium (Chen et al., 2021), Salmonella 
(Chirullo et al., 2015; Kim et al., 2015; Li et al., 2017), Clostridium 
novyi-NT (Roberts et al., 2014; Staedtke et al., 2016; Janku et al., 
2021), and E. coli (Afkhami-Poostchi et al., 2020; Chiang and 
Hong, 2021), to deliver various proteins, chemical molecules, 
preenzymes, etc. for cancer therapy is collectively referred to as 
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TABLE 1 Use of GEBs in disease treatment.

Chassis cells Therapeutic payload Diseases Animal experiment Development stages References

Lactobacillus IL-10 IBD Yes Mice Steidler et al., 2000

Lactobacillus IL-4 IBD Yes Mice Souza et al., 2016

E. coli IL-35 IBD Yes Mice Zhang et al., 2018

EcN Trefoil factor IBD Yes Mice Pedrolli et al., 2019

Bacillus thermophilus Superoxide dismutase IBD Yes Mice Del Carmen et al., 2014

Bifidobacterium RhMnSOD IBD Yes Mice Liu et al., 2018

Lactobacillus Elafin IBD Yes Mice Bermúdez-Humarán et al., 2015

Lactobacillus Recombinant mouse heme oxygenase-1 IBD Yes Mice Shigemori et al., 2015

NZ9001

Lactobacillus Pancreatitis-related protein Intestinal mucositis Yes Mice Carvalho et al., 2017

EcN Butyrate Colon cancer HT29 Yes Mice Chiang and Hong, 2021

Salmonella, Typhimurium IL-1β Colon cancer Yes Mice Kim et al., 2015

CT26

E. coli Β-glucuronidase Colon cancer Yes Mice Afkhami-Poostchi et al., 2020

Salmonella Typhimurium, Autoinducer Colorectal cancer Yes Mice Din et al., 2016

MC26

EcN Tum-5 Melanoma Yes Mice He et al., 2017

Salmonella VNP20009 Sox2 Lung cancer Yes Mice Zhao et al., 2016

Salmonella Transforming growth factor alpha-pseudomonas 

exotoxinTGFa-PE38

Colon cancer CT26 & Breast 

cancer 4 T-1

Yes Mice Lim et al., 2017

Salmonella SL7207 Diaminopimelate DAP Hepatocellular carcinoma Yes Mice Li et al., 2017

Lactobacillus GLP-1 Diabetes Yes Mice Duan et al., 2015; Lin et al., 2016

Lactobacillus Heat shock protein 65HSP65, IA2P2 Diabetes Yes Mice Liu et al., 2016

Lactobacillus GLP-1 Obesity Yes Mice Wang et al., 2021

Bacillus subtilis SCK6 Butyric acid Obesity Yes Mice Bai et al., 2020

Bacillus subtilis SCK6 BA Obesity Yes Mice Bai et al., 2020

EcN SYNB1020 I-arginineI-arg HyperammonemiaHA Yes Stop Kurtz et al., 2019

EcN SYNB1618 Insert phenylalanine ammonia lyase and L-amino acid 

deaminase gene

PhenylketonuriaPKU Yes Phase 1/2a Isabella et al., 2018; Puurunen et al., 2021

Lactobacillus plantarum Angiotensin-converting enzyme inhibitory peptidesACEIPS Hypertensive Yes Mice Yang et al., 2015

Vibrio cholerae strain Haiti V Delete CTXF, CTXA, RECA genes Cholera Yes Infant rabbit Hubbard et al., 2018

Meningitis MenB YH102， YH103 Delete rfaF, metH, siaD Meningitis Yes Mice Li et al., 2004

EcN Insert Phl p1 and Phl p5 gene, control the level of IgE Allergic poly-sensitization Yes Mice Sarate et al., 2019
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bacteriolytic therapy. Detailing all anticancer GEBs is beyond 
the scope of this review, and this topic has been recently 
reviewed by others (Badie et al., 2021; Huang et al., 2021; Kalia 
et al., 2021).

Metabolic diseases

The increasing prevalence of obesity, diabetes and other 
metabolic diseases in modern society places a heavy burden on 
medical care. These metabolic diseases are generally characterized 
by hyperglycemia, hyperlipidemia and high-density lipoprotein, 
and simultaneously, they could trigger each other (Guo, 2014). 
Notably, most patients with metabolic diseases must take drugs 
for the rest of their lives to alleviate or slow disease progression. 
In contrast, the oral administration of GEBs has exhibited few side 
effects and better acceptance. Indeed, many GEBs have already 
been constructed and evaluated for curing inborn or acquired 
metabolic diseases.

Diabetes
Diabetes is one of the greatest public health problems 

worldwide and causes a substantial burden on the socioeconomic 
development of the world (Lin et al., 2020). Diabetes is clinically 
divided into type 1 diabetes (T1D) and type 2 diabetes (T2D; 
Zimmet et al., 2014). The treatment for T1D relies on the regular 
injection of insulin to slow the progression of the diabetic process 
(Miller et al., 2015), whereas T2D patients take hypoglycemic 
drugs, such as metformin, to restrain disease progression. 
However, the long-term use of glucose-lowering drugs usually 
results in serious side effects and economic burdens (Khunti et al., 
2019). Numerous studies have found that disease progression in 
T2D is closely associated with an imbalance in gut microflora 
(Forslund et al., 2015). Therefore, the regulation of the intestine 
microenvironment using probiotics or GEBs could be  an 
alternative strategy to cure or slow diabetes, especially T2D. Given 
the underlying mechanisms of diabetes, treatment could 
be achieved by using an engineered bacterium to produce proteins 
with hypoglycemic effects. For example, glucagon-like peptide 1 
(GLP-1) is an efficient drug for diabetes treatment, but its short 
half-life time and high cost greatly prevent its extensive clinical 
use. However, GEBs characterized by gut colonization have the 
potential to address the above problems. Leveraging GLP-1 (1–37) 
with the ability to transfer intestinal epithelial cells into insulin-
secreting cells (Duan et al., 2015), GLP-1-expressing Lactobacillus 
successfully normalized blood glucose levels in diabetic Goto-
Kakizaki rats (Lin et al., 2016). Other proteins or compounds 
against diabetes can also achieve similar therapeutic effects by 
using probiotics as delivery vectors. For example, recombinant 
Lactobacillus expressing heat shock protein 65 and IA2P2 (a 23 
amino acid peptide) effectively alleviated the symptoms of 
pancreatitis and improved diabetes by inhibiting the antigen-
specific proliferation of T cells in T1D and regulating the balance 
between Th17/Tregs and Th1/Th2 cells (Liu et al., 2016).

Obesity
Obesity is a complex multifactorial disease and a key factor in 

other chronic diseases, such as cardiovascular disease, cancer, and 
diabetes (Pan et al., 2021). Generally, obesity occurs in middle-
aged and elderly people. Increasing reports demonstrate that the 
prevalence of obesity in children and adolescents aged 2 to 
19 years has been gradually increasing worldwide, especially in 
developed countries (Fryar et al., 2018, 2020). Most traditional 
anti-obesity drugs, such as sibutramine and orlistat, act by 
suppressing appetite or blocking the absorption of body fat, but 
they produce obvious adverse effects on normal physiological 
function (Huang et al., 2019). Fortunately, several studies have 
developed GEBs to express anti-obesity factors for the purpose of 
alleviating obesity. For instance, GLP-1-expressing Lactobacillus 
could reduce the incidence of high-fat diet-induced obesity in 
mice by restraining lipid accumulation, enhancing GLP-1 
resistance to glucose intolerance, and increasing the expression of 
genes involved in the triglyceride degradation pathway (Wang 
et  al., 2021). Additionally, Bacillus subtilis SCK6 utilized 
Coenzyme A transferase acetate to increase butyric acid 
production and stimulate the butyric acid kinase pathway, thus 
attenuating hepatic steatosis and fat accumulation in high-fat diet 
mice (Bai et al., 2020). Similarly, interleukin-22 (IL-22)-expressing 
Lactobacillus reuteri obviously decreased the incidence of 
nonalcoholic fatty liver disease in high-fat diet mice (Oh 
et al., 2020).

Hyperammonemia, phenylketonuria and other 
metabolic diseases

Hyperammonemia, as a metabolic disease, is used to describe 
patients with high levels of plasma ammonia levels (>50 μmol/l in 
adults and >100 μmol/l in the neonatal period). Under normal 
circumstances, ammonia is mainly produced in the intestine and 
excreted by the liver, but severe metabolic disorders probably 
induce the massive accumulation of ammonia in the body and, 
thus, affect the urea cycle and may even trigger hepatic 
encephalopathy (Auron and Brophy, 2012). The current treatment 
strategies for patients with hyperammonemia include 
hemodialysis, peritoneal dialysis, and antibiotic therapy. However, 
these treatments greatly increase infection probabilities and lead 
to drug resistance (Matoori and Leroux, 2015). However, oral 
probiotic use could significantly decrease ammonia levels in mice 
with hepatic encephalopathy (Lunia et al., 2014), demonstrating 
the feasibility of establishing GEBs to treat Hyperammonemia. In 
addition, by deleting the negative regulator of I-arginine synthesis 
and adding a feedback-resistant I-arginine biosynthetic enzyme 
in EcN, GEBs successfully achieved the conversion of NH3 to 
I-arginine in bacteria, thereby blocking ammonia accumulation 
in vivo and slowing Hyperammonemia progression (Kurtz 
et al., 2019).

Phenylketonuria is an autosomal recessive genetic disease 
characterized by mental and growth retardation. Phenylketonuria 
results from the gene deficiency of phenylalanine hydroxyls, thus 
preventing the conversion of phenylalanine to tyrosine. The 
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Phenylketonuria therapeutic methods include dietary restriction, 
gene therapy, and enzyme replacement. However, even a well-
controlled diet cannot completely prevent the occurrence of 
psychiatric problems in Phenylketonuria patients, while gene 
therapy is extremely costly, and enzyme replacement therapy is 
obviously affected by the drug dose and administration schedule 
(Camp et al., 2014). However, probiotics have the potential to 
be modified to produce deficient phenylalanine hydroxyl enzymes 
to supplement physiological requirements. The insertion of the 
genes of phenylalanine-ammonia-lyase and L-amino acid 
deaminase into the EcN genome enables probiotics to convert 
phenylalanine into trans-cinnamic acid salt in the gastrointestinal 
tract, thus leading to a 38% reduction in orally administered 
phenylalanine in blood (Isabella et al., 2018; Puurunen et al., 2021).

Furthermore, hypertension is a common chronic disease that 
is not only a major cause of cardiovascular disease but also 
damages the brain, kidney, and other organs (Fuchs and Whelton, 
2020). Many therapeutic agents, including β-blockers, calcium 
channel blockers, diuretics, and renin-angiotensin converting 
enzyme inhibitors, have been developed to treat hypertension. 
However, the long-term use of these antihypertensive drugs often 
leads to potential side effects, such as arterial damage, angioedema, 
arrhythmias, impotence, hyperkalemia, and cough. More 
importantly, some drugs, such as angiotensin-converting enzyme 
inhibitory peptides, require large doses to exert therapeutic effects 
because their activity is inclined to be inhibited by other enzymes 
(Laurent, 2017). However, probiotics engineered to express the 
enzyme have the potential to address this issue. For example, the 
introduction of the genes encoding tuna frame protein and 
yellowfin sole frame protein into Lactobacillus plantarum NC8 
enabled the probiotics to synthesize angiotensin-converting 
enzyme inhibitory peptides, and the oral administration of 
angiotensin-converting enzyme inhibitory peptides significantly 
reduced systolic blood pressure and triglyceride levels in a 
spontaneously hypertensive mouse model, displaying good 
antihypertensive ability (Yang et al., 2015).

Conclusion and prospects

Microbes have been implicated in almost all fundamental 
activities of physiological homeostasis. One example of the 
increasingly important role of bacteriotherapy is the regulation 
of the intestinal flora for curing intestinal diseases and 
adjuvant therapy of other diseases, such as cancer and 
metabolic diseases (Andrade-Oliveira et al., 2015; Alexander 
et  al., 2017; Yuan et  al., 2018; Molina et  al., 2021; Si et  al., 
2021). Notably, advances in gene sequencing technologies have 
partly revealed the mysteries of human microbes and the 
interaction between microbes and various mammalian cells, 
greatly advancing GEB preclinical studies. To date, most 
existing therapeutic GEBs have been modified from human 
intestinal probiotics, demonstrating their potential safety 
compared to traditional chemical drugs, especially for 

long-term use. GEBs are not only effective therapeutic agents 
against chronic diseases due to their intestinal colonization 
ability but also expand the scope of the application of tumor-
targeting treatment.

The use of engineered bacteria in disease treatment is still in 
the infancy stage and has limitations for incurable diseases. In 
addition, the clinical translation of GEBs is still hindered by 
potential pathogenicity and local laws and regulations, which only 
allow clinical trials to use bacteria without any genetic 
modification. A future challenge will be to determine whether the 
genetically inserted genes of GEBs could spill over into the 
genomes of other bacteria or mammalian cells; how GEBs could 
stably colonize and produce the expected substrates in the targeted 
sites; how they interact with the intestinal flora, thus normalizing 
them into the health status; and how to lock them into the 
expected tissues and clear them once they accomplish their 
mission. Such questions underscore the importance of 
investigating the genetic stability of the inserted genes in GEBs 
under normal physiological conditions. However, as biological 
technologies continue to evolve, newly available bacterial tools 
and the upgrading of therapeutic strategies of GEBs will further 
alleviate potential safety concerns and enhance their depth and 
breadth in disease prevention and treatment.

Collectively, given the importance of the microbiota in normal 
physiological function, the long historical use of probiotics and 
bacterial-derived products for health care, and our increasingly 
better understanding of the mechanisms underlying the various 
gut-brain similar axes, we  expect that GEBs will make an 
important contribution to the prevention and treatment of various 
diseases that current drugs cannot address or cause serious 
side effects.
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